imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LXV250 series

LED Power Supply

Constant Voltage Power Supplies

LED POWER

next generation power source

FEATURES

- High Efficiency 94%
- IP67 Waterproof
- Active PFC (Typical 0.99)
- OVP, SCP, OTP
- -35 to 70°C deg operation
- Wide Input 90-305VAC
- UL8750 recognised
- EN61347-1, -2-13 compliant

ALEXA INPUT ALEXAN DICAN	CACCE/Sys LED Driver tear mage restrict a state tear mag	LXC200-07005V	V +1 (8ED)	10
	, N , 50	and dealway find, Letter Stand, for Transf weekser.epe	OUTPUT - V (& K)	11
				1-
				10/5

The LXV250 series of constant voltage LED power supplies from Excelsys Technologies can deliver up to 250W of output power in an extremely compact package size.

With industry leading efficiencies, and an extensive protection feature set, the LXV250 series provides high reliability and high performance in a compact package

The LXV250 series carries the CE mark for safety and is also RoHS compliant. For more details contact sales@excelsys.com

Model Number	Output Voltage	Output Current	Input Voltage	OVP Max	OCP Hiccup	Efficiency
LXV250-012SW	12V	18.33A	90-305VAC	18V	110-180%	91.5%
LXV250-024SW	24V	10.41A	90-305VAC	35V	110-180%	93.0%
LXV250-028SW	28V	8.93A	90-305VAC	36V	110-180%	93.5%
LXV250-036SW	36V	6.94A	90-305VAC	50V	110-180%	94.0%
LXV250-042SW	42V	5.95A	90-305VAC	55V	110-180%	93.5%
LXV250-048SW	48V	5.20A	90-305VAC	61V	110-180%	93.5%
LXV250-052SW	52V	4.80A	90-305VAC	66V	110-180%	93.5%
LXV250-054SW	54V	4.62A	90-305VAC	66V	110-180%	94.0%
LXV250-056SW	56V	4.46A	90-305VAC	78V	110-180%	94.0%
LXV250-060SW	60V	4.16A	90-305VAC	78V	110-180%	94.0%
LXV250-084SW	84V	2.97A	90-305VAC	105V	110-180%	94.0%
LXV250-105SW	105V	2.38A	90-305VAC	130V	110-180%	94.0%
LXV250-150SW	150V	1.66A	90-305VAC	185V	110-180%	94.0%

	Conditions/Description	Min	Nom	Max	Units		
Input Voltage Range	Universal Input	90		305	VAC		
Input Frequency Range		47		63	Hz		
Input Current	100VAC in, 250W output			2.8	A		
Power Factor	220VAC, 110 VAC	0.96		0.99			
Inrush Current	At 230 Vac input, 25°C cold start			50	Α		
Output Specifications							
Parameter	Conditions/Description	Min	Nom	Max	Units		
Line Regulation				±1	%		
Load Regulation				±3	%		
Voltage Accuracy	% of Vout			±5	%		
Ripple and Noise	20MHz Bandwidth. See Note 1			2.0	% pk-p		
Dynamic Response	Output Deviation R/S : 1 A /uS			5	% Vo		
-	Settling Time Load : 25% ~ 75% full Load			10	mS		
Overshoot				10	%		
Turn-on Delay	Measured at 220VAC and full load			0.2	S		
Short Circuit Protection	Auto Recovery						
Over Voltage Protection	Latching. See individual models OVP levels						
	Internal Component Temperature		110		°C		
General Specifications							
Parameter	Conditions/Description	Min	Nom	Max	Units		
Isolation Voltage	Input to Output See Note 2	3750			VAC		
	Input to Chassis	1500			VAC		
Efficiency	See individual models		94.0		%		
Safety Agency Approvals	UL8750, EN61347-1, -2-13						
No load Power Dissipation	Measured at 120VAC and 220VAC			3.0	W		
MTBF	MIL-HDBK-217F, 110VAC input, 80% load, 25°C		145,000		Hours		
Lifetime	220VAC input, 80% load, 45°C		162,000		Hours		
Weight			1300		g		
Operating Temperature		-35		+70	°C		
Storage Temperature		-40		+85	°C		
Relative Humidity	Non-condensing (operating)	10		100	%RH		
Power Derating	At 100 VAC, derates linearly from 100% at 60°C to 80% at 70 °C						

Output connected in parallel with 0.1uF ceramic capacitor and 10uF electrolytic capacitor. Primary to Secondary Isolation test not to be carried on power supply.

