: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

3858 Group
 SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 3858 group is the 8 -bit microcomputer based on the 740 family core technology.
The 3858 group is designed for the household products and office automation equipment and includes serial interface functions, 8-bit timer, 16-bit timer, and A/D converter.

FEATURES

- Basic machine-language instructions 71
- Minimum instruction execution time \qquad $0.32 \mu \mathrm{~s}$
(at 12.5 MHz oscillation frequency)
- Memory size

ROM
8 K bytes
RAM
1.5 K bytes

- Programmable input/output ports 34
- On-chip software pull-up resistor Built-in
- Interrupts \qquad 19 sources, 16 vectors
(external 8, internal 10, software 1)
- Timers 8 -bit $\times 4$ 16 -bit $\times 2$
- Serial interface

Serial I/O1 \qquad 8-bit $\times 1$ (UART or Clock-synchronized)
Serial I/O2 \qquad 8-bit $\times 1$ (Clock-synchronized)

- PWM \qquad 8 -bit $\times 1$
- A/D converter \qquad 8 -bit $\times 9$ channels
- Clock generating circuit Built-in 2 circuits
(connect to external ceramic resonator or quartz-crystal oscillator)
- Watchdog timer \qquad 16 -bit $\times 1$
- Power source voltage

In high-speed mode 4.0 to 5.5 V
(at 12.5 MHz oscillation frequency)
In high-speed mode 2.7 to 5.5 V
(at 6 MHz oscillation frequency)
In middle-speed mode 2.7 to 5.5 V
(at 12.5 MHz oscillation frequency, at middle-speed mode) In low-speed mode 2.7 to 5.5 V
(at 32 kHz oscillation frequency)

- Operating temperature range
-20 to $85^{\circ} \mathrm{C}$

APPLICATION

Office automation equipment, Factory automation equipment, Household products, Consumer electronics, etc.

PIN CONFIGURATION (TOP VIEW)

Vcc
VREF $\longrightarrow 10$

Package type : PRDP0042BA-A (42P4B) PRSP0042GA-A/B (42P2R-A/E)

Fig. 1 Pin configuration of M3858XGX-XXXSP/FP

PIN DESCRIPTION

Table 1 Pin description

Pin	Name	Functions	Function except a port function
Vcc, Vss	Power source	- Apply voltage of $2.7 \mathrm{~V}-5.5 \mathrm{~V}$ to Vcc , and 0 V to Vss.	
CNVss	CNVss input	-This pin controls the operation mode of the chip and is shared with the VPP pin which is the power source input pin for programming the built-in QzROM. -Normally connected to Vss.	
Vref	Reference voltage	-Reference voltage input pin for A/D converter.	
AVss	Analog power source	-Analog power source input pin for A/D converter. -Connect to Vss.	
RESET	Reset input	-Reset input pin for active "L".	
XIN	Clock input	-Input and output pins for the clock generating circuit. -Connect a ceramic resonator or quartz-crystal oscillator between the XIN and Xout pins to set the oscillation frequency.	
Xout	Clock output	-When an external clock is used, connect the clock source to the XIN pin and leave the Xout pin open.	
P00/SIN2 P01/Sout2 P02/Sclk2 P03/SRDY2	I/O port P0	-1/O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level. -CMOS 3-state output structure. -Pull-up control is enabled in a bit unit. -P10 to P17 (8 bits) are enabled to output large current for LED drive.	- Serial I/O2 function pin
P04/AN5-P07/AN8			- A/D converter input pin
P10-P17	I/O port P1		
$\begin{aligned} & \hline \text { P20/XCOUT } \\ & \text { P21/XCIN } \\ & \hline \end{aligned}$	I/O port P2	-8-bit I/O port. -//O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level. -CMOS3-state output structure. -Pull-up control is enabled in a bit unit.	- Sub-clock generating circuit I/O pins (connect a resonator)
P22/CNTR2			- Timer Z1 function pin
P23/CNTR3			- Timer Z2 function pin
$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { P24/RxD } \\ \text { P25/TxD } \\ \text { P26/ScK } \\ \hline \end{array}$			- Serial I/O1 function pin
$\begin{aligned} & \hline \frac{\mathrm{P} 27 / \mathrm{CNTR}}{\mathrm{SR}} \mathbf{~ S ~} \end{aligned}$			- Timer X function pin/ Serial I/O1 function pin
$\begin{aligned} & \text { P3o/AN0- } \\ & \text { P34/AN4 } \end{aligned}$	I/O port P3	-5-bit I/O port with the same function as port PO. -CMOS compatible input level. -CMOS 3-state output structure. -Pull-up control is enabled in a bit unit.	- A/D converter input pin
P40/CNTR1	I/O port P4	-5-bit I/O port with the same function as port PO. -CMOS compatible input level. -CMOS 3-state output structure. -Pull-up control is enabled in a bit unit.	- Timer Y function pin
P41/INT0 P42/INT1			- Interrupt input pins
P43/INT2/SCMP2			- Interrupt input pin - ScmP2 output pin
P44/INT3/PWM			- Interrupt input pin - PWM output pin

