

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

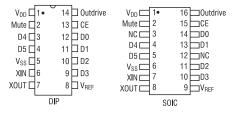
Call Progress Tone Generator

Features

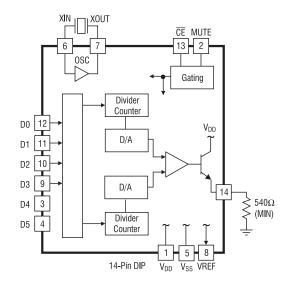
- · Generates standard call progress tones
- Digital input control
- · Linear (analog) output
- · Power output capable of driving standard line
- 14-pin DIP and 16-pin SOIC package types
- Single supply 5V CMOS (low power)
- Inexpensive 3.58 MHz time base
- Temperature range from -25°C to 70°C

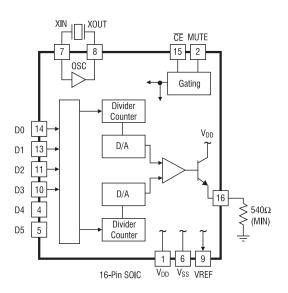
Applications

- Telephone Systems
- Test Equipment
- Callback
- Security Systems
- · Billing Systems


Description

The M-991 is a call progress tone generator integrated circuit for use in telephone systems. The circuit uses low-power CMOS techniques to generate tones which are digitally controlled and highly linear. The M-991 is designed to permit operation with almost any system. The use of integrated circuit techniques allows the M-991 to incorporate the control, tone generating, and power output buffer into a single 14-pin DIP or 16-pin SOIC. A 3.58-MHz (color burst) crystal-controlled time base guarantees accuracy and repeatability.


Ordering Information


Part #	Description
M-991	14-Pin Plastic DIP
M-991-01SM	16-Pin SOIC
M-991-01SMTR	16-Pin SOIC, Tape & Reel

Pin Configuration

Block Diagram

Absolute Maximum Ratings

Parameter	Ratings	Units
V _{DD}	7	V
Any Input Voltage	V _{SS} -0.6 to V _{DD} +0.6	V
Operating Ambient Temperature	-25 to +70	°C
Storage Temperature	-55 to +125	°C

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied. Exposure of the device to the absolute maximum ratings for an extended period may degrade the device and affect its reliability.

Specifications

Parameter		Min	Тур	Max	Units	Notes
Power Supply	V _{DD}	4.75	-	5.25	V	1
and Reference	Current Drain I _{DD}	-	2/4	-	mA	8
	$V_{\rm REF}$ Pin: Deviation From $(V_{\rm DD} + V_{\rm SS})/2$	-2	-	+2	%	
	Internal Resistance From V_{REF} to V_{DD} , V_{SS}	3.25	-	6.75	kΩ	
Oscillator	Frequency Deviation	-0.01	-	+0.01	%	7
	External Clock (XOUT Open)					
	V _{IL}	0	-	0.2	V	
	V _{IH}	V _{DD} - 0.2	-	V _{DD}	v	
	Duty Cycle	40	-	60	%	
	XIN, XOUT Loading					
	Capacitance	-	-	10	pF	10
	Resistance	20	-	-	MΩ	-
Tone Output	Frequency Deviation	-0.5	-	+0.5	%	-
	Level	100	-	180	mV	2
	Distorting Components	-35	-	-	dB	3
	Idle	-	-	-60	dBm	4
	OUTDRIVE Envelope Rise Time	-	-	4	ms	5
Control	DX, CE Pins:					6
	V _{IL}	-	-	0.5	V	
	V _{IH}	2.5	-	-	V	
	Mute Pins:					
	$V_{OL} (I_{SINK} = -100\mu A)$	-	-	1.5		
	$V_{OH} (I_{SOURCE} = 100 \mu A)$	V _{DD} - 1.5	-	-	V	
Timing	Data Setup (t _{DS})	200	-	-	ns	11
	Data Hold (t _{DH})	10	-	-	ns	
	Chip Enable Fall (t _{Pl})	-	-	90	ns	
	Turn On Delay (t _{TO})	-	-	5	ms	
	Turn Off Delay (t _{TD})	-	-	5	ms	
	Mute Delay from Outdrive (t _{MO})	-	-	200	ns	

Notes: (Unless Otherwise Specified)

All DC voltages are referenced to V_{SS}.

