: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

M74HC4051

Single 8-channel analog multiplexer/demultiplexer

Features

- Low power dissipation:
- $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}($ max $)$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Logic level translation to enable 5 V logic signal to communicate with $\pm 5 \mathrm{~V}$ analog signal
- Low ON resistance:
$70 \Omega \operatorname{typ}\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}\right)$ 50Ω typ $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9 \mathrm{~V}\right)$
■ Wide analog input voltage range : $\pm 6 \mathrm{~V}$
- Fast switching:
$\mathrm{t}_{\text {pd }}=15 \mathrm{~ns}$ (typ) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
■ Low crosstalk between switches
- High ON/OFF output voltage ratio
- Wide operating supply voltage range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=2$ to 12 V
- Low sine wave distortion: 0.02% at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9 \mathrm{~V}$
■ High noise immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}(\mathrm{min})$
- Pin and function compatible with 74 series 4051

Description

The M74HC4051 is a single 8-channel analog multiplexer/demultiplexer fabricated with silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology, pin-to-pin compatible with the equivalent metal gate CMOS4000B series. It contains 8 bidirectional and digitally controlled analog switches.

A built-in level shifting is included to allow an input range up to $\pm 6 \mathrm{~V}$ (peak) for an analog signal with digital control signal of 0 to 6 V .

The $\mathrm{V}_{\text {EE }}$ supply pin is provided for analog input signals. It has an inhibit (INH) input terminal to disable all the switches when is at high level. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND.
A, B and C control inputs select one channel out of eight. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

Table 1. Device summary

Order code	Package	Packaging
M74HC4051RM13TR	SOP-16	Tape and reel
M74HC4051TTR	TSSOP-16	Tape and reel

1
 Pin connection and IEC logic symbols

Figure 1. Pin connection

Figure 2. IEC logic symbols

1.1 Pin description

Table 2. Pin description

Pin number	Symbol	Name and function
3	$\begin{gathered} \text { COM } \\ \text { OUT/IN } \end{gathered}$	Common output/input
6	INH	Inhibit input
7	$V_{\text {EE }}$	Negative supply voltage
11, 10, 9	A, B, C	Select inputs
$13,14,15,12,1,5,2,4$	0 to 7	Independent input/outputs
8	GND	Ground (0 V)
16	V_{CC}	Positive supply voltage

Figure 3. Control input equivalent circuit

Figure 4. I/O equivalent circuit

Table 3. Truth table

Input state				ON channel
INH	C	B	A	
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7
H	X	X	X	NONE

x: Don't care

Figure 5. Functional diagram

2 Maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Supply voltage	-0.5 to +13	V
$\mathrm{~V}_{\mathrm{I}}$	Control input voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Switch I/O voltage	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+$	
0.5	V		
I_{CK}	Control input diode current	± 20	mA
$\mathrm{I}_{\mathrm{IOK}}$	I / O diode current	± 20	mA
I_{T}	Switch through current	$\mathrm{DIP}-16$	± 25
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or ground current	mA	
		SOP-16 and P_{D}	Power dissipation
$\mathrm{T}_{\mathrm{stg}}$	Storage temperature	$500^{(1)}$	mW
T_{L}	Lead temperature (10 sec)	180	mW

1. 500 mW at $65{ }^{\circ} \mathrm{C}$; derate to 300 mW by $10 \mathrm{~mW} / \times \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Table 5. Recommended operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	2 to 6	V
$\mathrm{~V}_{\mathrm{EE}}$	Supply voltage	-6 to 0	V
$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Supply voltage	2 to 12	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0 to V_{CC}	V
$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	I / O voltage	V_{EE} to V_{CC}	V
T_{op}	Operating temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input rise and fall time	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0 to 1000
		0 to 500	n
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0 to 400

