

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

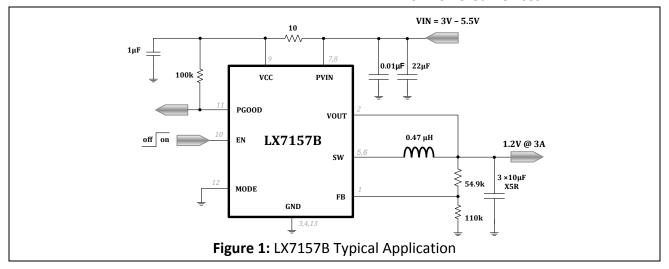
Description

LX7157B is a step-down PWM regulator IC with integrated high side P-CH MOSFET and low side N-CH MOSFET. The 2.2MHz switching frequency facilitates small output filter components.

The operational input voltage range of LX7157B is from 3V to 5.5V. LX7157B uses current mode operation with internal compensation allowing for fast transient response with minimum external components.

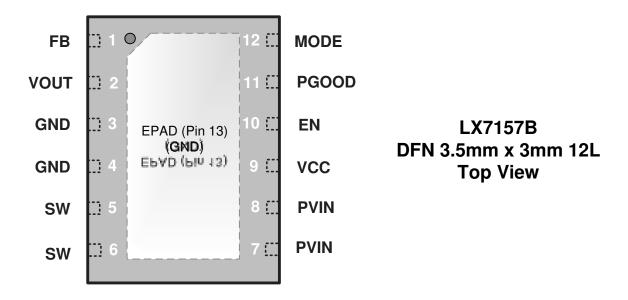
LX7157B employs a pulse SKIP method at light load to improve the light load efficiency; as a result, the battery life is extended. The internal soft-start limits the inrush current.

Cycle-by-cycle current limit protects the regulator against over-current conditions. The LX7157B operates in hiccup mode to further enhance the robustness of the converter for heavy over-load or short circuit fault, and it recovers automatically once the fault is cleared.


The thermal protection shuts down the regulator under an over-temperature condition.

Features

- ♦ 3A Step-down Regulator
- ♦ Input Supply Voltage Range: 3V to 5.5V
- Integrated PMOS and NMOS
- ♦ Internal Compensation
- ♦ Internal Slope Compensation
- ♦ 2.2MHz Switching Frequency
- ♦ SKIP Pulse to Improve Light Load Efficiency
- ♦ Input UVLO and OV Protection
- ♦ Enable & Power Good
- ♦ Internal Soft-start
- ◆ Cycle-by-Cycle Over Current Protection
- ♦ Hiccup Mode Operation Under OCP
- ♦ RoHS compliant, DFN 3.5mm x 3mm 12L


Applications

- Set-top box and LCD TV's
- Notebook/Netbook
- Server and Workstations
- Routers
- Video Cards
- PC Peripherals
- PoE Powered Devices

Pin Configuration and Pinout

Part Marking:

7157B

XXXX

MSC

XXXX = Date/Lot Code

Figure 2: LX7157B Pinout

Ordering Information

Ambient Temperature	Туре	Package	Part Number	Packaging Type
-10 to 85°C	RoHS compliant,	DFN 3.5mm x 3mm 12L	LX7157BCLD	Bulk
-10 to 85 C	Pb-free	DEN 3.3111111 X 3111111 12L	LX7157BCLD-TR	Tape and Reel

Pin Description

Pin Number	Pin Designator	Description
1 FB		Voltage feedback pin. Connect to the output terminal through a resistor divider network to set the output voltage of the regulator to the desired voltage. The upper resistor of the divider is part of the closed loop stability and must be selected properly to insure the stability of the regulator. Table 1 shows the proper
2	VOUT	values of this network for selected output voltages. Output sense pin.
3, 4, 13	GND	Ground pin.
5,6	sw	Switch-node pin. Connect the output inductor between this pin and output capacitor.
7,8	PVIN	Input voltage pin of the regulator. A minimum of $10\mu F$, X5R type ceramic capacitor must be connected as close as possible from this pin to GND plane to insure proper operation.
9	VCC	Internal chip supply. Decouple this pin to GND with a 1 μ F, X5R type (or better) ceramic capacitor and connect it via a 10 Ω resistor to the input rail.
10	EN	Pulling this pin higher than 1.7V will enable the regulator. When pulled below 0.4V, the regulator will turn off.
11	PGOOD	Power-good pin. This is an open-drain output and should be connected to a voltage rail (for example, VIN) with an external pull-up resistor. During the power on, this pin switches from low to high state when FB voltage reaches above the power good threshold and the internal soft start has finished its operation. It will be pulled low, when the FB falls below the power good threshold minus the hysteresis. It will turn back on, when the pull FB rises above the threshold.
12	MODE	This PIN should be connected to GND; skip mode is enabled to improve the light load efficiency.

