

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









# 3MHz, 2.4A Constant Frequency Hysteretic Synchronous Buck Regulator

## **Description**

LX7167A is a step-down PWM Switching Regulator IC with integrated high side P-CH and low side N-CH MOSFETs. The IC operates using a hysteretic control topology with a full load operating switching frequency of 3MHz allowing small output filter components while maintaining excellent dynamic load response.

The operational input voltage range of LX7167A is from 3V to 5.5V. The part has a Power Save Mode (PSM) that automatically transitions between PWM and PSM mode depending on the load current. This allows the converter's efficiency to remain high when load current drops. There is a Power Good function to indicate the status of the IC.

In the shutdown mode, the IC's current consumption is reduced to less than  $1\mu A$  and the output capacitor is discharged.

Other features of the part are: a) Cycle-by-cycle current limit followed by HICCUP mode which reduces the overall power dissipation of the internal MOSFETs, b) thermal protection and internal digital soft start.

The LX7167A is available in a 2mm x 2mm 8 pin exposed pad DFN package.

### **Features**

- 2.4A Step-down Regulator
- Operational Input Supply Voltage Range: 3V-5.5V
- Integrated PMOS and NMOS
- Load Current from Zero to 2.4A
- 3MHz Switching Frequency
- SKIP Pulse to Improve Light Load Efficiency
- Input UVLO and OV Protection
- Enable Pin
- Power Good
- Internal Soft-start
- Cycle-by-Cycle Over Current Protection
- Hiccup Mode Operation Under FB UVLO
- RoHS Compliant for Pb Free

## **Applications**

- HDD
- Set-Top Box
- LCD TV's
- Notebook/Netbook
- Routers
- Video Cards
- PC Peripherals
- PoE Powered Devices Smart Phone

1

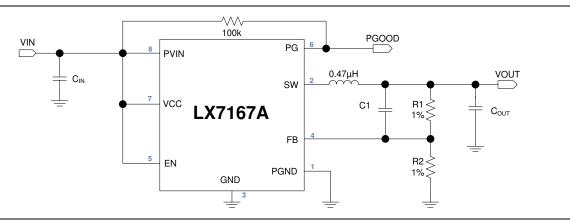



Figure 1 · Typical Application of LX7167A

# Pin Configuration and Pinout

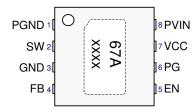



Figure 2 · Pinout DFN 2mmx2mm 8L Top View

Marking: First Line 67A
Second Line YWWA (Year/Work Week/Lot Code)

# **Ordering Information**

| Ambient Temperature | Туре                            | Package        | Part Number   | Packaging Type |
|---------------------|---------------------------------|----------------|---------------|----------------|
| -10°C to 85°C       | RoHS Compliant, DEN Occasion Of |                | LX7167ACLD    | Bulk / Tube    |
| -10-0 10 65-0       | Pb-free                         | DFN 2mmx2mm 8L | LX7167ACLD-TR | Tape and Reel  |

# Pin Description

| Pin<br>Number | Pin<br>Designator | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | PGND              | Ground pin for the power stage.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2             | SW                | Switch-node pin. Connect the output inductor between this pin and output capacitor. When the chip is DISABLED, the internal discharge resistor will be enabled to discharge the output capacitance. The current will flow into this pin.                                                                                                                                                                                                                           |
| 3             | GND               | Ground pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4             | FB                | Voltage feedback pin. Connect to the output terminal through a resistor divider network to set the output voltage of the regulator to the desired value.                                                                                                                                                                                                                                                                                                           |
| 5             | EN                | Pull this pin higher than 1V will enable the controller. When pulled low, the IC will turn off and the Internal discharge FET will turn on to discharge the output capacitor through the SW pin.                                                                                                                                                                                                                                                                   |
| 6             | PG                | Power-good pin. This is an open-drain output and should be connected to a voltage rail with an external pull-up resistor. During the power on, this pin switches from LOW to HI state when FB voltage reaches above the power good threshold and the internal soft start has finished its operation. It will be pulled low when the FB falls below the power-good threshold minus the hysteresis. It will turn back on when the pull FB rises above the threshold. |
| 7             | VCC               | Analog input voltage terminal. Connect this pin to PVIN directly.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8             | PVIN              | Input voltage terminal of the regulator. A minimum of $10\mu F$ , X5R type ceramic capacitor must be connected as close as possible from this pin to PGND plane to insure proper operation.                                                                                                                                                                                                                                                                        |
|               | Power PAD         | For good thermal connection, this PAD must be connected using thermal VIAs to the GND plane and to the LAND pattern of the IC.                                                                                                                                                                                                                                                                                                                                     |

