: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Production Datasheet

DESCRIPTION

The LX7104 is a 1.4 MHz fixed frequency, current mode, PWM buck (stepdown) DC-DC converter, capable of driving a 1.5 A load with high efficiency, excellent line and load regulation. The device integrates a N -channel power MOSFET switch with low on-resistance. The converter accepts a wide input voltage range from 4.5 V to 18 V , and provides an output voltage adjustable typically from 0.81 to 15 V .

Soft-start is built in, and current mode control provides fast transient response and cycle-by-cycle current limit. Short circuit protection will be triggered when current is over limit and FB is below 0.25 V .

The LX7104ISF is available in SOT236 package.

KEY FEATURES

- Input Supply Range: 4.5 V to 18 V
- Output Voltage Adjustable from 0.81 V to 15 V
- Integrated High-Side NMOS Switch
- Current Mode Control
- Output Current: 1.5A
- Fixed 1.4 MHz Frequency
- High Efficiency: Up To 92\%
- Built-in Soft-start
- Built-in OV, UV \& OT Protection
- Cycle-by-cycle Over Current Protection
- Short Circuit Protection
- RoHS Compliant \& Halogen Free

APPLICATIONS

- LCD TV's / Monitor
- DPF
- Portable DVD

IMPORTANT: For the most current data, consult MICROSEMl's website: http://www.microsemi.com

PRODUCT HIGHLIGHT

Production Datasheet

ABSOLUTE MAXIMUM RATINGS

IN (Input Pin)

\qquad

\qquad

\qquad -0.3 V to 20 V
\qquadEN (Enable Pin).
0.3 V to $\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}$SW (Switch Pin)BS (Bootstrap Pin)-0.3 V to $\mathrm{V}_{\mathrm{Sw}}+6 \mathrm{~V}$
FB (Feedback Pin)

\qquad -0.3 V to 6 V
Maximum Junction Temperature

\qquad
$150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature. (Soldering 10 seconds).
Notes: Exceeding these ratings could cause damage to the device. All voltages are with respect to GND. Currents are positive into, negative out of specified terminal. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" are not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

PACKAGE PINOUT

RoHS / Pb-free Matte Tin Pin Finish

RECOMMENDED OPERATING CONDITIONS				
Parameters	Symbol	Min	Max	Units
Input Voltage	$\mathrm{V}_{\text {IN }}$	4.5	18	V
Maximum Output Current	$\mathrm{I}_{\text {Out }}(\mathrm{MAX})$	1.5		A
Operating Ambient Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$

ELECTRICALCHARACTERISTICS

$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.						
Parameters	Symbol	Test Conditions/Comments	MIN	TYP	MAX	Units

Recommended Operating Range

| $V_{I N}$ | $\mathrm{~V}_{\mathrm{IN}}$ | | 4.5 | | 18 | V |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating Current | | | | | | |
| Quiescent Current | I_{Q} | $\mathrm{V}_{\mathrm{FB}}=0.9 \mathrm{~V}$ | | 0.8 | 1.0 | mA |
| Shutdown Supply Current | $\mathrm{I}_{\mathrm{SHDN}}$ | $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ | | 0.1 | 1 | $\mu \mathrm{~A}$ |

$V_{\text {IN }}$ UVLO

Output

Switch $R_{D S O N}$	$R_{D S O N}$	$I_{S W}=1.0 \mathrm{~A}$		0.35		Ω
Switch Leakage Current	$I_{\text {LEAK }}$	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$		0.1	10	$\mu \mathrm{~A}$

Microsemi

Production Datasheet

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=12 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameters	Symbol	Test Conditions/Comments	MIN	TYP	MAX	Units
Switch Current Limit	ILIM		1.8	2.4	3.36	A
Thermal Shutdown	TOTSD			160		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis	$\mathrm{T}_{\text {HYS }}$			20		${ }^{\circ} \mathrm{C}$

Oscillator

Oscillator Frequency	$\mathrm{fosc}_{\mathrm{C} 1}$	$\mathrm{~V}_{\mathrm{FADJ}}=\mathrm{GND}$	1.1	1.4	1.7	MHz
Maximum Duty Cycle	$\mathrm{D}_{\mathrm{MAX}}$	$\mathrm{V}_{\mathrm{FB}}=0.6 \mathrm{~V}$		90		$\%$
Minimum Duty Cycle	$\mathrm{D}_{\mathrm{MIN}}$	$\mathrm{V}_{\mathrm{FB}}=0.9 \mathrm{~V}$			0	$\%$
Minimum On Time*	T_{ON}			100	130	ns

