Ehipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation,and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

M48T254V 3.3V, 16 Mbit (2 Mb x 8 bit) TIMEKEEPER® SRAM WITH PHANTOM CLOCK

FEATURES SUMMARY

- \blacksquare 3.3V \pm 10%
- INTEGRATED ULTRA LOW POWER SRAM. REAL TIME CLOCK, POWER-FAIL CONTROL CIRCUIT, BATTERY AND CRYSTAL
- REAL TIME CLOCK KEEPS TRACK OF TENTHS/HUNDREDTHS OF SECONDS, SECONDS, MINUTES, HOURS, DAYS, DATE, MONTHS, and YEARS.
- CLOCK FUNCTION IS TRANSPARENT TO RAM OPERATION.
- PRECISION POWER MONITORING and POWER SWITCHING CIRCUITRY
- AUTOMATIC WRITE-PROTECTION WHEN V_{CC} IS OUT-OF-TOLERANCE
- POWER-FAIL DESELECT VOLTAGE:
	- $-V_{CC} = 3.3V \pm 10\%$; $2.8V \leq V_{PFD} \leq 2.97V$
- \blacksquare BATTERY LOW ($\overline{\text{BL}}$)
- 10 YEARS of DATA RETENTION and CLOCK OPERATION IN THE ABSENCE OF POWER
- SNAPHAT HOUSING (BATTERY/CRYSTAL) IS REPLACEABLE
- 100ns ACCESS (READ = WRITE)

Figure 1. 168-ball PBGA Module

M48T254V

TABLE OF CONTENTS

 \sqrt{M}

SUMMARY DESCRIPTION

The M48T254V TIMEKEEPER[®] RAM is a 2Mbit x 8 non-volatile static RAM and real time clock organized as 2,097,152 words by 8 bits. The special BGA package provides a fully integrated battery back-up memory and real time clock solution. In the event of power instability or absence, a selfcontained battery maintains the timekeeping operation and provides power for a CMOS static RAM. Control circuitry monitors V_{CC} and invokes write protection to prevent data corruption in the memory and RTC.

AI04217 **V_{CC}** M48T254V V_{SS} \overline{BL} $A0 - A20$ DQ0 – DQ7 WE OE CE

Figure 3. Logic Diagram Table 1. Signal Names

The clock keeps track of tenths/hundredths of seconds, seconds, minutes, hours, day, date, month, and year information. The last day of the month is automatically adjusted for months with less than 31 days, including leap year correction.

The clock operates in one of two formats:

- a 12-hour mode with an AM/PM indicator; or
- a 24-hour mode

The M48T254V is a 168-ball PBGA module that integrates the RTC, the battery, and SRAM in one package.

Figure 4. PBGA Connections (Top View)

Note: This diagram is TOP VIEW perspective (view through package).

Figure 5. Hardware Hookup

MAXIMUM RATING

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect dereliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

AV

CAUTION! Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up Mode.

DC AND AC PARAMETERS

This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measurement Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters.

Table 3. DC and AC Measurement Conditions

Note: Output Hi-Z is defined as the point where data is no longer driven.

Figure 7. AC Testing Load Circuit

Table 4. Capacitance

Note: 1. Effective capacitance measured with power supply at 3V. Sampled only; not 100% tested.

2. At 25° C, $f = 1$ MHz.

3. Outputs were deselected.

Table 5. DC Characteristics

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70°C; V_{CC} = 3.0 to 3.6V (except where noted).
2. All voltages are referenced to Ground.

3. For BL pin (Open Drain).

OPERATION MODES READ

A READ cycle executes whenever WRITE Enable (WE) is high and Chip Enable (CE) is low (see Figure 8, page 10). The distinct address defined by the 21 address inputs (A0-A20) specifies which of the 2M bytes of data is to be accessed. Valid data will be accessed by the eight data output drivers within the specified Access Time (t_{ACC}) after the last address input signal is stable, the CE and OE access times, and their respective parameters are satisfied. When CE tacc and OE tacc are not satisfied, then data access times must be measured from the more recent CE and OE signals, with the limiting parameter being t_{CO} (for CE) or t_{OF} (for OE) instead of address access.

WRITE

WRITE Mode occurs whenever CE and WE signals are low (after address inputs are stable, see Figure 9, page 10 and Figure 10, page 11). The most recent falling edge of CE and WE will determine when the WRITE cycle begins (the earlier, rising edge of CE or WE determines cycle termination). All address inputs must be kept stable throughout the WRITE cycle. WE must be high (inactive) for a minimum recovery time (t_{WR}) before a subsequent cycle is initiated. The OE control signal should be kept high (inactive) during the WRITE cycles to avoid bus contention. If CE and OE are low (active), WE will disable the outputs for Output Data WRITE Time (t_{ODW}) from its falling edge.

Table 6. Operating Modes

Note: $X = V_{IH}$ or V_{IL} ; $V_{SO} =$ Battery Back-up Switchover Voltage

1. See Table 8, page 13 for details.

M48T254V

Figure 8. Memory READ Cycle

Note: WE is high for a READ cycle.