# **Block Diagram**

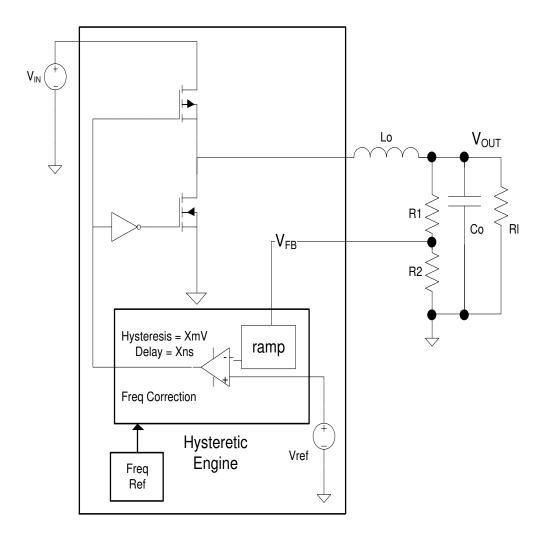



Figure 3 · Simplified Block Diagram of LX7167A

## **Absolute Maximum Ratings**

| Parameter                                            | Min  | Max         | Units |
|------------------------------------------------------|------|-------------|-------|
| PVIN, VCC, EN, FB, PG to GND                         | -0.3 | 7           | V     |
| SW to GND                                            | -0.3 | 7           | V     |
| SW to GND ( Shorter than 50ns)                       | -2   | 7           | V     |
| Junction Temperature                                 | -10  | 150         | °C    |
| Storage Temperature                                  | -65  | 150         | °C    |
| Peak Package Solder Reflow Temperature (40s, reflow) |      | 260 (+0,-5) | °C    |

Note: Performance is not necessarily guaranteed over this entire range. These are maximum stress ratings only. Exceeding these ratings, even momentarily, can cause immediate damage, or negatively impact long-term operating reliability

## **Operating Ratings**

| Parameter           | Min | Max       | Units |
|---------------------|-----|-----------|-------|
| PVIN                | 3   | 5.5       | V     |
| V <sub>OUT</sub>    | 0.6 | VIN – 0.5 | V     |
| Ambient Temperature | -10 | 85        | °C    |
| Output Current      | 0   | 2.4       | Α     |

## **Thermal Properties**

| Thermal Resistance | Тур | Units |
|--------------------|-----|-------|
| $\theta_{JA}$      | 75  | °C/W  |

Note: The  $\theta_{JA}$  number assumes no forced airflow. Junction Temperature is calculated using  $T_J = T_A + (PD \times \theta_{JA})$ . In particular,  $\theta_{JA}$  is a function of the PCB construction. The stated number above is for a four-layer board in accordance with JESD-51 (JEDEC).