 $^{^2}$ V $_{rms}$ per tone, 540 $\!\Omega$ load.

^{4 0} dBm = 0.775V_{rms}.
5 To 90% maximum amplitude.

⁶ For all supply voltages in the operating range.

 $^{^{\}rm 7}\,$ At XOUT pin as compared to 3.579545MHz.

 $^{^{8}}$ OUTDRIVE with load > 5 k Ω /OUTDRIVE with 540 Ω load.

⁹ Resistance at V_{REF} to V_{DD} or $V_{SS} > 1MΩ$.

¹⁰ Crystal oscillator active.

¹¹ Measured 90% to 10%.

Call Progress Tone Generation

Call progress tones are audible tones sent from switching systems to calling parties (or equipment) to indicate the status of calls. Calling parties can identify the success of a placed call by what is heard after dialing. The M-991 series utilizes a highly linear tone generator that produces the unique frequencies (singly or in pairs) that are common to call progress signals.

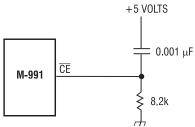
Duration and frequency selection are digitally controlled (see the Data/Tone Selection table below for data settings for a particular tone output). A typical control sequence for the M-991 is: (1) set data lines to desired frequency selection, (2) wait for data lines to settle, (3) drive the chip enable (CE) low, (4) maintain CE low for desired tone duration (Note: data lines may be changed after data hold time), and (4) return CE to a logic high. (Commonly used call progress tones are

Data/Tone Selection

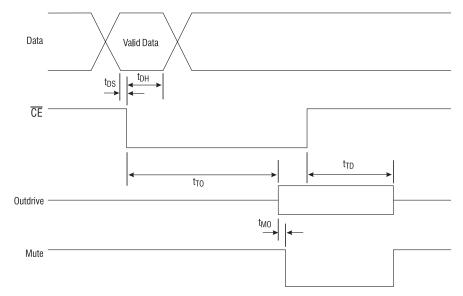
D3	D2	D1	D0	Frequency (Hz)		Use
				1	2	
0	0	0	0	300	440	Dial Tone
0	0	0	1	400	off	Special
0	0	1	0	440	off	Alert Tone
0	0	1	1	440	480	Audible Ring
0	1	0	0	440	620	Pre-empt
0	1	0	1	480	off	Bell high tone
0	1	1	0	480	620	Reorder (Bell low)
0	1	1	1	350	off	Special
1	0	0	0	620	off	Special
1	0	0	1	941	1209	DTMF " * "

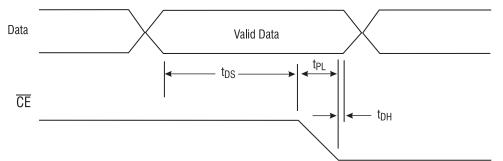
shown in the Data/Tone Selection table below.) In a bus-oriented system, noise on the data lines may propagate through the device and appear at the output. To safeguard against this, use an external latch to lock the data into the device. In addition, it is good practice to bypass the V_{RFF} pin to ground with a small capacitor (0.01µF) to reduce power supply noise. The designer should be aware of device timing requirements and design accordingly. The data input pins may be tied high (+5 VDC) or low (ground) as required, but D4 and D5 must be left open. Beware of hardwiring the CE pin for dedicated tone generation. This input is edge triggered. An RC network like that shown in the Power-on Reset Circuit on Page 4 should be used to momentarily reset the device immediately following power-up to ensure proper operation.