Block Diagram

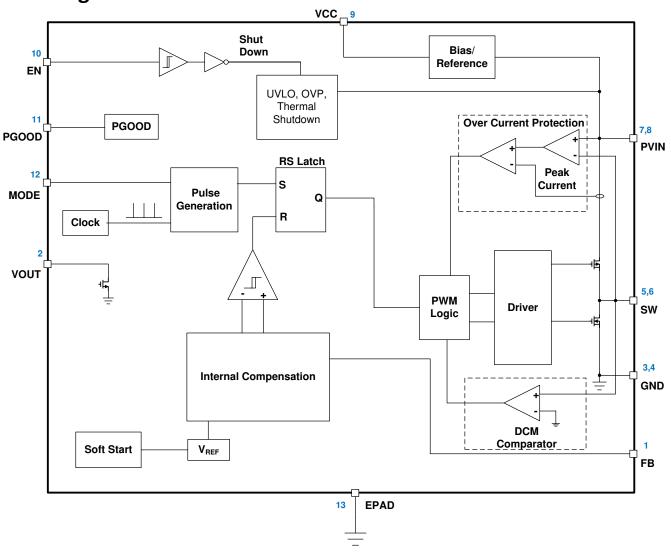


Figure 3: Block Diagram

Absolute Maximum Ratings

Performance is not necessarily guaranteed over this entire range. These are maximum stress ratings only. Exceeding these ratings, even momentarily, can cause immediate damage, or negatively impact long-term operating reliability.

	Min	Max	Units
PVIN, VCC, EN, FB, PGOOD, VOUT, MODE to GND	-0.3	7	V
SW to GND	-0.3	7	V
SW to GND (Shorter than 50ns)	-2	7	V
Maximum Operating Junction Temperature		150	°C
Storage Temperature Range	-65	150	°C
Lead Soldering Temperature (40s, reflow)		260 (+0, -5)	°C
ESD Protection at all I/O Pins (HBM, Note 1)	-2	2	kV

Note 1: PVIN & SW pins are ESD sensitive.

Operating Ratings

Performance is generally guaranteed over this range as further detailed below under Electrical Characteristics.

	Min	Max	Units
VCC, PVIN (Note 2)	3	5.5	V
VOUT	0.8	1.8	V
Ambient Temperature	-10	85	°C
Output Current	0	3	А

Note 2: Minimum input voltage 3.5V is required in order to have 3A output current

Thermal Properties

Thermal Resistance	Min	Тур	Max	Units
θ_{JA}		46		°C/W

Note: The θ_{JA} numbers assume no forced airflow. Junction Temperature is calculated using $T_J = T_A + (P_D \times \theta_{JA})$. In particular, θ_{JA} is a function of the PCB construction. The stated number above is for a four-layer board in accordance with JESD-51 (JEDEC).

Electrical Characteristics

Unless otherwise specified under conditions, the Min and Max ratings stated below apply over the entire specified operating range $0^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$ of the device. Typical parameter refers to $T_{J} = 25^{\circ}\text{C}$. VCC = PVIN = 5V, MODE = GND.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
OPERATI	OPERATING CURRENT						
IQ	Input Current	$I_{LOAD} = 0$, $V_{FB} = 0.8V$		700		μΑ	
I _{IN}	Input Current at Shut Down	EN = GND		0.1	3	μΑ	
VCC INPL	JT UVLO						
vcc	Under Voltage Lockout	VCC rising		2.6		V	
V _{HYS}	UVLO Hysteresis			80		mV	
FEEDBAC	CK						
V	Feedback Voltage	T _A = 25°C	0.792	0.800	0.808	V	
V _{REF}	Internal Reference	-10 < T _A < 85°C	0.788		0.812	V	
I _{FB}	FB Pin Input Current				100	nA	
	Line Regulation	VIN from 3V to 5.5V, I _{OUT} = 1.5A		0.5		%/V	
	Load Regulation	I _{LOAD} = 0 to 3A,		-0.3		%/A	
OUTPUT	DEVICE		•	•			
R _{DSON_H}	R _{DSON} of High Side			60		mΩ	
R _{DSON_L}	R _{DSON} of Low Side			40		mΩ	
Iμ	Current Limit			5.3		Α	
T _{SH}	Thermal Shut Down Threshold			150		°C	
T _H	Hysteresis			20		°C	
PVIN OVP							
OVP _R	Rising Threshold			6.5		V	
OVP _F	Falling Threshold			6.1		V	
	FB UVLO						
V _{FBULVO}	FB UVLO Threshold			70%		V_{REF}	