Short Circuit

| Hiccup time * | $\mathrm{~T}_{\text {HIccup }}$ | | | 270 | 375 | $\mu \mathrm{~S}$ |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Soft Start | | | | | | |
| Soft Start Time | $\mathrm{T}_{\text {ss }}$ | | | 300 | | $\mu \mathrm{~s}$ |

EN Input

EN Pin Threshold

$\mathrm{V}_{\text {EN_H }}$
$\mathrm{V}_{\text {EN_L }}$

1.5			V
		0.4	V

*Guaranteed by design, not production tested

FUNCTIONAL PIN DESCRIPTION

Pin Number	Pin Name	
1	BS	Bootstrap pin. A bootstrap capacitor is connected between the BS pin and SW pin. The voltage across the bootstrap capacitor drives the internal high-side NMOS switch.
2	GND	Ground pin.
3	FB	Feedback pin. This pin is connected to an external resistor divider to program the converter output voltage. When the FB pin voltage exceeds 120\% of the nominal regulation value of 0.81 V, the over voltage protection is triggered. When the FB pin voltage is below 0.25V and over current is triggered, the oscillator frequency is lowered to provide short circuit protection.
4	EN	Control input pin. Setting this pin above 1.5 V enables the IC. Setting this pin below 0.4 V shuts down the IC. When the IC is in shutdown mode, all functions are disabled to decrease the supply current below $1 \mu \mathrm{~A}$.
5	IN	Supply input pin. A capacitor should be connected between the IN pin and GND pin to keep the DC input voltage constant.
6	SW	Power switch output pin. This pin is connected to the inductor and bootstrap capacitor.

Microsemi

FUNCTIONALBLOCK DIAGRAM

Figure 1. LX7104 Functional Block Diagram.

Microsemi

Production Datasheet

CH3 EN, CH1 VOUT, CH2 SW
CH4 Inductor Current
OUTPUT TRANSIENT RESPONSE

LX7104
1.4MHz 1.5A Asynchronous Buck Converter

Production Datasheet

APPLICATION INFORMATION

OUTPUT VOLTAGE CALCULATION

Output voltage is set by reference voltage and external voltage divider. The reference voltage is nominally fixed at 0.81 V . The divider consists of the ratio of two resistors selected so that the output voltage applied at the FB pin is 0.81 V when the output voltage is at the desired level. The following equation and illustration indicate the relationship between output voltage and resistive voltage divider.

Figure 2 Voltage Divider

$$
\begin{equation*}
V_{\text {OUT }}=V_{\text {REF }} \times\left(1+\frac{R_{1}}{R_{2}}\right) \tag{1}
\end{equation*}
$$

The value of upper feedback resistor R1 needs to be set properly in order to have stable system. The recommended values of R1 and R2 are shown in the table below.

Table 1. Recommended value of feedback resistor divider for typical application shown in page 1.

Desired Output Voltage	R1	R2
2.5 V	$49.9 \mathrm{k} \Omega$	$23.7 \mathrm{k} \Omega$
3.3 V	$49.9 \mathrm{k} \Omega$	$16.2 \mathrm{k} \Omega$
5 V	$49.9 \mathrm{k} \Omega$	$9.53 \mathrm{k} \Omega$

PACKAGE DIMENSIONS

SF 6-Pin SOT-23 Package

Dim	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	0.90	1.30	0.035	0.051
A1	-	1.45	-	0.057
B	0.25	0.50	0.010	0.020
C	0.09	0.20	0.004	0.008
D	2.80	3.10	0.110	0.122
E	1.50	1.75	0.059	0.069
F	0.95	BSC	0.037	
BSC				
G	1.90	BSC	0.075	BSC
H	2.60	3.00	0.102	0.118
I	0.30	0.60	0.012	0.024
J	0.00	0.15	0.000	0.006
K	10° MAX		10° MAX	

Note:

1. Dimensions do not include mold flash or protrusions; these shall not exceed $0.155 \mathrm{~mm}\left(.006^{\prime \prime}\right)$ on any side. Lead dimension shall not include solder coverage.

Recommended Footprint

	MILLIMETERS		INCHES	
Dim	MIN	MAX	MIN	MAX
C	-	2.40	-	0.094
D	-	1.90	-	0.074
E	-	0.95	-	0.037
X	-	0.70	-	0.028
Y	-	1.00	-	0.039

NOTES

> PRODUCTION DATA - Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