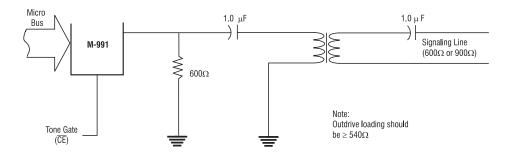
Pin Function


Pin	Function
CE	Latches data and enables output (active low input)
D0 - D3	Data input pins (See Data/Tone Selection)
D4 - D5	Leave open
MUTE	Output indicates that a signal is being generated at OUTDRIVE.
OUTDRIVE	Linear buffered tone output.
V _{DD}	Most positive power supply input pin.
V_{REF}	Internally generated mid-power supply voltage (output).
V _{SS}	Most negative power supply input pin.
X _{IN}	Crystal oscillator or digital clock input.
X _{OUT}	Crystal oscillator output.

Standard Call Progress Tones

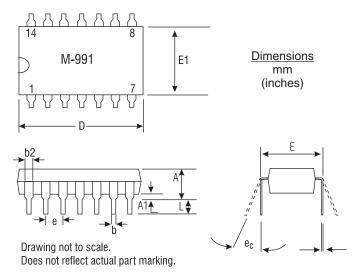

Tone Name	Frequency (Hz)		Interruption Rate		
Tone Ivallie	1	2	interruption hate		
Dial	350	440	Steady		
Reorder	480	620	Repeat, tones on and off 250 ms ± 25 ms each.		
Busy	480	620	Repeat, tones on and off 500 ms ± 50 ms each.		
Audible Ring	440	480	Repeat, tones on 2 ± 0.2 s, tones off 4 ± 0.4 s		
Recall Dial	350	440	Three bursts tones on and off 100 ms ± 20 ms each followed by dial tone.		
Special AR	440	480	Tones on 1 \pm 0.2s, followed by single 440 Hz on for 0.2s on, and silence for 3 \pm 0.3 s, repeat.		
Intercept	440	620	Repeat alternating tones, each on for 230 ms ± 70 ms with total cycle of 500 ± 50 ms.		
Call Waiting	440	off	One burst 200 ± 100 ms		
Busy Verification	440	off	One burst of tone on 1.75 \pm 0.25 s before attendant intrudes, followed by burst of tone 0.65 \pm 0.15 s on, 8 20 s apart for as long as the call lasts		
Executive Override	440	off	One burst of tone for 3 ± 1 s before overriding station intrudes		
Confirmation	350	440	Three bursts on and off 100 ms each or 100 ms on, 100 ms off, 300 ms on		


Power-On Reset Circuit


Timing Diagram

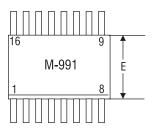
Expanded Timing Diagram

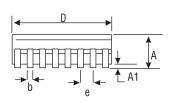
Typical Application

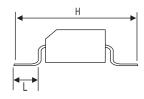


Mechanical Dimensions

14-Pin DIP


14-Pin DIP


	Tolerances						
	Inc	hes	Metric (mm)				
	Min	Max	Min	Max			
Α	-	0.210	-	5.33			
A1	0.15	-	0.38	-			
b	0.014	0.014 0.022		0.56			
b2	0.045	0.070	1.1	1.8			
С	0.008	0.014	0.20	0.36			
D	0.735	0.775	18.7	19.7			
Е	0.300	0.325	7.6	8.3			
E1	0.240 0.280		6.1	7.1			
е	0.100	BSC	2.54 BSC				
ес	0°	15°	0°	15°			
L	0.115 0.150		2.9	4.1			


16-Pin SOIC

16-Pin SOIC

Dimensions mm (inches)

	Tolerances							
	Inc	hes	Metric (mm)					
	Min	Max	Min	Max				
Α	0.0926	0.1043	2.35	2.65				
A1	0.0040	0.0118	0.10	0.30				
b	0.013	0.020	0.33	0.51				
D	0.3977	0.4133	10.10	10.50				
Е	0.2914 0.2992		7.4	7.6				
е	0.050	BSC	1.27 BSC					
Н	0.394	0.419	10.00	10.65				
L	0.016 0.050		0.40	1.27				

Drawing not to scale.

Does not reflect actual part marking.

For additional information please visit our website at: www.ixysic.com

IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.