PART NUMBERING

Product name P3858

Fig. 3 Part numbering

GROUP EXPANSION

Renesas Technology plans to expand the 3858 group as follows.

Memory Type

Support for QzROM version.

Memory Size

QzROM size .. bytes
RAM size

Packages

PRDP0042BA-A \qquad 42-pin shrink plastic-molded SDIP
PRSP0042GA-A/B \qquad 42-pin plastic-molded SSOP

Memory Expansion Plan

Fig. 4 Memory expansion plan

Table 2 List of products

Part number	ROM size (bytes) ROM size for User in ()	RAM size (bytes)	Package	Remarks
M38588GC-XXXSP	$\begin{gathered} 49152 \\ (49021) \end{gathered}$	1536	PRDP0042BA-A	
M38588GC-XXXFP			PRSP0042GA-A/B	
M38588GCSP	$\begin{gathered} \hline 49152 \\ (49021) \\ \hline \end{gathered}$	1536	PRDP0042BA-A	Blank
M38588GCFP			PRSP0042GA-A/B	

FUNCTIONAL DESCRIPTION
 CENTRAL PROCESSING UNIT (CPU)

The 3858 group uses the standard 740 Family instruction set. Refer to the table of 740 Family addressing modes and machine instructions or the 740 Family Software Manual for details on the instruction set.
Machine-resident 740 Family instructions are as follows:
The FST and SLW instructions cannot be used.
The STP, WIT, MUL, and DIV instructions can be used.

[Accumulator (A)]

The accumulator is an 8-bit register. Data operations such as data transfer, etc., are executed mainly through the accumulator.

[Index Register X (X)]

The index register X is an 8-bit register. In the index addressing modes, the value of the OPERAND is added to the contents of register X and specifies the real address.

[Index Register Y (Y)]

The index register Y is an 8-bit register. In partial instruction, the value of the OPERAND is added to the contents of register Y and specifies the real address.

[Stack Pointer (S)]

The stack pointer is an 8-bit register used during subroutine calls and interrupts. This register indicates start address of stored area (stack) for storing registers during subroutine calls and interrupts. The low-order 8 bits of the stack address are determined by the contents of the stack pointer. The high-order 8 bits of the stack address are determined by the stack page selection bit. If the stack page selection bit is " 0 ", the high-order 8 bits becomes " 0016 ". If the stack page selection bit is " 1 ", the high-order 8 bits becomes "0116".
The operations of pushing register contents onto the stack and popping them from the stack are shown in Figure 6.
Store registers other than those described in Figure 6 with program when the user needs them during interrupts or subroutine calls (see Table 3).

[Program Counter (PC)]

The program counter is a 16-bit counter consisting of two 8-bit registers PCH and PCL. It is used to indicate the address of the next instruction to be executed.

Fig. 5740 Family CPU register structure

Note: Condition for acceptance of an interrupt \rightarrow Interrupt enable flag is " 1 " Interrupt disable flag is " 0 "

Fig. 6 Register push and pop at interrupt generation and subroutine call
Table 3 Push and pop instructions of accumulator or processor status register

	Push instruction to stack	Pop instruction from stack
Accumulator	PHA	PLA
Processor status register	PHP	PLP

[Processor status register (PS)]