## **Electrical Characteristics**

Note: Unless otherwise specified, the following specifications apply over the operating ambient temperature of  $-10^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$  except where otherwise noted with the following test conditions: PVIN = 5V. Typical parameter refers to  $T_{J} = 25^{\circ}\text{C}$ .

| Symbol            | Parameter                  | <b>Test Condition</b> | Min | Тур | Max | Units |
|-------------------|----------------------------|-----------------------|-----|-----|-----|-------|
| Operatin          | g Current                  |                       |     |     |     |       |
| IQ                | Input Current              | $I_{LOAD} = 0$        |     | 350 | 500 | μΑ    |
| I <sub>SHDN</sub> | Input Current at Shut Down | $V_{EN} = GND$        |     | 0.1 | 2   | μΑ    |
| PVIN Inp          | ut UVLO                    |                       |     |     |     |       |
| PVIN              | Under Voltage Lockout      | PVIN rising           |     | 2.4 | 2.8 | V     |
|                   | UVLO Hysteresis            |                       |     | 260 |     | mV    |



| Symbol              | Parameter                                 | Test Condition                                    | Min      | Тур   | Max   | Units             |
|---------------------|-------------------------------------------|---------------------------------------------------|----------|-------|-------|-------------------|
| FEEDBA              | CK                                        |                                                   | <u></u>  | l     |       |                   |
| .,                  | E " 137 "                                 | T <sub>A</sub> = 25°C                             | 0.594    | 0.600 | 0.606 | .,                |
| $V_{REF}$           | Feedback Voltage                          | T <sub>A</sub> = -10°C to 85°C                    | 0.591    |       | 0.609 | V                 |
| I <sub>FB</sub>     | FB Pin Input Current                      |                                                   |          |       | 10    | nA                |
|                     | Line Regulation                           | PVIN from 3V to 5.5V                              |          | 0.70  |       | %                 |
|                     | Load Regulation                           | I <sub>LOAD</sub> = 0 to 2A. Note 1               |          | 1.0   |       | %/A               |
| FB UVLO             |                                           |                                                   |          |       |       |                   |
| $V_{FBUVLO}$        | FB UVLO Threshold                         |                                                   | 63       | 70    | 79    | %V <sub>REF</sub> |
| OUTPUT              | DEVICE                                    |                                                   |          |       |       |                   |
| R <sub>DSON_H</sub> | R <sub>DSON</sub> of High Side            |                                                   |          | 95    | 150   | mΩ                |
| R <sub>DSON_L</sub> | R <sub>DSON</sub> of Low Side             |                                                   |          | 75    | 100   | mΩ                |
| IL                  | Peak Current Limit                        |                                                   | 2.6      | 3.5   | 4.5   | Α                 |
| T <sub>SH</sub>     | Thermal Shutdown<br>Threshold             |                                                   |          | 150   |       | °C                |
| T <sub>H</sub>      | Thermal Shutdown<br>Hysteresis            |                                                   |          | 20    |       | °C                |
| PVIN OVI            | •                                         | ,                                                 | 1        |       | 1     |                   |
| OVPR                | Rising Threshold                          |                                                   | 5.8      | 6.1   | 6.3   | V                 |
| OVP <sub>F</sub>    | Falling Threshold                         |                                                   | 5.5      |       | 6.1   | V                 |
| OSCILLA             | TOR FREQUENCY                             |                                                   |          |       |       |                   |
| f                   | Switching Frequency                       |                                                   | 2.6      | 3     | 3.4   | MHz               |
| SOFT ST             | ART                                       |                                                   | •        |       |       |                   |
| T <sub>SS</sub>     | Soft Start Time                           | From EN High to V <sub>OUT</sub> reach regulation | 380      | 500   | 800   | μs                |
| THICCUP             | Hiccup Time                               | V <sub>FB</sub> = 0.2V                            |          | 1.2   | 2.5   | ms                |
| EN INPU             | T                                         |                                                   | <u>.</u> |       |       |                   |
| EN <sub>VIN</sub>   | Input High                                |                                                   | 1        |       |       | V                 |
| EN <sub>VIL</sub>   | Input Low                                 |                                                   |          |       | 0.4   | V                 |
| EN <sub>H</sub>     | Hysteresis                                |                                                   |          | 0.1   |       | V                 |
| EN <sub>II</sub>    | Input Bias                                |                                                   |          | 0.01  | 1     | μΑ                |
| PG ( Pow            | er Good)                                  |                                                   |          |       |       |                   |
| $V_{PG}$            | Power Good Transition<br>High Threshold   |                                                   | 73       | 83    | 93    | %                 |
| V <sub>PGHY</sub>   | Hysteresis                                | Either V <sub>FB</sub> rising or falling          |          | 40    |       | mV                |
| PGRDSON             | Power Good Internal FET R <sub>DSON</sub> | PVIN = 5V                                         |          | 100   | 300   | Ω                 |
|                     | PG FET Leakage Current                    |                                                   |          | 0.01  | 1     | μΑ                |
|                     | PG internal Glitch Filter                 | Note 1                                            |          | 5     |       | μs                |
| OUTPUT              | DISCHARGE                                 |                                                   | L        | •     |       |                   |
|                     | Internal Discharge Resistor               |                                                   | 80       | 200   | 1400  | Ω                 |

