: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Expertise Applied | Answers Delivered

RoHs LX8 Series

Schematic Symbol

Description

New 0.8 Amp bi-directional solid state switch series offering direct interface to microprocessor drivers in economical TO-92 and surface mount packages. The die voltage blocking junctions are glass-passivated to ensure long term reliability and parametric stability.

Features \& Benefits

- RoHS compliant
- Blocking voltage
$\left(V_{\text {DRM }}\right)$ capability
- up to 600V
- Surge
capability > 9.5Amps

Applications

The LX8 EV Series is especially designed for low current applications such as heating controls in hair care products, as well as replacement of mechanical switch contacts where long life is required.

Absolute Maximum Ratings

Symbol	Parameter			Value	Unit
$\mathrm{I}_{\text {Trems) }}$	RMS on-state current (full sine wave)	TO-92	$\mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$	0.8A	A
		SOT-223	$\mathrm{T}_{\mathrm{L}}=90^{\circ} \mathrm{C}$		
$\mathrm{I}_{\text {TSM }}$	Non repetitive surge peak on-state current (Single cycle, T_{j} initial $=25^{\circ} \mathrm{C}$)	TO-92	$\mathrm{F}=50 \mathrm{~Hz}$	8.0	A
		SOT-223	$\mathrm{F}=60 \mathrm{~Hz}$	9.5	
$1^{2} \mathrm{t}$	$1^{2} \mathrm{t}$ Value for fusing	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	$\mathrm{F}=50 \mathrm{~Hz}$	0.32	$A^{2} \mathrm{~S}$
		$\mathrm{t}_{\mathrm{p}}=8.3 \mathrm{~ms}$	$\mathrm{F}=60 \mathrm{~Hz}$	0.37	
di/dt	Critical rate of rise of on-state current $\mathrm{I}_{G}=2 \times \mathrm{I}_{G T}$	$\begin{aligned} & \text { TO-92 } \\ & \text { SOT-223 } \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=110^{\circ} \mathrm{C}$	20	A/us
$\mathrm{I}_{\text {GTM }}$	Peak gate current	$\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	$\mathrm{T}_{\mathrm{J}}=110^{\circ} \mathrm{C}$	1	A
$\mathrm{P}_{\text {Giav }}$	Average gate power dissipation		$\mathrm{T}_{\mathrm{j}}=110^{\circ} \mathrm{C}$	0.1	W
$\mathrm{T}_{\text {stg }}$	Storage junction temperature range			-40 to 150	${ }^{\circ} \mathrm{C}$
T ${ }_{\text {J }}$	Operating junction temperature range			-40 to 110	${ }^{\circ} \mathrm{C}$

Expertise Applied | Answers Delivered

Symbol	Description	Test Conditions	Quadrant	Limit	Value		Unit
					LX803xy	LX807xy	
$I_{\text {GT }}$	DC Gate Trigger Current	$\begin{gathered} V_{D}=12 \mathrm{~V} \\ R_{L}=60 \Omega \end{gathered}$	$\stackrel{\text { I }- \text { II - IIII }}{\text { IV }}$	MAX.	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	mA
$V_{G T}$	DC Gate Trigger Voltage		ALL	MAX.	1.3	1.3	V
$I_{\text {H }}$	Holding Current	Gate Open		MAX.	5	5	mA
dv/dt	Critical Rate-of-Rise of Off-State Voltage	$\begin{aligned} & \mathrm{T}_{J}=110^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }} \end{aligned}$ Exponential Waveform Gate Open		MIN.	10	10	V/us
(dv/dt)c	Critical Rate-of-Rise of Commutating Voltage	$\begin{gathered} (\mathrm{d} / \mathrm{dt}) \mathrm{c}=0.43 \mathrm{~A} / \mathrm{ms} \\ \mathrm{~T}_{\mathrm{j}}=110^{\circ} \mathrm{C} \end{gathered}$		MIN.	1.5	1.5	V/ $/ \mathrm{s}$
t_{gt}	Turn-On Time	$\begin{gathered} \mathrm{I}_{\mathrm{G}}=25 \mathrm{~mA} \\ \mathrm{PW}=15 \mu \mathrm{~s} \\ \mathrm{I}_{\mathrm{T}}=1.2 \mathrm{~A}(\mathrm{pk}) \end{gathered}$		MAX.	2.0	2.0	$\mu \mathrm{s}$

NOTE: $\mathrm{x}=$ voltage, $\mathrm{y}=$ package

Static Characteristics ($\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Description	Test Conditions	Limit	Value	Unit
$\mathrm{V}_{\text {TM }}$	Peak On-State Voltage	$\mathrm{I}_{\text {TM }}=1.13 \mathrm{~A}(\mathrm{pk})$	MAX	1.60	V
$\mathrm{I}_{\text {DRM }}$	Off-State Current, Peak Repetitive	$V_{\text {D }}=V_{\text {DRM }} T_{j}=25^{\circ} \mathrm{C}$	MAX	5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }} \mathrm{T}_{\mathrm{J}}=110^{\circ} \mathrm{C}$		100	$\mu \mathrm{A}$

Thermal Resistances

Symbol	Description	Test Conditions		Value	Unit
$\mathrm{R}_{\text {thf(c) }}$	Junction to case (AC)	$\mathrm{I}_{\mathrm{T}}=0.8 \mathrm{~A}_{\text {(RMS) }}{ }^{1}$	TO-92	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			SOT-223	25	
$\mathrm{R}_{\text {thij-a) }}$	Junction to ambient	$\mathrm{I}_{\mathrm{T}}=0.8 \mathrm{~A}_{(\text {RMS })^{1}}{ }^{1}$	TO-92	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			SOT-223	60	

[^0]Expertise Applied | Answers Delivered

Figure 1: Definition of Quadrants

Figure 3: Normalized DC Holding Current vs. Junction Temperature

Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

Figure 6: Maximum Allowable Case Temperature vs. On-State Current

Figure 7: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60 Hz Sinusoidal
Load: Resistive
RMS On-State Current $\left[I_{\text {T(RMS) }}\right]$: Max Rated Value at Specific Case Temperature

Notes:

1. Gate control may be lost during and immediately
following surge current interval.
2. Overload may not be repeated until junction
temperature has returned to steady-state rated value.