The processor status register is an 8 -bit register consisting of 5 flags which indicate the status of the processor after an arithmetic operation and 3 flags which decide MCU operation. Branch operations can be performed by testing the Carry (C) flag, Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z, V, N flags are not valid.
-Bit 0: Carry flag (C)
The C flag contains a carry or borrow generated by the arithmetic logic unit (ALU) immediately after an arithmetic operation. It can also be changed by a shift or rotate instruction.
-Bit 1: Zero flag (Z)
The Z flag is set if the result of an immediate arithmetic operation or a data transfer is " 0 ", and cleared if the result is anything other than "0".
-Bit 2: Interrupt disable flag (I)
The I flag disables all interrupts except for the interrupt generated by the BRK instruction.
Interrupts are disabled when the I flag is " 1 ".
-Bit 3: Decimal mode flag (D)
The D flag determines whether additions and subtractions are executed in binary or decimal. Binary arithmetic is executed when this flag is " 0 "; decimal arithmetic is executed when it is " 1 ". Decimal correction is automatic in decimal mode. Only the ADC and SBC instructions can be used for decimal arithmetic.
-Bit 4: Break flag (B)
The B flag is used to indicate that the current interrupt was generated by the BRK instruction. The BRK flag in the processor status register is always " 0 ". When the BRK instruction is used to generate an interrupt, the processor status register is pushed onto the stack with the break flag set to " 1 ".
-Bit 5: Index X mode flag (T)
When the T flag is " 0 ", arithmetic operations are performed between accumulator and memory. When the T flag is " 1 ", direct arithmetic operations and direct data transfers are enabled between memory locations.
-Bit 6: Overflow flag (V)
The V flag is used during the addition or subtraction of one byte of signed data. It is set if the result exceeds +127 to -128 . When the BIT instruction is executed, bit 6 of the memory location operated on by the BIT instruction is stored in the overflow flag.
-Bit 7: Negative flag (N)
The N flag is set if the result of an arithmetic operation or data transfer is negative. When the BIT instruction is executed, bit 7 of the memory location operated on by the BIT instruction is stored in the negative flag.

Table 4 Set and clear instructions of each bit of processor status register

	C flag	Z flag	I flag	D flag	B flag	T flag	V flag	N flag
Set instruction	SEC	-	SEI	SED	-	SET	-	-
Clear instruction	CLC	-	CLI	CLD	-	CLT	CLV	-

[CPU Mode Register (CPUM)] 003B16

The CPU mode register contains the stack page selection bit, etc.
The CPU mode register is allocated at address 003B16.

Fig. 7 Structure of CPU mode register

MEMORY
 Special Function Register (SFR) Area

The Special Function Register area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

Zero Page

Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special Page

Access to this area with only 2 bytes is possible in the special page addressing mode.

ROM Code Protect Address (address FFDB16)

Address FFDB16, which is the reserved ROM area of QzROM, is the ROM code protect address. "0016" is written into this address when selecting the protect bit write by using a serial programmer or selecting protect enabled for writing shipment by Renesas Technology corp.. When "0016" is set to the ROM code protect address, the protect function is enabled, so that reading or writing from/to QzROM is disabled by a serial programmer.
As for the QzROM product in blank, the ROM code is protected by selecting the protect bit write at ROM writing with a serial programmer.
As for the QzROM product shipped after writing, "0016" (protect enabled) or "FF16" (protect disabled) is written into the ROM code protect address when Renesas Technology corp. performs writing. The writing of "0016" or "FF16" can be selected as ROM option setup ("MASK option" written in the mask file converter) when ordering.

Notes

Because the contents of RAM are indefinite at reset, set initial values before using.

RAM size (bytes)	$\begin{aligned} & \text { Address } \\ & \text { XXXX16 } \end{aligned}$
192	00FF16
256	013F16
384	01BF16
512	023F16
640	02BF16
768	033F16
896	03BF16
1024	043F16
1536	063F16
2048	083F16

ROM area

ROM size (bytes)	Address YYYY16	Address ZZZZ16
4096	F00016	F08016
8192	E00016	E08016
12288	D00016	D08016
16384	C00016	C08016
20480	B00016	B08016
24576	A00016	A08016
28672	900016	908016
32768	800016	808016
36864	700016	708016
40960	600016	608016
45056	500016	508016
49152	400016	408016
53248	300016	308016
57344	200016	208016
61440	100016	108016