Note 1: Guaranteed by design, not tested during production.

# Typical Performance Curves -- (Efficiency)

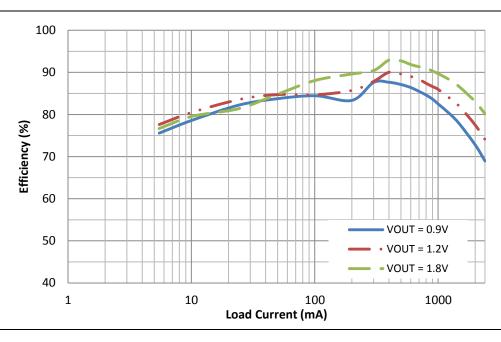



Figure 4 · Efficiency vs. Output Current with 3.3V Input

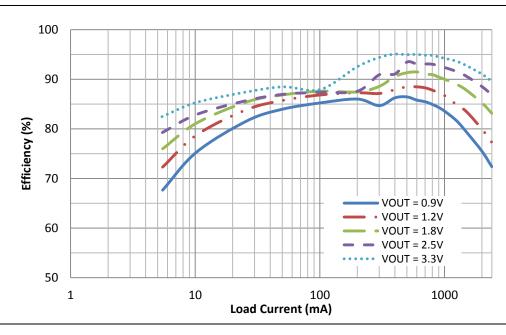



Figure 5 · Efficiency vs. Output Current with 5V Input



# Typical Performance Curves -- (Step Load Response.)

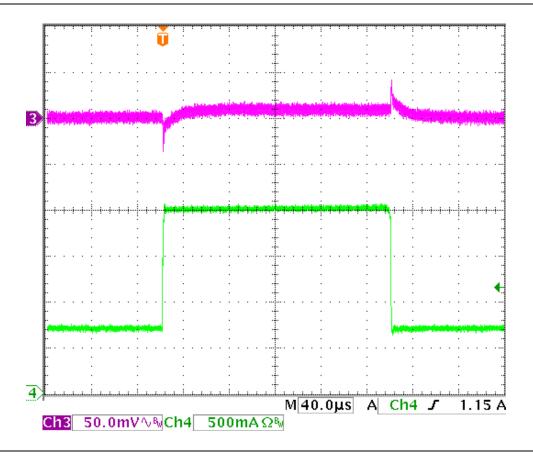



Figure 6 · Step Response ( $V_{IN}$  = 5V,  $V_{OUT}$  = 3.3V, L = 0.47 $\mu$ H,  $C_{OUT}$  = 22 $\mu$ F, Rising Slew Rate: 1A/ $\mu$ s, Falling Slew Rate: 1A/ $\mu$ s)

## Theory of Operation / Application Information

#### **Basic Operation**

The operation of the controller consists of comparing the  $V_{FB}$  voltage to an internal reference. When the VFB voltage is lower than the  $V_{REF}$ , the upper switch turns on. When the VFB voltage is higher than  $V_{REF}$ , the upper switch turns off and the lower switch turns on. An internal ramp is used to stabilize the switching frequency and keep the  $V_{FB}$  immune to the output capacitor,  $C_O$ , value or parasitic components (i.e. ESR, ESL). In addition, a frequency control loop ensures the switching frequency is constant under continuous conduction mode of operation.

