

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

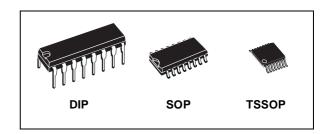
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


M74HC4052

DUAL 4-CHANNEL ANALOG MULTIPLEXER

- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A=25^{\circ}C$
- LOGIC LEVEL TRANSLATION TO ENABLE 5V LOGIC SIGNAL TO COMMUNICATE WITH ±5V ANALOG SIGNAL
- LOW "ON" RESISTANCE: 70Ω TYP. $(V_{CC} - V_{EE} = 4.5V)$ 50Ω TYP. $(V_{CC} - V_{EE} = 9V)$
- WIDE ANALOG INPUT VOLTAGE RANGE: ±6V
- FAST SWITCHING: t_{pd} = 15ns (TYP.) at T_A = 25 °C
- LOW CROSSTALK BETWEEN SWITCHES
- HIGH ON/OFF OUTPUT VOLTAGE RATIO
- WIDE OPERATING SUPPLY VOLTAGE RANGE (V_{CC} V_{EE}) = 2V TO 12V
- LOW SINE WAVE DISTORTION: 0.02% at V_{CC} - V_{EE} = 9V
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 4052

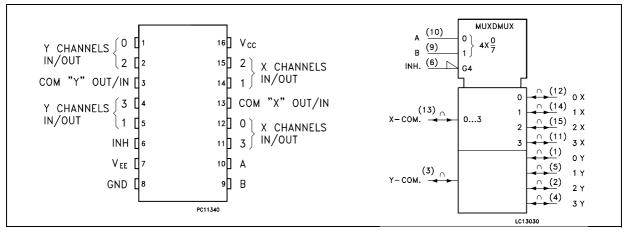
DESCRIPTION

The M74HC4052 is a dual four-channel analog MULTIPLEXER/DEMULTIPLEXER fabricated with silicon gate C²MOS technology and it is pin to pin compatible with the equivalent metal gate CMOS4000B series.

ORDER CODES

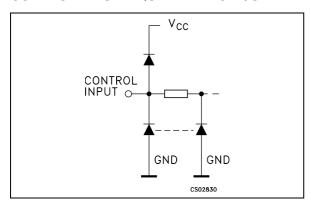
PACKAGE	TUBE	T & R				
DIP	M74HC4052B1R					
SOP	M74HC4052M1R	M74HC4052RM13TR				
TSSOP		M74HC4052TTR				

It contains 8 bidirectional and digitally controlled analog switches.

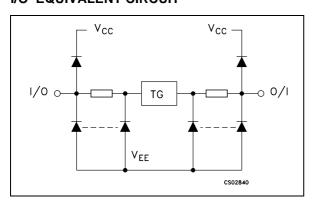

A built-in level shifting is included to allow an input range up to $\pm 6V$ (peak) for an analog signal with digital control signal of 0 to 6V.

V_{EE} supply pin is provided for analog input signals. It has an inhibit (INH) input terminal to disable all the switches when high. For operation as a digital multiplexer/demultiplexer, VEE is connected to GND.

A and B control inputs select one channel out of four in each section.


All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

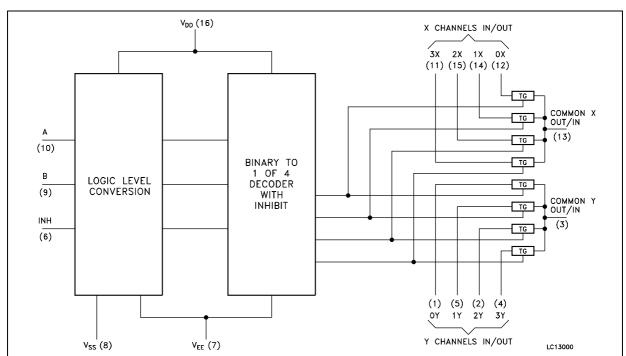


July 2001 1/12

CONTROL INPUT EQUIVALENT CIRCUIT

I/O EQUIVALENT CIRCUIT

PIN DESCRIPTION


PIN No	SYMBOL	NAME AND FUNCTION
1, 5, 2, 4	0Y to 3Y	Independent Input Outputs
6	INH	INHIBIT Input
7	V_{EE}	Negative Supply Voltage
10, 9	A, B	Select Inputs
12, 14, 15, 11	0X to 3X	Independent Input Outputs
3	COM Y OUT/IN	Common X Output/Input
13	COM Y OUT/IN	Common Y Output/Input
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