Fig. 8 Memory map diagram

000016	Port P0 (P0)
000116	Port P0 direction register (POD)
000216	Port P1 (P1)
000316	Port P1 direction register (P1D)
000416	Port P2 (P2)
000516	Port P2 direction register (P2D)
000616	Port P3 (P3)
000716	Port P3 direction register (P3D)
000816	Port P4 (P4)
000916	Port P4 direction register (P4D)
000A16	
000B16	
$000 \mathrm{C}_{16}$	
000D16	
000E16	
000F16	
001016	Port P0 pull-up control register (PULL0)
001116	Port P1 pull-up control register (PULL1)
001216	Port P2 pull-up control register (PULL2)
001316	Port P3 pull-up control register (PULL3)
001416	Port P4 pull-up control register (PULL4)
001516	Serial I/O2 control register 1 (SIO2CON1)
001616	Serial I/O2 control register 2 (SIO2CON2)
001716	Serial I/O2 register (SIO2)
001816	Transmit/Receive buffer register (TB/RB)
001916	Serial I/O1 status register (SIOSTS)
001A16	Serial I/O1 control register (SIOCON)
001B16	UART control register (UARTCON)
$001 C_{16}$	Baud rate generator (BRG)
001D16	PWM control register (PWMCON)
001E16	PWM prescaler (PREPWM)
001F16	PWM register (PWM)

002016	Prescaler 12 (PRE12)
002116	Timer 1 (T1)
002216	Timer 2 (T2)
002316	Timer XY mode register (TM)
002416	Prescaler X (PREX)
002516	Timer X (TX)
002616	Prescaler Y (PREY)
002716	Timer Y (TY)
002816	Timer Z1 mode register (TZ1M)
002916	Timer Z1 low-order (TZ1L)
002A16	Timer Z1 high-order (TZ1H)
002B16	Timer Z2 mode register (TZ2M)
$002 \mathrm{C}_{16}$	Timer Z2 low-order (TZ2L)
002D16	Timer Z2 high-order (TZ2H)
002E16	Timer 12, X count source selection register (T12XCSS)
002F16	Timer Y, Z1 count source selection register (TYZ1CSS)
003016	Timer Z2 count source selection register (TZ2CSS)
003116	
003216	
003316	
003416	AD control register (ADCON)
003516	AD conversion register (AD)
003616	Interrupt source selection register (INTSEL)
003716	Reserved *
003816	MISRG
003916	Watchdog timer control register (WDTCON)
003A16	Interrupt edge selection register (INTEDGE)
003B16	CPU mode register (CPUM)
$003 \mathrm{C}_{16}$	Interrupt request register 1 (IREQ1)
003D16	Interrupt request register 2 (IREQ2)
003E16	Interrupt control register 1 (ICON1)
003F16	Interrupt control register 2 (ICON2)

* Reserved : Do not write any data to this addresses, because these areas are reserved.

Fig. 9 Memory map of special function register (SFR)

I/O PORTS

The I/O ports have direction registers which determine the input/ output direction of each individual pin. Each bit in a direction register corresponds to one pin, and each pin can be set to be input port or output port.
When " 0 " is written to the bit corresponding to a pin, that pin becomes an input pin. When " 1 " is written to that bit, that pin becomes an output pin
If data is read from a pin which is set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

By setting the port P0 pull-up control register (address 001016), the port P1 pull-up control register (address 001116), the port P2 pull-up control register (address 001216), the port P3 pull-up control register (address 001316), or the port P4 pull-up control register (address 001416), ports can control pull-up with a program. However, the contents of these registers do not affect ports programmed as the output ports.

Table 5 I/O port function

Pin	Name	Input/Output	I/O Structure	Non-Port Function	Related SFRs	Ref.No.
P00/SIN2 P01/SOUT2 P02/Sclk2 P03/SRDY2	Port P0	Input/output, individual bits	CMOS compatible input level CMOS 3-state output	Serial I/O2 function I/O	Serial I/O2 control register	(1) (2) (3) (4)
P04/AN5-P07AN8				A/D converter input	AD control register AD input selection register	(13)
P10-P17	Port P1					(5)
$\begin{aligned} & \mathrm{P} 20 / \mathrm{Xcout} \\ & \mathrm{P} 21 / \mathrm{XCIN} \end{aligned}$	Port P2			Sub-clock generating circuit	CPU mode register	(6) (7)
P22/CNTR2				Timer Z1 function I/O	Timer Z1 mode register	(8)
P23/CNTR3				Timer Z2 function I/O	Timer Z2 mode register	(8)
$\begin{aligned} & \text { P24/RxD } \\ & \text { P25/TxD } \\ & \text { P26/ScLK1 } \end{aligned}$				Serial I/O1 function I/O	Serial I/O1 control register	$\begin{gathered} \hline(9) \\ (10) \\ (11) \\ \hline \end{gathered}$
P27/CNTRo/SRDY1				Timer X function I/O Serial I/O1 function I/O	Timer XY mode register Serial I/O1 control register	(12)
$\begin{aligned} & \text { P30/AN0- } \\ & \text { P34/AN4 } \end{aligned}$	Port P3 (Note)			A/D converter input	AD control register AD input selection register	(13)
P40/CNTR1	$\begin{aligned} & \hline \text { Port P4 } \\ & \text { (Note) } \end{aligned}$			Timer Y function I/O	Timer XY mode register	(14)
$\begin{aligned} & \text { P41/INT0 } \\ & \text { P42/INT1 } \end{aligned}$				External interrupt input	Interrupt edge selection register	(15)
P43/INT2/ScmP2				External interrupt input SCMP2 output	Interrupt edge selection register Serial I/O2 control register	(16)
P44/INT3/PWM				External interrupt input PWM output	Interrupt edge selection register PWM control register	(17)