At light load, the converter automatically reduces the switching frequency to optimize efficiency while ensuring the ripple voltage is low.

#### **Setting of the Output Voltage**

The LX7167A develops a 0.6V reference voltage between the feedback pin, FB, and the signal ground. The output voltage is set by a resistive divider according to the following formula:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2}\right)$$

The output component values are recommended below.

| VOUT  | L R1   | R1                             | R1 R2     | COUT                             | C1       |            |  |
|-------|--------|--------------------------------|-----------|----------------------------------|----------|------------|--|
| V001  | L      | N.I                            | n2        | COUT                             | 5V input | 3.3V input |  |
|       | 0.47µH |                                |           | 22µF                             | 10pF     |            |  |
|       | &      |                                |           | 2x22µF                           | 15       | ρF         |  |
| 1V    | 0.68µH | 66.5kΩ                         | 100kΩ     | 4x22µF                           | 22       | 2pF        |  |
| I V   |        | 00.5K12                        | 100K22    | 22µF                             | 15pF     | 12pF       |  |
|       | 1.0µH  |                                |           | 2x22µF                           | 22pF     | 22pF       |  |
|       |        |                                |           | 4x22μF                           | 27pF     | 27pF       |  |
|       | 0.47µH |                                |           | 22µF                             | 10       | ρF         |  |
|       | &      |                                |           | 2x22µF                           | 15       | ρF         |  |
| 1.8V  | 0.68µH | 100kΩ                          | 49.9kΩ    | 4x22µF                           | 22pF     |            |  |
| 1.0 V |        |                                |           | 22µF                             | 15pF     |            |  |
|       | 1.0µH  |                                |           | 2x22µF                           | 22pF     |            |  |
|       |        |                                |           | 22µF<br>2x22µF<br>4x22µF<br>22µF | 27pF     |            |  |
|       | 0.47µH | 0.47μH<br>&<br>0.68μH<br>158kΩ | 49.9kΩ    | 22µF                             | 15pF     |            |  |
|       | &      |                                |           | 2x22µF                           | 22pF     |            |  |
| 2.5V  | 0.68µH |                                |           | 4x22µF                           | 33       | ρF         |  |
| 2.5 V |        | 130K22                         | 49.9822   | 22µF                             | 10pF     | 22pF       |  |
|       | 1.0µH  | 1.0µH                          |           | 2x22µF                           | 15pF     | 27pF       |  |
|       |        |                                |           | 4x22µF                           | 22pF     | 33pF       |  |
|       | 0.47µH |                                |           | 22µF                             | 22pF     | -          |  |
|       | &      | &                              |           | 2x22µF                           | 33pF     | -          |  |
| 3.3V  | 0.68µH | 158kΩ                          | kΩ 34.8kΩ | 4x22µF                           | 47pF     | -          |  |
| J.J V | 1.0µH  |                                |           | 22µF                             | 22pF     | -          |  |
|       |        |                                |           | 2x22µF                           | 33pF     | -          |  |
|       |        |                                |           | 4x22µF                           | 47pF     | -          |  |



#### **Start Up**

The reference ( $V_{REF}$ ) is ramped up from zero voltage to 0.6V in 500 $\mu$ s. During this time, the PG is pulled low. When the reference reaches 0.6V, signaling the end of the soft start cycle, the PG pin will go high within 5 $\mu$ s.

#### **Over Current Protection**

The IC has the ability to protect against all types of short circuit protection. It has cycle-by-cycle short protection that turns off the upper MOSFET and ends the cycle when the current exceeds the OCP threshold, when this occurs; the off-time is at least 200ns before the upper FET is turned on again. After startup, if the FB pin drops below the Feedback UVLO threshold, the chip will go into a hiccup mode of operation. This helps to protect against a crowbar short circuit. The FB UVLO Alarm is not active during startup.