Figure 9. Memory WRITE Cycle, WRITE Enable Controlled

Note: 1. $\overline{OE} = \underline{V_{H}}$ or V_{IL} . If $\overline{OE} = V_{IH}$ during a WRITE cycle, the output buffers remain in a high impedance state.

2. If the \overline{CE} low transition occurs simultaneously with or later than the \overline{WE} low transition in \overline{WE} Controlled WRITE, the output buffers remain in a high impedance state during this period.

3. If the \overline{CE} high transition occurs simultaneously with the \overline{WE} high transition, the output buffers remain in a high impedance state during this period.

si

Note: 1. OE = V_{IH} or V_{IL}. If <u>OE</u> = V_{IH} during a WRITE cycle, the output buffers remain in a high impedance state.

S77

2. If WE is low or the WE low transition occurs prior to or simultaneously with the CE low transition, the output buffers remain in a high impedance state during this period.

Table 7. AC Electrical Characteristics

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70°C; V_{CC} = 3.0 to 3.6V (except where noted).

2. These parameters are sampled with a 5 pF load are not 100% tested.

3. t_{WP} is specified as the logical AND of CE and WE. t_{WP} is measured from the latter of CE or WE going low to the earlier of CE or WE going high.

冈

4. t_{WR} is a function of the latter occurring edge of \overline{WE} or \overline{CE} .

Data Retention Mode

Data can be read or written only when V_{CC} is greater than V_{PFD} . When V_{CC} is below V_{PFD} (the point at which write protection occurs), the clock registers and the SRAM are blocked from any access. When V_{CC} falls below the Battery Switch Over threshold (V_{SO}) , the device is switched from V_{CC} to battery backup (V_{BAT}). RTC operation and SRAM data are maintained via battery backup until power is stable. All control, data, and address signals must be powered down when V_{CC} is powered down.

The lithium power source is designed to provide power for RTC activity as well as RTC and RAM data retention when V_{CC} is absent or unstable. The capability of this source is sufficient to power the device continuously for the life of the equipment into which it has been installed. For specification purposes, life expectancy is ten (10) years at 25°C with the internal oscillator running without V_{CC} . The actual life expectancy will be much longer if no battery energy is used (e.g., when V_{CC} is present).

Figure 11. Power Down/Up Mode AC Waveforms

Table 8. Power Down/Up Trip Points DC Characteristics

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70°C; V_{CC} = 3.0 to 3.6V (except where noted).

2. At 25°C, $V_{CC} = 0V$; the expected t_{DR} is defined as cumulative time in the absence of V_{CC} with the clock oscillator running. (Requires use of three M4T32-BR12SH SNAPHAT[®] tops.)

PHANTOM CLOCK OPERATION

Communication with the Phantom Clock is established by pattern recognition of a serial bit-stream of 64 bits which must be matched by executing 64 consecutive WRITE cycles containing the proper data on DQ0.

All accesses which occur prior to recognition of the 64-bit pattern are directed to memory.

After recognition is established, the next 64 READ or WRITE cycles either extract or update data in the clock while disabling the memory.

Data transfer to and from the timekeeping function is accomplished with a serial bit-stream under control of Chip Enable (CE), Output Enable (OE), and WRITE Enable (WE). Initially, a READ cycle using the CE and OE control of the clock starts the pattern recognition sequence by moving the pointer to the first bit of the 64-bit comparison register (see Figure 12, page 15).

Next, 64 consecutive WRITE cycles are executed using the CE and WE control of the device. These 64 WRITE cycles are used only to gain access to the clock. Therefore, any address to the memory is acceptable. However, the WRITE cycles generated to gain access to the Phantom Clock are also writing data to a location in the mated RAM. The preferred way to manage this requirement is to set

aside just one address location in RAM as a Phantom Clock scratch pad.

When the first WRITE cycle is executed, it is compared to Bit 1 of the 64-bit comparison register. If a match is found, the pointer increments to the next location of the comparison register and awaits the next WRITE cycle.

If a match is not found, the pointer does not advance and all subsequent WRITE cycles are ignored. If a READ cycle occurs at any time during pattern recognition, the present sequence is aborted and the comparison register pointer is reset. Pattern recognition continues for a total of 64 WRITE cycles as described above until all of the bits in the comparison register have been matched. With a correct match for 64-bits, the Phantom Clock is enabled and data transfer to or from the timekeeping registers can proceed. The next 64 cycles will cause the Phantom Clock to either receive or transmit data on DQ0, depending on the level of the OE pin or the WE pin. Cycles to other locations outside the memory block can be interleaved with CE cycles without interrupting the pattern recognition sequence or data transfer sequence to the Phantom Clock.

57

Note: The odds of this pattern being accidentally duplicated and sending aberrant entries to the RTC is less than 1 in 10¹⁹. This pattern is sent to the clock LSB to MSB.

Clock Register Information

Clock information is contained in eight registers of 8 bits, each of which is sequentially accessed one (1) bit at a time after the 64-bit pattern recognition sequence has been completed. When updating the clock registers, each must be handled in groups of 8 bits. Writing and reading individual bits within a register could produce erroneous results. These READ/WRITE registers are defined in the clock register map (see Table 9).