Europe/Asia Excelsys Technologies Ltd t: +353 21 4354716 27 Eastgate Drive Eastgate Business Park Little Island, Cork, Ireland IRELAND

f: +353 21 4354864 e: sales@excelsys.com

North America **Excelsys Technologies** 519 Interstate 30, #309 Rockwall, TX 75087 USA

t: (972) 771 4544 f: (972) 421 1805

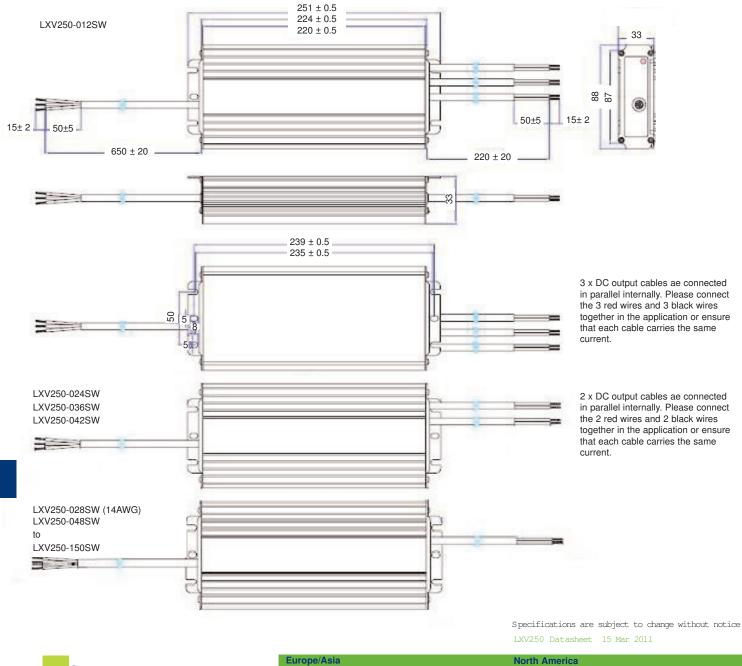
e: salesusa@excelsys.com

LED Power Supplies 250W

2

EMC				
Parameter	Standard	Level	Units	
Emissions				
Conducted	EN55015	Level B		
Radiated	EN55015	Level B		
Harmonic Distortion	EN61000-3-2	Compliant		
Flicker and Fluctuation	EN61000-3-3	Compliant		
Immunity				
ESD	EN61000-4-2	Level 4		
Radiated RFI	EN61000-4-3	Level 3		
Fast Transients - burst	EN61000-4-4	Level 4		
Input Line Surges	EN61000-4-5	Level 4		
Conducted RFI	EN61000-4-6	Compliant		
Power Freq Magnetic Field	EN61000-4-8	Compliant		
Voltage Dips	EN61000-4-11	Compliant		

INPUT / OUTPUT WIRING


INPUT CABLE SJTW 18AWG 3C

Black (L) and White(N), Green (Earth) 650±20mm

MECHANICAL SPECIFICATIONS

OUTPUT CABLE

SJTW 18AWG 2C except LXV250-028SW with SJTW 14AWG 2C Black (-V) and Red (+V) 220±20mm

Excelsys Technologies Ltd 27 Eastgate Drive Eastgate Business Park Little Island, Cork, Ireland IRELAND

t: +353 21 4354716 f: +353 21 4354864 e: sales@excelsys.com North America **Excelsys Technologies**

519 Interstate 30, #309

Rockwall, TX 75087

USA

t: (972) 771 4544 f: (972) 421 1805

e: salesusa@excelsys.com