

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

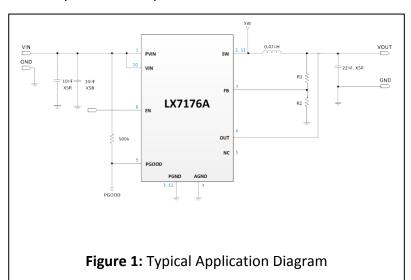
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Description

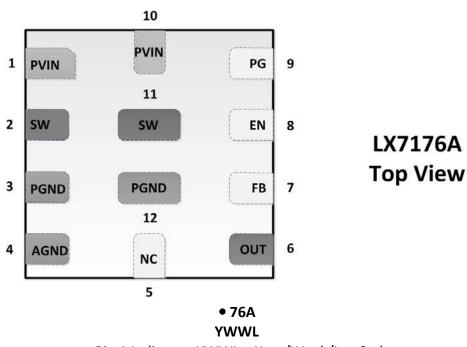
The LX7176A is a 4A step-down regulator with integrated MOSFETs packaged in a space saving QFN12 2mm x 2mm for today's mobile devices. It uses an ultra fast, constant frequency hysteretic control method to minimize external filter components while maintaining excellent regulation. The LX7176A reference voltage is 0.6V.

The LX7176A operates from 3V to 5.5V rails and outputs 0.6V to 100% of the input voltage.

Cycle-by-cycle current limiting protects against overcurrent conditions. Hiccup mode provides protection for heavy over-load or short-circuit faults. Thermal protection shuts down the regulator under overtemperature conditions. Over voltage conditions will immediately shut off the output to protect against permanent damage. The LX7176A automatically restarts when all fault conditions are cleared. Internal soft start circuitry limits start up inrush currents.

Features

- ♦ 0-4A Step-down Regulator
- ◆ Operational Input Supply Voltage Range: 3V-5.5V (short durations to 6.5V.)
- Hysteretic control offers best transient response
- ♦ CCM switching at a constant 1.65MHz
- Automatically switches to DCM switching under light loads to improve efficiency
- ♦ 100% Duty Ratio Operation
- Input under voltage and over voltage protection
- ♦ Enable and Power Good Function
- ♦ Internal soft-start
- ♦ Cycle-by-Cycle Over Current Protection
- Hiccup Mode protects against short circuit faults
- RoHS Compliant


Applications

- High Performance HDD
- LCD TV
- Notebook/Netbook
- Server and Workstations
- Video Cards
- PoE Powered Devices Smart Phone

Pin Configuration and Pinout

 Pin 1 Indicator, YWWL = Year/Week/Lot Code RoHS / Pb-free Matte Tin Pin Finish
Figure 2: Pinout

Ordering Information

Ambient Temperature	Туре	Package	Part Number	Packaging Type
0°C to 85°C	RoHS compliant, Pb-free	QFN 2x2mm 12L	LX7176ACLQ	Bulk
0 C 10 85 C	Nons compliant, Pb-free	QFIN ZXZIIIIII 1ZL	LX7176ACLQ-TR	Tape and Reel

Thermal Properties

Thermal Resistance(θ _{JA})	Тур	Units
QFN 2x2mm 12L	30	°C/W

Note: The θ_{JA} number assumes no forced airflow. Junction Temperature is calculated using $T_J = T_A + (P_D \times \theta_{JA})$. In particular, θ_{JA} is a function of the PCB construction. The stated number above is for a four-layer board in accordance with JESD-51 (JEDEC).

Pin Description

Pin Number	Pin Designator	Description			
1, 10	PVIN	Supply Voltage. Bypass PVIN to ground plane as close as possible to the IC.			
2, 11	SW	Switch Output. Drives the external L-C filter.			
3, 12	PGND	Power Ground. Connect to ground plane.			
4	AGND	Analog Ground. Connect to ground plane.			
5 NC		No connect pin. Leave floating. Serves as SCL when accessing the serial port.			
6	OUT	Output Voltage Sense Pin – This pin monitors the output voltage. Serves as SDA when accessing the serial port. Digital signals at this pin will be capacitively coupled onto FB and disturb the output voltage.			
7	FB	Feedback – Analog input, monitors the output voltage either directly or through a resistor divider.			
8	EN	Enable – Digital input. Force high to enable the IC.			
9	PG	Power Good – Open drain digital output. Pulls low to indicate a fault condition. Requires an external pull up resistor. Also used to monitor selected internal signals.			