Note: When bits 5 to 7 of Ports P3 and P4 are read out, the contents are undefined.

(3) Port P02

(5) Port P1

(7) Port P21

(4) Port PO3

(6) Port P2o
(2) Port P01

(8) Ports P22, P23

Fig. 10 Port block diagram (1)

(11) Port P26

(13) Ports P04-P07, P30-P34

(15) Ports P41, P42

(10) Port P25

(12) Port P27

(14) Port P40

(16) Port P43

Fig. 11 Port block diagram (2)
(17) Port P44

Fig. 12 Port block diagram (3)

Note: Pull-up control is valid when the corresponding bit of the port direction register is " 0 " (input). When that bit is "1" (output), pull-up cannot be set to the port of which pull-up is selected.

Note: Pull-up control is valid when the corresponding bit of the port direction register is " 0 " (input). When that bit is " 1 " (output), pull-up cannot be set to the port of which pull-up is selected.

Note: Pull-up control is valid when the corresponding bit of the port direction register is " 0 " (input).
When that bit is "1" (output), pull-up cannot be set to the port of which pull-up is selected.

Fig. 13 Structure of port registers (1)

Note: Pull-up control is valid when the corresponding bit of the port direction register is " 0 " (input). When that bit is " 1 " (output), pull-up cannot be set to the port of which pull-up is selected.

Port P4 pull-up control register (PULL4: address 001416)

- P40 pull-up control bit

0: No pull-up
1: Pull-up
P41 pull-up control bit 0 : No pull-up
1: Pull-up
P42 pull-up control bit
0: No pull-up
1: Pull-up
P43 pull-up control bit 0 : No pull-up
1: Pull-up
P44 pull-up control bit
0: No pull-up
1: Pull-up
Fix these bits to "0".

Note: Pull-up control is valid when the corresponding bit of the port direction register is " 0 " (input).
When that bit is "1" (output), pull-up cannot be set to the port of which pull-up is selected.

Fig. 14 Structure of port registers (2)

INTERRUPTS

The 3858 group's interrupts are a type of vector and occur by 16 sources among 19 sources: eight external, ten internal, and one software.

Interrupt Control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are " 1 " and the interrupt disable flag is " 0 ".
Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be set by software.
The reset and the BRK instruction cannot be disabled with any flag or bit. The I (interrupt disable) flag disables all interrupts except the reset and the BRK instruction interrupt.
When several interrupt requests occur at the same time, the interrupts are received according to priority.

Interrupt Operation

By acceptance of an interrupt, the following operations are automatically performed:

1. The contents of the program counter and the processor status register are automatically pushed onto the stack.
2. The interrupt disable flag is set and the corresponding interrupt request bit is cleared.
3. The interrupt jump destination address is read from the vector table into the program counter.

Interrupt Source Selection

Which of each combination of the following interrupt sources can be selected by the interrupt source selection register (address 003916).

