: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

4×4 CROSSPOINT SWITCH WITH CONTROL MEMORY

- LOW ON RESISTANCE - 75Ω Typ. at $V_{D D}=12 v$
- "BUILT IN" CONTROL LATCHES
- LARGE ANALOG SIGNAL CAPABILITY $\pm \mathrm{V}_{\mathrm{DD}} / 2$
- TRANSMITS SIGNALS UP TO 10 MHz
- MATCHED SWITCH CHARACTERISTICS $\Delta_{\mathrm{RON}}=18 \Omega$ Typ. at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=12 \mathrm{~V}$
- HIGH LINEARITY : - 0.5\% DISTORTION Typ. at $f=1 \mathrm{KHz}, \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{pp}}$
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$
- STANDARD COS/MOS NOISE IMMUNITY
- 100% TESTED FOR QUIESCENT CURRENT

ORDER CODES

PACKAGE	TUBE	T\&R
DIP	M22100B1	

strobe input to a logical one. Any number of the transmission gates can be ON simultaneously.
When the required operating power is applied to the 22100 , the states of the 16 switches are indeterminate.
Therefore, all switches must be turned off by putting the strobe high and data in low, and the addressing all switches in succession.

PIN CONNECTION

IINPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
$9,1,12,13$	X 1 to X 4	Select X
$15,14,10$, 11	Y 1 to Y 4	Select Y
$6,5,3,4$	$\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$	Address Input
2	DI	Data In
7	ST	Strobe In
8	$\mathrm{~V}_{\mathrm{SS}}$	Negative Supply Voltage
16	$\mathrm{~V}_{\mathrm{DD}}$	Positive Supply Voltage

FUNCTIONAL DIAGRAM

$V_{S S}(G N D)=8$
$v_{D D}=16$
$V_{D D}=16 \quad \mathrm{~S}-3422$

TRUTH TABLE

ADDRESS				SELECT		ADDRESS				SELECT	
A	B	C	D			A	B	C	D		
L	L	L	L	X1	Y1	L	L	L	H	X1	Y3
H	L	L	L	X2	Y1	H	L	L	H	X2	Y3
L	H	L	L	X3	Y1	L	H	L	H	X3	Y3
H	H	L	L	X4	Y1	H	H	L	H	X4	Y3
L	L	H	L	X1	Y2	L	L	H	H	X1	Y4
H	L	H	L	X2	Y2	H	L	H	H	X2	Y4
L	H	H	L	X3	Y2	L	H	H	H	X3	Y4
H	H	H	L	X4	Y2	H	H	H	H	X4	Y4

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC Input Current	± 10	mA
P_{D}	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
$\mathrm{~T}_{\text {op }}$	Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
$\mathrm{~V}_{1}$	Input Voltage	0 to V_{DD}	V
$\mathrm{T}_{\text {op }}$	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$

M22100B

DC SPECIFICATIONS

Symbol	Parameter		Test Condition			Value							Unit
				$\begin{gathered} V_{1} \\ (V) \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
						Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
I	Quiescent Supply Current	F1			5		0.04	5		150		150	$\mu \mathrm{A}$
					10		0.04	10		300		300	
					15		0.04	20		600		600	
					20		0.08	100		3000		3000	
		B1			5		0.04	20		150		150	
					10		0.04	40		300		300	
					15		0.04	80		600		600	
R_{ON}	Resistance	F1	Any Switch		5		225	1250		1625		1625	Ω
					10		85	180		230	1	230	
					12		75	135		175	,	175	
					15		65	95		125		125	
		B1	$\begin{gathered} V_{I S}= \\ 0 \text { to } V_{D D} \end{gathered}$		5		225	1250)	1440		1440	
					10		85	180	-	205		205	
					12		75	135		155		155	
					15		65	95		110		110	
$\Delta_{\text {ON }}$	Resistance $\Delta_{\text {RON }}$ (between any two channels)				5	-	35						Ω
					10	,	20						
					12	Γ	18						
					15		15						
	OFF Channel Leakage Current	F1	All Switch OFF	0/18	18		$\pm 10^{-3}$	$\pm 0.1 *$		± 1		± 1	$\mu \mathrm{A}$
		B1		0/15	15		$\pm 10^{-3}$	± 0.3		± 1		± 1	
CONTROL													
V_{IL}	Low Level Input Voltage	\bigcirc			5			1.5		1.5		1.5	V
		\bigcirc			10			3		3		3	
					15			4		4		4	
V_{IH}	High Level Input Voltage				5	3.5			3.5		3.5		V
					10	7			7		7		
					15	11			11		11		
	Input Current	F1	Any Control Input	0/18	18		$\pm 10^{-5}$	± 0.1 *		± 1		± 1	$\mu \mathrm{A}$
		B1		0/15	15		$\pm 10^{-5}$	± 0.3		± 1		± 1	
Cl_{1}	Input Capacitance	Any Input					5	7.5					pF

The Noise Margin for both "1" and " 0 " level is: 1 V min. with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, 2 V min. with $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, 2.5 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$

* : Determined by minimum feasible leakage measurement for automating testing

DYNAMIC ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\right)$

M22100B

Symbol	Parameter	Test Condition					Value (*)			Unit
			$\begin{gathered} \mathbf{f}_{\mathbf{1}} \\ (\mathrm{KHz}) \end{gathered}$	$\begin{gathered} \mathbf{R}_{\mathbf{L}} \\ (\mathrm{K} \Omega) \end{gathered}$	$V_{I S}{ }^{(1)}$ (V)	$V_{D D}$ (V)	Min.	Typ.	Max.	
CONTROLS										
$\mathrm{t}_{\text {hold }}$	Data Input Disable Setup Time	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \end{gathered}$				5		180		
						10		110		ns
						15		35		
f_{Φ}	Switching Frequency					5	0.6	1.2		
						10	1.6	3.2		MHz
						15	2.5	5		
$\mathrm{t}_{\text {w }}$	Strobe Pulse Width					5		300	600	ns
						10		120	240	
						15		90	180	
	Control Crosstalk Data-In, Address, or Strobe to Output			10	10	10		75		$\underset{\text { peak }}{\mathrm{mV}}$

${ }^{1}$) Typical temperature coefficient for all $V_{D D}$ value is $0.3 \%{ }^{\circ} \mathrm{C}$.
(1) Peak to Peak voltage symmetrical about $V_{D D} / 2$

WAVEFORM 1 : PROPAGATION DELAY TIMES (f=1MHz; 50\% duty cycle)

WAVEFORM 2 : Propagation Delay Time (strobe to signal output, switch turn-ON or turn OFF) (f=1MHz; 50\% duty cycle)

WAVEFORM 3 : PROPAGATION DELAY TIME (DATA IN TO SIGNAL OUTPUT, SWITCH TURN ON TO HIGH OR LOW LEVEL) ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 4 : PROPAGATION DELAY TIME (ADDRESS TO SIGNAL OUTPUT SWITCH TURN ON OR TURN OFF) ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20		0.335	
E		2.54			0.100	
e		17.78				0.787
e3			7.1			
F			5.1		0.130	
I		3.3				
L			1.27			0.280
Z						

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