Block Diagram

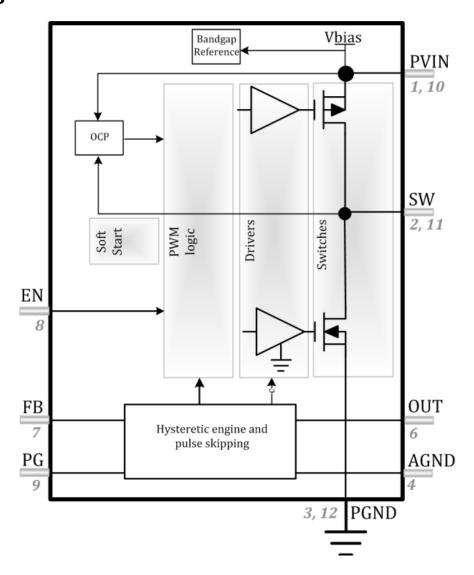


Figure 3: Block Diagram

Absolute Maximum Ratings

Performance is not necessarily guaranteed over this entire range. These are maximum stress ratings only. Exceeding these ratings, even momentarily, can cause immediate damage, or negatively impact long-term operating reliability.

Parameter	Min	Max	Units
PVIN, EN, PG, OUT, FB, SW to PGND	-0.3	7	V
AGND to PGND	-0.3	0.3	V
SW to PGND (Shorter than 50ns)	-2	7	V
Junction Temperature Range	0	150	°C
Storage Temperature Range	-65	150	°C
Peak Lead Soldering Temperature (40s, reflow)		260 (+0, -5)	°C

Operating Ratings

Performance is generally guaranteed over this range as further detailed below under Electrical Characteristics.

Parameter	Min	Max	Units
Input Voltage	3.0	5.5	V
Output Voltage	0.6	5.5	V
Output Current (VIN = 3V to 5V)	0	4	Α
Ambient Temperature	0	85	°C

Note: Corresponding Max Junction Temperature is 125°C

Electrical Characteristics

Unless otherwise specified, the following specifications apply over the operating ambient temperature of $0^{\circ}\text{C} \leq \text{T}_{A} \leq 85^{\circ}\text{C}$ with the following test conditions: PVIN = 5V. Typical parameters refers to T_{J} = 25°C. V_{OUT} = 0.9V. V_{OUT} is disconnected from FB for open loop tests. I_{load} = 0,. EN=high, GBD specifications are guaranteed by design and/or characterization and are not tested on a production basis.

Symbol	Parameter	Conditio	Min	Тур	Max	Units	
PVIN							
I _{QPSM}	PSM Bias Current	Enable PSM		280		μΑ	
I _{SLEEP}	Input Current at Shutdown	EN = low, T _J = 25°C			0.1	3	μΑ
UVLO _{RISING}	Under Voltage Rising Threshold	PVIN rising				2.8	٧
UVLO _{HYST}	UVLO Hysteresis	PVIN falling			0.2		V
OVP _R	Over Voltage Rising Threshold	PVIN rising. Will als DV/DT > 1V/μs	o trigger on		6.1		٧
OVP _F	Over Voltage Falling Threshold	PVIN falling		5.5	5.85		V
VREF							
V _{REF}	Reference Voltage				0.6		V
T _{SS}	V _{REF} Slew Rate				3.75		mV/μs
T _{HICCUP}	Hiccup Time			1.2		ms	
VOUT					•		
V _{OUT}	V _{OUT} Accuracy	V _{OUT} is set to 0.9V w feedback resistors. I 0°C to 85°C.		0.891	0.9	0.909	V
	Line Regulation	VIN from 3V to 5V, V _{OUT} = 0.9V. Note	I _{LOAD} = 0.1A (in DCM)		0.01		%/V
	Line Regulation	1	I _{LOAD} = 2.5A (in CCM)		0.06		/0/ V
V_{OUTLR}	Load Regulation	$V_{OUT} = 0.9V, I_{OUT} = 0.00$ Note 1	A to 4A .		-0.06		%/A
FB _{IL}	FB Input Current					1	μΑ
FB _{UV}	FB Under Voltage Threshold	V _{OUT} below this threshold will initiate a hiccup sequence.			80		%V _{REF}
R _{DISC}	Output Discharge Resistance	EN = low		80	314	500	Ω
SW	•	•		•		•	
R _{DSON_H}	High Side On Resistance				46		mΩ