1. INT3 or Serial I/O2
2. Timer Z1 or CNTR2
3. Timer Z2 or CNTR3
4. CNTR0 or CNTR2
5. CNTR1 or CNTR3

Table 6 Interrupt vector addresses and priority

Interrupt Source	Priority	Vector Addresses (Note 1)		Interrupt Request Generating Conditions	Remarks
		High	Low		
Reset (Note 2)	1	FFFD16	FFFC16	At reset	Non-maskable
INT0	2	FFFB16	FFFA16	At detection of either rising or falling edge of INTo input	External interrupt (active edge selectable)
Timer Z1	3	FFF916	FFF816	At timer Z1 underflow	
CNTR2				At detection of either rising or falling edge of CNTR2 input	External interrupt (active edge selectable)
INT1	4	FFF716	FFF616	At detection of either rising or falling edge of INT1 input	External interrupt (active edge selectable)
INT2	5	FFF516	FFF416	At detection of either rising or falling edge of INT2 input	External interrupt (active edge selectable)
INT3	6	FFF316	FFF216	At detection of either rising or falling edge of INT3 input	External interrupt (active edge selectable)
Serial I/O2				At completion of serial I/O2 data transmission or reception	Valid when serial I/O2 is selected
Timer Z2	7	FFF116	FFF016	At timer Z2 underflow	
CNTR3				At detection of either rising or falling edge of CNTR3 input	External interrupt (active edge selectable)
Timer X	8	FFEF16	FFEE16	At timer X underflow	
Timer Y	9	FFED16	FFEC16	At timer Y underflow	
Timer 1	10	FFEB16	FFEA16	At timer 1 underflow	STP release timer underflow
Timer 2	11	FFE916	FFE816	At timer 2 underflow	
Serial I/O1 reception	12	FFE716	FFE616	At completion of serial I/O1 data reception	Valid when serial I/O1 is selected
Serial I/O1 transmission	13	FFE516	FFE416	At completion of serial I/O1 transmission shift or when transmission buffer is empty	Valid when serial I/O1 is selected
CNTRo	14	FFE316	FFE216	At detection of either rising or falling edge of CNTRo input	External interrupt (active edge selectable)
CNTR2				At detection of either rising or falling edge of CNTR2 input	
CNTR1	15	FFE116	FFE016	At detection of either rising or falling edge of CNTR1 input	External interrupt (active edge selectable)
CNTR3				At detection of either rising or falling edge of CNTR3 input	
A/D converter	16	FFDF16	FFDE16	At completion of A/D conversion	
BRK instruction	17	FFDD16	FFDC16	At BRK instruction execution	Non-maskable software interrupt

Notes 1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.

Notes

When setting the followings, the interrupt request bit may be set to "1".
-When setting external interrupt active edge
Related register: Interrupt edge selection register (address 003A16)
Timer XY mode register (address 002316)
Timer Z1 mode register (address 002816)
Timer Z2 mode register (address 002B16)
-When switching interrupt sources of an interrupt vector address where two or more interrupt sources are allocated
Related register: Interrupt source selection register
(address 003616)

When not requiring for the interrupt occurrence synchronized with these setting, take the following sequence.
(1)Set the corresponding interrupt enable bit to "0" (disabled).
(2)Set the interrupt edge select bit or the interrupt source select bit to "1".
(3)Set the corresponding interrupt request bit to "0" after 1 or more instructions have been executed.
(4)Set the corresponding interrupt enable bit to "1" (enabled).

Fig. 15 Interrupt control

Fig. 16 Structure of interrupt-related registers

TIMERS

-8-bit Timers

The 3858 group has four 8-bit timers: timer 1, timer 2, timer X , and timer Y.
The timer 1 and timer 2 use one prescaler in common, and the timer X and timer Y use each prescaler. Those are 8-bit prescalers. Each of the timers and prescalers has a timer latch or a prescaler latch.
The division ratio of each timer or prescaler is given by $1 /(n+1)$, where n is the value in the corresponding timer or prescaler latch. All timers are down-counters. When the timer reaches "0016", an underflow occurs at the next count pulse and the contents of the corresponding timer latch are reloaded into the timer and the count is continued. When the timer underflows, the interrupt request bit corresponding to that timer is set to " 1 ".

- Timer divider

The divider count source is switched by the main clock division ratio selection bits of CPU mode register (bits 7 and 6 at address 003B16). When these bits are "00" (high-speed mode) or "01" (middle-speed mode), XIN is selected. When these bits are " 10 " (low-speed mode), XCIN is selected.

-Prescaler 12

The prescaler 12 counts the output of the timer divider. The count source is selected by the timer $12, \mathrm{X}$ count source selection register (address 002E16) among 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/ $128,1 / 256,1 / 512,1 / 1024$ of $f($ XIN $)$ or $f(X C I N)$.