Table 6. DC electrical specifications

Symbo I	Parameter	Test condition			Value							Unit
		v_{cc} (V)	$\begin{aligned} & V_{E E} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & -40 \text { to } \\ & 85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -55 \text { to } \\ & 125{ }^{\circ} \mathrm{C} \end{aligned}$		
					Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{V}_{\text {IHC }}$	High level input voltage	2.0			1.5			1.5		1.5		V
		4.5			3.15			3.15		3.15		
		6.0			4.2			4.2		4.2		
$\mathrm{V}_{\text {ILC }}$	Low level input voltage	2.0					0.5		0.5		0.5	V
		4.5					1.35		1.35		1.35	
		6.0					1.8		1.8		1.8	
R_{ON}	ON resistance	4.5	GND	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IHC}} \text { or } \mathrm{V}_{\mathrm{ILC}} \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}} \leq 2 \mathrm{~mA} \end{aligned}$		85	180		225		270	W
		4.5	-4.5			55	120		150		180	
		6.0	-6.0			50	100		125		150	
		2.0	GND	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IHC}} \text { or } \mathrm{V}_{\mathrm{ILC}} \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{I}_{1 / \mathrm{O}} \leq 2 \mathrm{~mA} \end{aligned}$		150						
		4.5	GND			70	150		190		230	
		4.5	-4.5			50	100		125		150	
		6.0	-6.0			45	80		100		120	
$\Delta \mathrm{R}_{\mathrm{ON}}$	Difference of ON resistance between switches	4.5	GND	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IHC}} \text { or } \mathrm{V}_{\mathrm{ILC}} \\ & \mathrm{~V}_{1 / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}} \leq 2 \mathrm{~mA} \end{aligned}$		10	30		35		45	W
		4.5	-4.5			5	12		15		18	
		6.0	-6.0			5	10		12		15	
IOFF	Input/output leakage current (switch off)	6.0	GND	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ILC}} \text { or } \mathrm{V}_{\mathrm{IHC}} \end{aligned}$			± 0.06		± 0.6		± 1.2	$\mu \mathrm{A}$
		6.0	-6.0				± 0.1		± 1		± 2	
$I_{\text {IZ }}$	Switch input leakage current (switch on, output open)	6.0	GND	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IHC}} \text { or } \mathrm{V}_{\mathrm{ILC}} \end{aligned}$			± 0.06		± 0.6		± 1.2	$\mu \mathrm{A}$
		6.0	-6.0				± 0.1		± 1		± 2	
1	Input leakage current	6.0	GND	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			± 0.1		± 0.1		± 1	$\mu \mathrm{A}$
I_{CC}	Quiescentsupply current	6.0	GND	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			4		40		80	$\mu \mathrm{A}$
		6.0	-6.0				8		80		160	

Table 7. AC electrical characteristics $\left(C_{L}=50 \mathrm{pF}\right.$, $\left.\operatorname{lnput} \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	Test condition			Value							Unit
		V_{Cc} (V)	$\begin{aligned} & V_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		$\begin{aligned} & -55 \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$		
					Min.	Typ	Max	Min	Max	Min	Max	
$\Phi_{\text {/ }}$	Phase difference between input and output	2.0	GND			25	60		75		90	ns
		4.5	GND			6	12		15		18	
		6.0	GND			5	10		13		15	
		4.5	-4.5			4						
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output enable time	2.0	GND	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$		64	225		280		340	ns
		4.5	GND			18	45		56		68	
		6.0	GND			15	38		48		58	
		4.5	-4.5			18						
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output disable time	2.0	GND	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$		100	250		315		375	ns
		4.5	GND			33	50		63		70	
		6.0	GND			28	43		54		64	
		4.5	-4.5			29						

Table 8. Capacitive characteristics

Symbol	Parameter	Test condition			Value							Unit
		V_{cc} (V)	$\begin{aligned} & V_{E E} \\ & (V) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & -40 \text { to } \\ & 85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -55 \text { to } \\ & 125{ }^{\circ} \mathrm{C} \end{aligned}$		
					Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{C}_{\text {IN }}$	Input capacitance	5.0				5	10		10		10	pF
$\mathrm{C}_{1 / \mathrm{O}}$	Common terminal capacitance	5.0	-5.0			36	70		70		70	pF
$\mathrm{C}_{1 / \mathrm{O}}$	Switch terminal capacitance	5.0	-5.0			7	15		15		15	pF
$\mathrm{C}_{\text {IOS }}$	Feed through capacitance	5.0	-5.0			0.95	2		2		2	pF
$\mathrm{C}_{\text {PD }}$	Power dissipation capacitance (1)	5.0	GND			70						pF

1. $C_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $\mathrm{I}_{\mathrm{CC}(\mathrm{opr})}=\mathrm{C}_{\mathrm{PD}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}}$.

Table 9. Analog switch characteristics (GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

1. Input common terminal, and measured at switch terminal.
2. Input switch terminal, and measured at common terminal.

These characteristics are determined by the design of the device.

2.1 Switching characteristics test circuit

Figure 6. Output enable/disable time

Figure 8. Bandwidth and feedthrough attenuation

Figure 9. Crosstalk between any two switches

Figure 10. Common terminal capacitance ($\mathrm{C}_{\mathrm{I}-\mathrm{O}}, \mathrm{C}_{\mathrm{I} / \mathrm{O}}$)

Figure 11. Switching caracteristics waveform

Figure 12. Channel resistance (R_{ON})
Figure 13. Quiescent supply current - I CC (opr)

3 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK ${ }^{\circledR}$ packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 14. Plastic DIP-16 (0.25) package information

Figure 15. SO-16 package information

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.25	0.004		0.010
a2			1.64			0.063
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

Figure 16. TSSOP16 package information

TSSOP16 MECHANICAL DATA						
DIM.	mm .			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0079
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 B	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

4 Revision history

Table 10. Document revision history

Date	Revision	Changes
01-Jul-2001	1	Initial release.
21-June-2004	2	Document internal migration, no content change.
10-Mar-2008	3	Document restructured and converted to new ST template, updated Table 4 on page 5, removed tube packing info.
21-Apr-2008	4	Replaced M74HC4051M13TR with M74HC4051RM13TR in Table 1 on page 1.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