#### **Hiccup Mode of Operation**

Hiccup mode of operation will protect the IC during a short of the output. After startup, it will be triggered when the FB UVLO is exceeded.

#### **Input Over Voltage Protection**

The IC is protected against damage when the input voltage rapidly rises to the absolute maximum level. When the input voltage rises over the PVIN OVP rising threshold, the IC will turn off switching. It will resume switching when the input voltage drops below the PVIN OVP falling threshold with hysteresis.

#### **Typical Application Diagram**

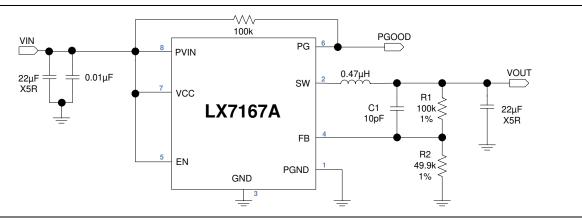
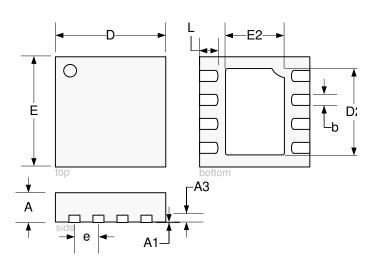




Figure 7 · LX7167A Typical Application Diagram

# Package Outline Dimensions



|     | MILLIMETERS |       | Inc        | HES    |
|-----|-------------|-------|------------|--------|
| Dim | MIN         | MAX   | MIN        | MAX    |
| Α   | 0.70        | 0.80  | 0.0276     | 0.0315 |
| A1  | 0           | 0.05  | 0          | 0.0020 |
| A3  | 0.2         | 0 ref | 0.007      | 79 ref |
| b   | 0.18        | 0.30  | 0.0071     | 0.0118 |
| D   | 2.00        | BSC   | 0.078      | 7 BSC  |
| D2  | 1.55        | 1.80  | 0.0610     | 0.0709 |
| е   | 0.50        | BSC   | 0.0197 BSC |        |
| Е   | 2.00        | BSC   | 0.0787 BSC |        |
| E2  | 0.75        | 1.00  | 0.0295     | 0.0394 |
| L   | 0.20        | 0.40  | 0.0079     | 0.0157 |

Figure 8  $\cdot$  8 Pin Plastic DFN 2x2mm Dual Exposed Pad Package Dimensions

Note: 1. Dimensions do not include mold flash or protrusions; these shall not exceed

0.155mm(.006") on any side. Lead dimension shall not include solder coverage.

Note: 2. Dimensions are in mm, inches are for reference only.



## Land Pattern Recommendation

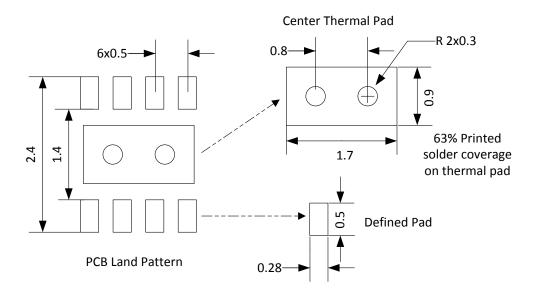



Figure 9 · 8 Pin Plastic DFN 2x2mm Dual Exposed Pad Package Footprint

#### Disclaimer:

This PCB land pattern recommendation is based on information available to Microsemi by its suppliers. The actual land pattern to be used could be different depending on the materials and processes used in the PCB assembly, end user must account for this in their final layout. Microsemi makes no warranty or representation of performance based on this recommended land pattern.

**PRODUCTION DATA** – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.



Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1(949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.