Soldering Parameters

Reflow Condition		Pb - Free assembly
Pre Heat	-Temperature Min ($\mathrm{T}_{\text {s(min) }}$)	$150^{\circ} \mathrm{C}$
	-Temperature Max ($\mathrm{T}_{\text {s(max }}$)	$200^{\circ} \mathrm{C}$
	- Time (min to max) (t_{s})	60-180 secs
Average ramp up rate (Liquidus Temp) ($T_{\llcorner }$) to peak		$5^{\circ} \mathrm{C} /$ second max
$\mathrm{T}_{\text {S(max) }}$ to T_{L} - Ramp-up Rate		$5^{\circ} \mathrm{C} /$ second max
Reflow	-Temperature (T_{L}) (Liquidus)	$217^{\circ} \mathrm{C}$
	-Time (min to max) (t_{s})	60-150 seconds
Peak Temperature (T_{p})		$260+0.5{ }^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual peak Temperature (t_{p})		20-40 seconds
Ramp-down Rate		$5^{\circ} \mathrm{C} /$ second max
Time $25^{\circ} \mathrm{C}$ to peakTemperature (T_{p})		8 minutes Max.
Do not exceed		$280^{\circ} \mathrm{C}$

Physical Specifications

Terminal Finish	100% Matte Tin-plated.
Body Material	UL recognized epoxy meeting flammability classification 94V-0.
Lead Material	Copper Alloy

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Reliability/Environmental Tests

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ $110^{\circ} \mathrm{C}$ for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$; 15 -min dwell-time
Temperature/ Humidity	```EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85 ' C; 85% rel humidity```
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; $150^{\circ} \mathrm{C}$
Low-Temp Storage	1008 hours; $-40^{\circ} \mathrm{C}$
Thermal Shock	MIL-STD-750, M-1056 10 cycles; $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$; 5 -min dwelltime at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours ($121^{\circ} \mathrm{C}$ at 2 ATMs) and 100\% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Dimensions - TO-92 (E Package)

Dimensions	Inches			Millimeters		
	Min	Typ	Max	Min	Typ	Max
A	0.175	-	0.205	4.450	-	5.200
B	0.170	-	0.210	4.320	-	5.330
C	0.500	-	-	12.700	-	-
D	0.135	0.165	-	3.430	4.190	-
E	0.125	-	0.165	3.180	-	4.190
F	0.080	0.095	0.105	2.040	2.400	2.660
G	0.016	-	0.021	0.407	-	0.533
H	0.045	0.050	0.055	1.150	1.270	1.390
I	0.095	0.100	0.105	2.420	2.540	2.660
J	0.015	-	0.020	0.380	-	0.500

Dimensions - SOT-223

Pad Layout for SOT-223

Dimensions in Millimeters (Inches)

$*$	Inches			Millimeters			
Dimensions	Min	Typ	Max	Min	Typ	Max	
A	0.248	0.256	0.264	6.30	6.50	6.70	
B	0.130	0.138	0.146	3.30	3.50	3.70	
C	-	-	0.071	-	-	1.80	
D	0.001	-	0.004	0.02	-	0.10	
E	0.114	0.118	0.124	2.90	3.00	3.15	
F	0.024	0.027	0.034	0.60	0.70	0.85	
G	-	0.090	-	-	2.30	-	
H	-	0.181	-	-	4.60	-	
I	0.264	0.276	0.287	6.70	7.00	7.30	
J	0.009	0.010	0.014	0.24	0.26	0.35	
K	10° MAX						

Product Selector				
Part Number	Voltage	Gate Sensitivity Quadrants		Package
		I - II - III	IV	
LX803DE	400 V	3 mA	5 mA	TO-92
LX803ME	600 V	3 mA	5 mA	TO-92
LX803DT	400 V	3 mA	5 mA	SOT-223
LX803MT	600 V	3 mA	5 mA	SOT-223
LX807DE	400 V	5 mA	7 mA	TO-92
LX807ME	600 V	5 mA	7 mA	TO-92
LX807DT	400 V	5 mA	7 mA	SOT-223
LX807MT	600 V	5 mA	7 mA	SOT-223

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
LX8xxyE	LX8xxyE	0.170 g	Bulk	2500
LX8xxyEAP	LX8xxyE	0.170 g	Ammo Pack	2000
LX8xxyERP	LX8xxyE	0.170 g	Tape \& Reel	2000
LX8xxyTRP	LX8xxyT	0.120 g	Tape \& Reel	1000

[^1]Expertise Applied | Answers Delivered

T0-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications
Meets all EIA-468-B 1994 Standards

SOT-223 Reel Pack (RP) Specifications

Part Numbering System

Part Marking System

DC
Date Code
(2 Digits Min.)
Number = Year Letter $=$ Month

[^0]: ${ }^{1} 60 \mathrm{~Hz}$ AC resistive load condition, 100% conduction.

[^1]: Note: $x x=$ gate sensitivity, $y=$ voltage