LX7157B

3V Input, High Frequency, 3A Step-Down ConverterProduction Datasheet

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
OSCILLA	OSCILLATOR FREQUENCY						
f _{SW}	PWM Switching Frequency Range			2.2		MHz	
f _{FB}	Switching Frequency at Fold back	V _{FB} < 0.3V		0.75		MHz	
SOFT STA	ART						
T _{SS}	Soft Start Time	From EN high to VOUT reach regulation.		465		μs	
T _{HICCUP}	Hiccup time	V _{FB} = 0.2V		11		ms	
EN INPU	Т						
EN _{VIH}	Input High		1.7			V	
EN _{VIL}	Input Low				0.4	V	
EN _H	Hysteresis			0.1		V	
EN _{II}	Input Bias			0.01	1	μΑ	
POWER-	GOOD						
V_{PG}	Power-good High Threshold	V _{FB} rising, in percentage of output voltage set-point.		85		%	
V_{PGHY}	Hysteresis	Either V _{FB} rising or falling		52		mV	
PGD _{filt}	Power Good filter			6		Clock cycles	
PG _{RDSON}	Power-good Internal FET R _{DSON}	VCC = 5V		18		Ω	
I _{PGD}	PGOOD FET Leakage Current			0.01	1	μΑ	

Typical Efficiency Curve

LX7157B Efficiency / VIN = 5V, VOUT = 1.2V

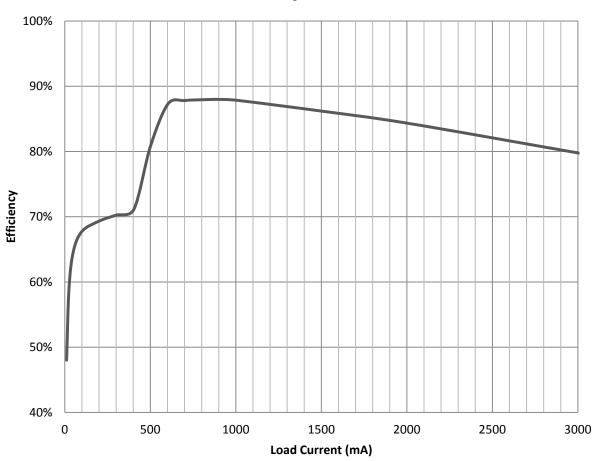


Figure 4: Efficiency Curve

Application Information

Output Voltage Calculation

Output voltage is set by reference voltage and external voltage divider. The reference voltage is fixed at 0.8V. The divider consists of the ratio of two resistors so that the output voltage applied at the FB pin is 0.8V when the output voltage is at the desired value. The following equation and picture show the relationship between output voltage and voltage divider.

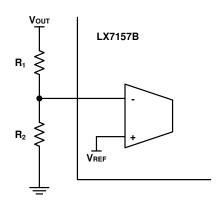


Figure 5: Voltage Divider

$$VOUT = V_{REF} \times \left(1 + \frac{R_1}{R_2}\right)$$
 (1)

The value of upper feedback resistor R_1 has to be set properly in order to have stable system. The recommended value of R_1 is shown in the table 1, R_2 can be derived from equation 1.

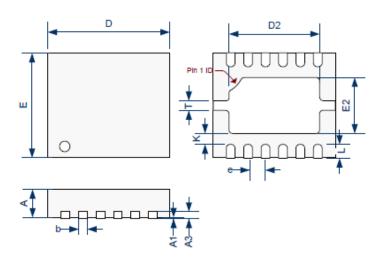

Output Capacitor	R ₁ (Ω)
2 x 10μF (X5R, 6.3V)	80.6k
3 x 10μF (X5R, 6.3V)	54.9k
2 x 22μF (X5R, 6.3V)	49.9k
3 x 22μF (X5R, 6.3V)	33.2k

Table 1: Recommended upper resistor value of feedback resistor divider for typical application $(L = 0.47\mu H)$

Package Dimensions

12-Pin Plastic DFN 3.5mm x 3mm with Exposed Pad

	MILLIN	METERS	INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	0.70	0.80	0.027	0.031	
A1	0	0.05	0	0.002	
A3	0.20	REF	0.008	REF	
b	0.18	0.30	0.007	0.012	
D	3.50	BSC	0.138	BSC	
D2	2.45	2.70	0.096	0.106	
е	0.50 BSC		0.019	BSC	
E	3.00 BSC		0.118 BSC		
E2	1.45	1.70	0.057	0.067	
L	0.35	0.55	0.014	0.022	
Т	0.20	0.30	0.008	0.012	

PRODUCTION DATA – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.