imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

27-Line LVD SCSI Source/Sink Regulator

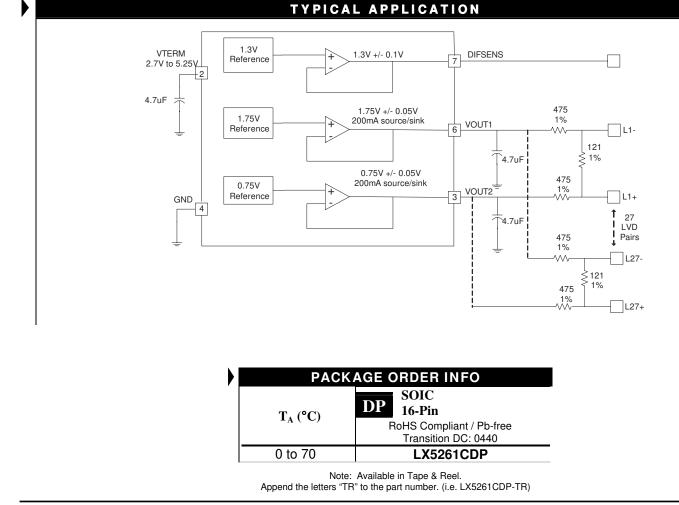
PRODUCTION DATASHEET

DESCRIPTION

The LX5261 is a source/sink regulator designed to provide the correct reference voltages and bias currents for SCSI LVD applications. With the proper LVD termination network (475 Ω , 121 Ω , 475 Ω), the LX5261 assures that LVD performance is compliant to the SPI-2 (Ultra2), SPI-3 (Ultra160) and SPI-4 (Ultra320) specification.

The LX5261 provides two fixed pin SOIC (DP) package. regulated outputs (1.75V and 0.75V)

each capable of sourcing / sinking 200mA, along with a buffered 1.3V output for DIFSENS signaling.


The LX5261 features on-chip trimming of the internal voltage enabling precise output voltages; typically +/- 1% of its specified value. Thermal Shutdown and Current Limiting is integrated on-chip.

The LX5261 is available in the 16bin SOIC (DP) package.

KEY FEATURES

- Compliant with SPI-2 (Ultra2), SPI-3 (Ultra160), and SPI-4 (Ultra320)
- 2.7V to 5.25V Operation
- 200mA Source/Sink Capability
- DIFSENS Line Driver
 Current Limit and Thermal
- Protection
- Pin Compatible With Unitrode UCC561

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

Page 1

RoHS / Pb-freePeak Package Solder Reflow Temperature

LX5261

16 N/C

14 N/C

15 N/C

13 HSGND

12 HSGND

11 N/C

10 N/C

N/C

PACKAGE PIN OUT

2

3

5

DP PACKAGE (Top View) NC – No Internal Connection

RoHS / Pb-free 100% Matte Tin Lead

N/C

VOUT2

GND

VTERM

HSGND

VOUT1

DIFSENS

N/C

27-Line LVD SCSI Source/Sink Regulator

PRODUCTION DATASHEET

ABSOLUTE MAXIMUM I	RATINGS
Term Power (VTERM)	
Operating Junction Temperature	
Storage Temperature Range	

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

THERMAL DATA

DP 16-Pin SOIC

considerations)

THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}

111.8 °C/W

Junction Temperature Calculation: $T_J = T_A + (P_D \ge \theta_{JA})$. The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow. θ_{JA} can vary significantly depending on mounting technique. (See Application Notes Section: Thermal

FUNCTIONAL PIN DESCRIPTION PIN NAME DESCRIPTION VOUT1 1.75V Regulated Output. Capable of sourcing/sinking 200mA. VOUT2 0.75V Regulated Output. Capable of sourcing/sinking 200mA. Power supply pin for terminator. Connect to SCSI bus VTERM. Usually decoupled by one 4.7µF low-ESR capacitor. It is absolutely necessary to connect this pin to the decoupling capacitor through a very low impedance (big traces to PCB). Keeping distances VTERM very short from the decoupling capacitors is somewhat layout dependent and some applications may benefit from high frequency decoupling with 0.1µF capacitors at VTERM pin. DIFSENS 1.3V buffered output for DIFSENS signaling. GND Regulator ground pin. Connect to ground. Attached to die mounting pad, but not bonded to GND pin. Pins should be considered a HSGND heat sink only, and not a true ground connection. It is recommended that these pins be connected to ground, but can be left floating.

27-Line LVD SCSI Source/Sink Regulator

PRODUCTION DATASHEET

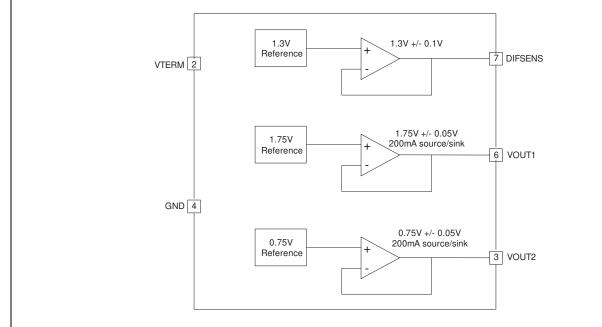
RECOMMENDED MAX OPERATING CONDITIONS

Parameter	Symbol	LX5261			Units
Falameter	Symbol	Min	Тур	Max	Units
VTERM	V _{TERM}	2.7		5.25	V
Signal Line Voltage	_	0		5.0	V
Operating Junction Temperature	TJ	0		70	°C

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature $0^{\circ}C \le T_A \le 70^{\circ}C$, and $V_{\text{TERM}} = 3.3V$.