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{DSON_L}	Low Side On Resistance			21		mΩ
I _{RATED}	Rated Output Current	PVIN = 3V to 5V. Note 1	4			А
I _{CL}	Current Limit	Peak inductor current. PVIN = 3V to 5V . Note 1	6.3	7.4	9	А
T _{SH}	Thermal Shutdown Threshold ¹	Note 1		150		°C
Тн	Thermal Shutdown Hysteresis ¹	Note 1		20		°C
F _{SW}	PWM Switching Frequency	V _{OUT} / V _{IN} ≥ 35%, T=25°C, Note 1	1.55	1.65	1.75	MHz
EN						
V _{IH}	Input High				1.2	V
V_{IL}	Input Low		0.4			V
I _{IN}	Input Current			0.01	1	μΑ
PG						
V_{PG90}	PGOOD V _{OUT} Lower Threshold	V _{OUT} rising, percentage of V _{REF}		90		%
V _{PG110}	PGOOD V _{OUT} Upper Threshold	V_{OUT} falling, percentage of V_{REF}		110		%
V _{PGHY}	Hysteresis	Percentage of V _{REF}		5		%
PG _{RDSON}	PGOOD Pull-down Resistance			13	50	Ω
PG _{ILEAK}	PGOOD Leakage Current	T _J = 25°C		0	1	μΑ

Note 1: These parameters are not tested, but guaranteed by design and characterization.

Typical Performance Curves (Efficiency)

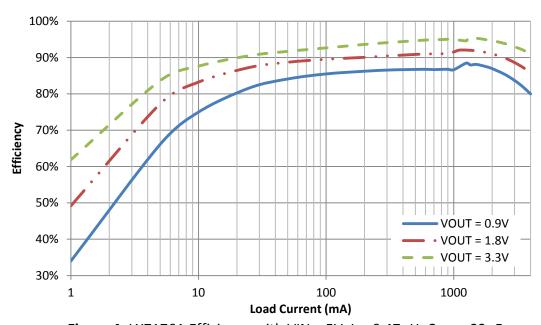


Figure 4: LX7176A Efficiency with VIN = 5V, L = 0.47 μ H, C_{OUT} = 22 μ F

Step Response(Load Current = 1.5A to 4A, L = 0.47 μ H, C_{OUT} = 22 μ F) Typical Performance Curves

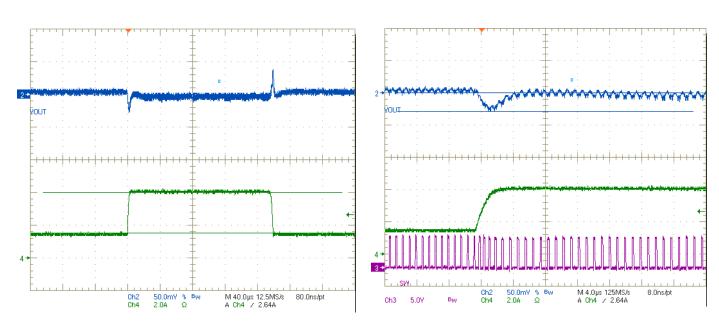


Figure 5. Step Load

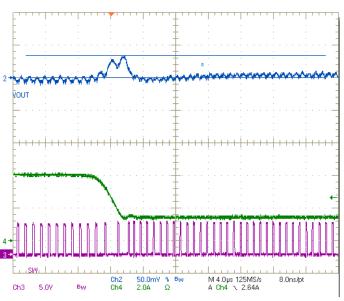


Figure 6. Step Load Rising Edge

Figure 7. Step Load Falling Edge

Theory of Operation

Basic Operation

The LX7176A compares the FB voltage to an internal reference, V_{REF} . When FB is lower than Vref, the upper switch turns on and the lower switch turns off. When FB is higher than V_{REF} , the upper switch turns off and the lower switch turns on. An internal ramp and a frequency control loop keep the switching frequency constant when in constant conduction mode (CCM) over a wide range of output capacitor values and parasitic components (i.e. ESR, ESL).

At light loads, the converter automatically reduces the switching frequency to optimize conversion efficiency.