Timer 1 and Timer 2

The timer 1 and timer 2 counts the output of prescaler 12 and periodically set the interrupt request bit.

-Prescaler X and prescaler Y

The prescaler X and prescaler Y count the output of the timer divider or $f(X C I N)$. The count source is selected by the timer $12, X$ count source selection register (address 002E16) and the timer Y , Z1 count source selection register (address 002F16) among 1/2, $1 / 4,1 / 8,1 / 16,1 / 32,1 / 64,1 / 128,1 / 256,1 / 512$, and $1 / 1024$ of $f(X I N)$ or $f(X C I N)$; and $f(X C I N)$.

Timer \mathbf{X} and Timer \mathbf{Y}

The timer X and timer Y can each select one of four operating modes by setting the timer XY mode register (address 002316).

(1) Timer mode

-Mode selection

This mode can be selected by setting " 00 " to the timer X operating mode bits (bits 1 and 0) and the timer Y operating mode bits (bits 5 and 4) of the timer XY mode register (address 002316).

- Explanation of operation

The timer count operation is started by setting " 0 " to the timer X count stop bit (bit 3) and the timer Y count stop bit (bit 7) of the timer XY mode register (address 002316).
When the timer reaches "0016", an underflow occurs at the next count pulse and the contents of timer latch are reloaded into the timer and the count is continued.

(2) Pulse output mode

-Mode selection

This mode can be selected by setting " 01 " to the timer X operating mode bits (bits 1 and 0) and the timer Y operating mode bits (bits 5 and 4) of the timer XY mode register (address 002316).

- Explanation of operation

The operation is the same as the timer mode's. Moreover the pulse which is inverted each time the timer underflows is output from CNTRo/CNTR1 pin. Regardless of the timer counting or not the output of CNTRo/CNTR1 pin is initialized to the level of specified by their active edge switch bits when writing to the timer. When the CNTRo active edge switch bit (bit 2) and the CNTR1 active edge switch bit (bit 6) of the timer XY mode register (address $002316)$ is " 0 ", the output starts with " H " level. When it is " 1 ", the output starts with "L" level.
Switching the CNTRo or CNTR1 active edge switch bit will reverse the output level of the corresponding CNTRo or CNTR1 pin.

- Precautions

Set the double-function port of CNTRo/CNTR1 pin and port P27/ P40 to output in this mode.

(3) Event counter mode

-Mode selection

This mode can be selected by setting " 10 " to the timer X operating mode bits (bits 1 and 0) and the timer Y operating mode bits (bits 5 and 4) of the timer XY mode register (address 002316).

-Explanation of operation

The operation is the same as the timer mode's except that the timer counts signals input from the CNTRo or CNTR1 pin. The valid edge for the count operation depends on the CNTRo active edge switch bit (bit 2) or the CNTR1 active edge switch bit (bit 6) of the timer XY mode register (address 002316). When it is " 0 ", the rising edge is valid. When it is " 1 ", the falling edge is valid.

- Precautions

Set the double-function port of CNTRo/CNTR1 pin and port P27/ P40 to input in this mode.

(4) Pulse width measurement mode

-Mode selection

This mode can be selected by setting " 11 " to the timer X operating mode bits (bits 1 and 0) and the timer Y operating mode bits (bits 5 and 4) of the timer XY mode register (address 002316).

- Explanation of operation

When the CNTRo active edge switch bit (bit 2) or the CNTR1 active edge switch bit (bit 6) of the timer XY mode register (address 002316) is " 1 ", the timer counts during the term of one falling edge of CNTRo/CNTR1 pin input until the next rising edge of input ("L" term). When it is " 0 ", the timer counts during the term of one rising edge input until the next falling edge input ("H" term).

■Precautions

Set the double-function port of CNTRo/CNTR1 pin and port P27/ P40 to input in this mode.
The count operation can be stopped by setting " 1 " to the timer X count stop bit (bit 3) and the timer Y count stop bit (bit 7) of the timer XY mode register (address 002316). The interrupt request bit is set to " 1 " each time the timer underflows.

-Precautions when switching count source

When switching the count source by the timer $12, \mathrm{X}$ and Y count source selection bits, the value of timer count is altered in inconsiderable amount owing to generating of thin pulses on the count input signals.
Therefore, select the timer count source before setting the value to the prescaler and the timer.