1	Parameter	Symbol	Symbol Test Conditions		LX5261		
	Falameter	Symbol	Test conditions	Min	Тур	Max	Units
TERMPWR Section						_	_
	VTERM Supply Current	I _{TERM}	No Load		35	40	mA
	VTERM Voltage	V _{TERM}		2.7		5.25	V
	Regulator Section					•	
	1.75V Regulator	V _{REG1}	-125mA < I_{OUT} < 125mA, 2.7V < V_{IN} < 5.25V	1.7	1.75	1.8	V
	1.3V Regulator	V _{DIFS}	DIFSENS; No Load	1.2	1.3	1.4	V
	0.75V Regulator	V _{REG2}	-125mA < I _{OUT} < 125mA, 2.7V < V _{IN} < 5.25V	0.7	0.75	0.8	V
	1.75V Regulator Source Current	I _{SRC1}	V _{OUT} = 1.25V			-200	mA
	1.75V Regulator Sink Current	I _{SNK1}	$V_{OUT} = 2.25V$	200			mA
	1.75V Source Current Limit			-700			mA
	1.75V Sink Current Limit					700	mA
	1.3V Regulator Source Current	I _{DIFS_SRC}	DIFSENS; 0V	-5		-15	mA
	1.3V Regulator Sink Current	I _{DIFS_SNK}	DIFSENS = 2.4V	50		200	μΑ
	0.75V Regulator Source Current	I _{SRC2}	$V_{OUT} = 0.25V$			-200	mA
	0.75V Regulator Sink Current	I _{SNK2}	V _{OUT} = 1.25V	200			mA
	0.75V Source Current Limit			-700			mA
	0.75V Sink Current Limit					700	mA



www.*Microsemi.*com

27-Line LVD SCSI Source/Sink Regulator

PRODUCTION DATASHEET

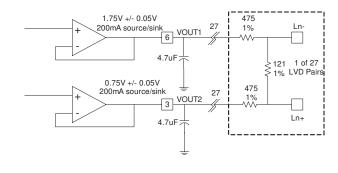
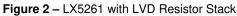


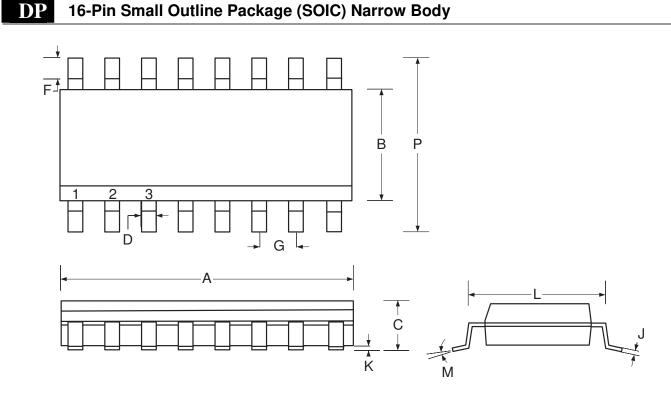
Figure 1 – LX5261 Block Diagram


APPLICATION INFORMATION

LVD SCSI with Resistor Stack

The LX5261 is used with a LVD resistor network (475 Ω , 121 Ω , 475 Ω) to meet LVD SCSI performance. Connecting the top side of the LVD resistor network to the 1.75V regulated output (V_{REG1}, pin 6), and the bottom side of the LVD resistor network to the 0.75 regulated output (V_{REG2}, pin 3) provides the correct bias voltage, differential impedance, common mode differential impedance, and common mode voltage required by the SPI-2 through SPI-4 SCSI specification (see Figure 2. below). The LX5261 is designed to drive up to 27 LVD pairs.

Parameter	LX5261	SCSI Standard	Units
Differential Impedance	107.3	100 to 110	ohm
Differential Bias Voltage	112.9	100 to 125	mV
Common Mode Impedance	237	100 to 300	ohm
Common Mode Voltage	1.25	1.2 to 1.3	V



27-Line LVD SCSI Source/Sink Regulator

PRODUCTION DATASHEET

MECHANICAL DRAWINGS

Dim	MILLIMETERS		INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	9.78	10.01	0.385	0.394	
В	3.81	4.01	0.150	0.158	
С	1.35	1.75	0.053	0.069	
D	0.35	0.46	0.014	0.018	
F		0.77		0.030	
G	1.27 BSC		0.050 BSC		
J	0.19	0.25	0.007	0.010	
K	0.10	0.25	0.004	0.010	
L	4.82	5.21	0.189	0.205	
М	0	8	0	8	
Р	5.79	6.20	0.228	0.244	
*LC		0.10		0.004	

Note:

1. Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

27-Line LVD SCSI Source/Sink Regulator

PRODUCTION DATASHEET

NOTES

PRODUCTION DATA – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.