Data contained in the clock registers is in Binary Coded Decimal format (BCD). Reading and writing the registers is always accomplished by stepping through all eight registers, starting with Bit 0 of Register 0 and ending with Bit 7 of Register 7.

AM-PM/12/24 Mode

Bit 7 of the hours register is defined as the 12-hour or 24-hour mode select bit. When it is high, the 12 hour mode is selected. In the 12-hour mode, Bit 5 is the AM/PM bit with the logic high being "PM." In the 24-hour mode, Bit 5 is the second 10-hour bit (20-23 hours).

Oscillator Bit

Bit 5 controls the oscillator. When set to logic '0,' the oscillator turns on and the RTC/calendar begins to increment.

Zero Bits

Registers 1, 2, 3, 4, 5, and 6 contain one (1) or more bits that will always read logic '0.' When writing to these locations, either a logic '1' or '0' is acceptable.

Ayy

Table 9. RTC Register Map

Keys:

A/P = AM/PM Bit

12/24 = 12 or 24-hour mode Bit OSC = Oscillator Bit RST = Reset Bit

 $0 =$ Must be set to '0'

 $1 =$ Must be set to '1'

Figure 13. Phantom Clock READ Cycle

Figure 14. Phantom Clock WRITE Cycle

57

Battery Low

The M48T254V automatically performs battery voltage monitoring upon power-up, and at factoryprogrammed time intervals of at least 24 hours. The Battery Low (BL) signal will be asserted if the battery voltage is found to be less than approximately 2.5V. The BL signal will remain asserted until completion of battery replacement and subsequent battery low monitoring tests, either during the next power-up sequence or the next scheduled 24-hour interval.

If a battery low is generated during a power-up sequence, this indicates that one of the batteries is below 2.5V and may not be able to maintain data integrity in the SRAM. Data should be considered suspect, and verified as correct. All three SNAPHAT[®] tops should be replaced.

If a battery low indication is generated during the 24-hour interval check, this indicates that one of the batteries is near end of life. However, data is

not compromised due to the fact that a nominal V_{CC} is supplied. In order to insure data integrity during subsequent periods of battery back-up mode, the batteries should be replaced. The SNAPHAT top should be replaced with valid V_{CC} applied to the device.

The M48T254V only monitors the batteries when a nominal V_{CC} is applied to the device. Thus applications which require extensive durations in the battery back-up mode should be powered-up periodically (at least once every few months) in order for this technique to be beneficial. Additionally, if a battery low is indicated, data integrity should be verified upon power-up via a checksum or other technique. The BL signal is an open drain output and an appropriate pull-up resistor should be chosen to control the rise time.

Note: The BL signal is available only for the external SRAM, not for the Real-Time Clock.

PART NUMBERING

Table 10. Ordering Information Scheme

 $1 = 0$ to 70° C

- Note: 1. The SOIC packages (SO28/SO44) require the battery/crystal package (SNAPHAT) which is ordered separately under the part number "M4T32-BR12SH" in plastic tube or "M4T32-BR12SHTR" in Tape and Reel form.
	- 2. Where "Z" is the symbol for BGA packages and "A" denotes 1.27mm ball pitch

For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.

Table 11. SNAPHAT Battery Table

PACKAGE MECHANICAL INFORMATION

Figure 15. PBGA-ZA – 168-ball Plastic Ball Grid Array Package Outline

Note: Drawing is not to scale.

Symb	mm			inches		
	Typ	Min	Max	Typ	Min	Max
$\sf A$	2.94	2.74	3.14	0.116	0.108	0.124
A1	0.89	0.69	1.09	0.035	0.027	0.043
A2	11.53	11.18	11.88	0.454	0.440	0.468
A ₃		7.24	8.00		0.285	0.315
B	38.54	38.34	38.74	1.517	1.509	1.525
B1		21.21	21.84		0.835	0.860
$\sf b$	0.76	0.71	0.81	0.030	0.028	0.032
$\mathsf D$	42.50	42.30	42.70	1.673	1.665	1.681
D ₁	27.94			1.100		
$\mathsf E$	42.50	42.30	42.70	1.673	1.665	1.681
E ₁	22.86			0.900		
e	1.27			0.050		
FD	7.28	7.18	7.38	0.287	0.283	0.291
FE	9.82	9.72	9.92	0.387	0.383	0.391
GD	1.75	1.55	1.95	0.069	0.061	0.077
GE	1.50	1.30	1.70	0.059	0.051	0.067
HD	1.98	1.78	2.18	0.078	0.070	0.086
HE	0.51	0.31	0.71	0.020	0.012	0.028
JE	1.50	1.30	1.70	0.059	0.051	0.067
n	168 Tolerance			168		
				Tolerance		
ddd	0.15			0.006		
eee	0.30			0.012		
fff	0.15			0.006		

Table 12. PBGA-ZA – 168-ball Plastic Ball Grid Array Package Mechanical Data

Figure 16. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline

Note: Drawing is not to scale.

Table 13. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mechanical Data

REVISION HISTORY

Table 14. Document Revision History

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2003 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -

Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com

[7]