Startup

The LX7176A is enabled when EN is high and PVIN rises above the UVLO threshold. At start up, after all the internal bias voltages and currents stabilize, V_{REF} ramps up from 0V to the target voltage at the defined slew rate. While V_{REF} ramps, PGOOD is held low. At the end of the ramp time, PGOOD is allowed to go high if the FB has reached the PGOOD rising threshold.

Over Current Protection

The LX7176A protects against all types of short circuit conditions. Cycle by cycle over current protection turns off the upper switch when the current exceeds the I_{CL} threshold. When this occurs, the upper switch is kept off for about 360ns before being allowed to turn on again. After startup, if FB drops below the FB_{UV} threshold,

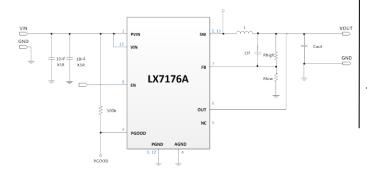
a hiccup sequence will be initiated where both output switches are shut off for 1.2ms before initiating another soft start. This protects against a crowbar short circuit. FB under voltage detection is not active during startup.

Setting the Output Voltage

The reference voltage is 0.6V

$$V_{OUT} = \left(\frac{R_1}{R_2} + 1\right) \cdot V_{REF} \tag{1}$$

Where R_1 is high side feedback divider resistor, R_2 is low side feedback divider resistor, V_{REF} is 0.6V.



Recommended Output Filter Components

The following tables show recommended feedback component values (R_{HIGH}, R_{LOW}, Cff) for different input/output voltages, power inductor (L), and output capacitance (C) values that result in optimum closed loop response of the regulator in each case. The estimated crossover frequency is also shown in the table in each case. If the L*C factor exceeds a certain number the regulator would run with low phase margin, or become unstable. The L and C range provided in the table provides 30°, or higher of phase margin. Therefore, it is not recommended to increase L*C factor beyond what is given in the table.

It is a good practice to determine L such that the peak-to-peak inductor ripple current in continuous conduction mode operation is roughly equal to 30% of converter's rated output current. In general, increasing the inductance slows down the closed loop response of the regulator. Hence, for applications that require fast line/load transient response, lower inductance values should be preferred over larger ones. Output capacitance can be determined based on desired output ripple voltage staying within the limits provided in the table depending on the inductance value.

V _{IN} (V)	V _{оит} (V)	L (μH)	C _{ΟUT} (μF)	R _{HIGH} (kΩ)	R _{LOW} (kΩ)	Cff (pF)	F crossover (kHz)
			4x22			47	70
		2.2	3x22			47	83
		2.2		33	100		
			1x22			12	150
			5x22				73
			4x22			27	84
		1.5	3x22				100
			2x22			42	120
	0.9		1x22			12	200
		1.0	5x22			22	92
			4x22	60			110
5.0			3x22		120		130
5.0	0.9		2x22			12	170
			1x22			12	300
			5x22				140
			4x22			10	170
		0.47	3x22				220
			2x22			0	280
			1x22				575
			5x22				180
			4x22			6.8	220
		0.33	3x22				280
			2x22			0	400
			1x22	7.5	15	U	625

Recommended Output Filter Components - Continued

V _{IN} (V)	V _{оит} (V)	L (μΗ)	C _{ΟUT} (μ F)	R _{HIGH} (kΩ)	R _{LOW} (kΩ)	Cff (pF)	F crossover (kHz)		
		2.2	2x22			33	76		
		2.2	1x22			12	110		
			3x22			27	74		
		1.5	2x22			12	90		
			1x22			12	140		
			5x22			22	68		
		1.0	4x22	60			78		
			3x22				93		
			2x22			12	120		
3.0	0.9		1x22		120	120	190		
5.0	0.5	0.5	J.9		5x22	00	120		100
			4x22		1	10	120		
		0.47	3x22				150		
			2x22			0	180		
			1x22			Ů	325		
			5x22				130		
			4x22			6.8	150		
		0.33	3x22				190		
			2x22			0	240		
			1x22				475		

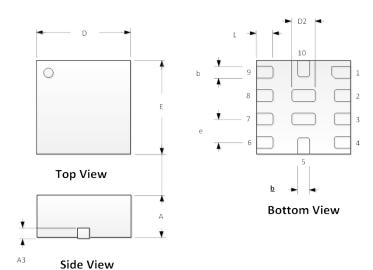
V _{IN} (V)	V _{OUT} (V)	L (μΗ)	C _{ΟUT} (μF)	R _{HIGH} (kΩ)	R _{LOW} (kΩ)	Cff (pF)	F crossover (kHz)		
			5x22				49		
			4x22			12	57		
		2.2	2x22				70		
			3x22			6.8	85		
			1x22			0.8	150		
			5x22				58		
			4x22				68		
		1.5	3x22			6.8	84		
				2x22	240	120		120	
			1x22	240	120	6.8	200		
			5x22				77		
		1.0	4x22				92		
5.0	1.8		3x22				120		
						2x22			0
			1x22			0	260		
			5x22				110		
			4x22				130		
		0.47	3x22			0	180		
			2x22	120	60		190		
			1x22	120	00		475		
			5x22				150		
			4x22	240	120		190		
		0.33	3x22			0	260		
			2x22	60	20		220		
			1x22	00	30		500		

LX7176A

4A Step-Down-Regulator Production Datasheet

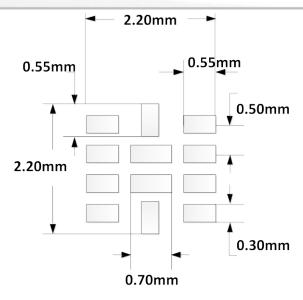
Recommended Output Filter Components - Continued

V _{IN} (V)	V _{оит} (V)	L (μH)	C _{Ουτ} (μF)	R _{HIGH} (kΩ)	R _{LOW} (kΩ)	Cff (pF)	F crossover (kHz)
			5x22				36
			4x22			12	42
		2.2	3x22				50
			2x22			6.8	60
			1x22				100
			5x22				42
			4x22				49
		1.5	3x22			6.8	60
		1.0	2x22				79
			1x22				140
			5x22				55
			4x22			6.8	64
3.0	1.8V		3x22	240	120		79
			2x22			0	87
			1x22		_		150
			5x22				76
			4x22				89
		0.47	3x22			0	110
			2x22				160
			1x22				350
			5x22				97
			4x22				120
		0.33	3x22			0	150
			2x22				240
			1x22				525


V _{IN} (V)	V _{оит} (V)	L (μH)	C _{ΟUT} (μF)	R _{HIGH} (kΩ)	R _{LOW} (kΩ)	Cff (pF)	F crossover (kHz)
			5x22				58
			4x22				67
		2.2	2x22				81
			3x22				110
			1x22			22	170
			5x22			22	75
			4x22				87
		1.5	3x22				100
		1.0	2x22	540			140
			1x22		120		240
			5x22				100
			4x22				120
5.0	3.3		3x22			33	140
			2x22				190
			1x22				325
			5x22			33	170
			4x22				200
		0.47	3x22				240
			2x22				350
			1x22	225	50	0	450
			5x22				220
			4x22	540	120	22	260
		0.33	3x22	340	120		325
			2x22				475
			1x22	135	30	0	525

Package Dimensions

QFN 2x2mm 12L Package


	MILLIMETERS		INCHES	
Dim	MIN	MAX	MIN	MAX
Α	0.80	1.00	0.031	□.039
A3	0.20 REF		0.008 REF	
В	0.20	0.30	0.008	0.012
D	1.90	2.10	0.075	0.083
D2	0.50BSC		0.02BSC	
E	1.90	2.10	0.075	0.083
е	0.50 BSC		0.020 REF	
L	0.30	0.45	0.012	0.018

Note:

- Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.
- 2. Dimensions are in millimeters, inches for reference only.

Recommended Footprint

Disclaimer:

This PCB land pattern recommendation is based on information available to Microsemi by its suppliers. The actual land pattern to be used could be different depending on the materials and processes used in the PCB assembly, end user must account for this in their final layout. Microsemi makes no warranty or representation of performance based on this recommended land pattern

PRODUCTION DATA – Information contained in this document is pre-production data and is proprietary to Microsemi. It may not be modified in any way without the express written consent of Microsemi. Product referred to herein is offered in pre-production form only and may not have completed Microsemi's Quality Assurance process for Release to Production. Microsemi reserves the right to change or discontinue this proposed product at any time.