TRUTH TABLE

II	IPUT STAT	E	ON CHANNEL
INH	В	Α	ON CHANNEL
L	L	L	0X, 0Y
L	L	Н	1X, 1Y
L	Н	L	2X, 2Y
L	Н	Н	3X, 3Y
Н	Х	Х	NONE

X: Don't care

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _{CC} - V _{EE}	Supply Voltage	-0.5 to +13	V
V _I	Control Input Voltage	-0.5 to V _{CC} + 0.5	V
V _{I/O}	Switch I/O Voltage	V_{EE} -0.5 to V_{CC} + 0.5	V
I _{CK}	Control Input Diode Current	± 20	mA
I _{IOK}	I/O Diode Current	± 20	mA
I _T	Switch Through Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
V _{EE}	Supply Voltage		-6 to 0	V
V _{CC} - V _{EE}	Supply Voltage		2 to 12	V
V _I	Input Voltage	0 to V _{CC}	V	
V _{I/O}	I/O Voltage		V _{EE} to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	
t _r , t _f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	

DC SPECIFICATIONS

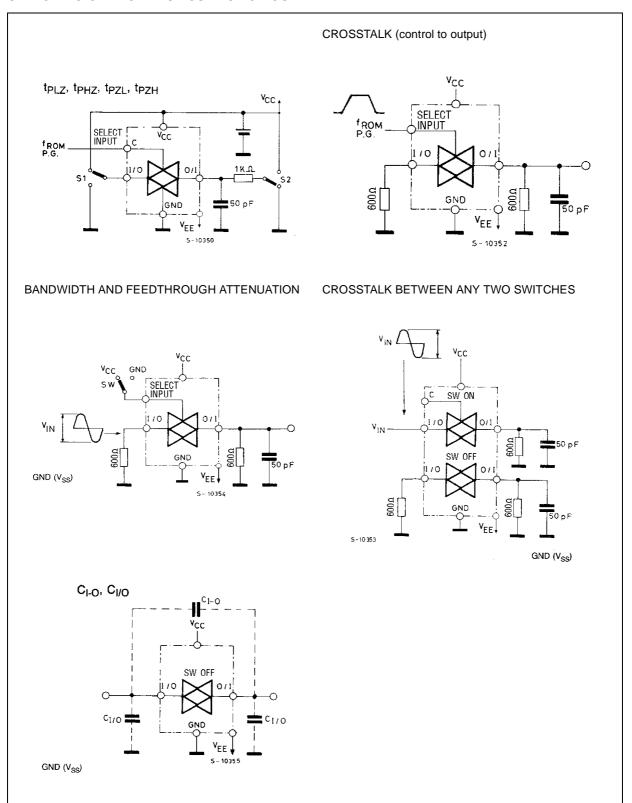
			Test	Condition				Value)			
Symbol	Parameter	V _{CC}	V _{EE}		Т	T _A = 25°C		-40 to	85°C	-55 to	125°C	Unit
		(V)	(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IHC}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{ILC}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
R _{ON}	ON Resistance	4.5	GND	$V_I = V_{IHC}$ or V_{ILC}		85	180		225		270	
		4.5	-4.5	$V_{I/O} = V_{CC}$ to V_{EE}		55	120		150		180	
	6.0	-6.0	$I_{I/O} \le 2mA$		50	100		125		150		
		2.0	GND	V V V		150						Ω
	4.5	CND	VI = VIHC OI VILC		70	150		190		230		
		4.5	-4.5	$V_{I/O} = V_{CC} \text{ or } V_{EE}$ $I_{I/O} \le 2\text{mA}$		50	100		125		150	
		6.0	-6.0	11/0 = 21117		45	80		100		120	
ΔR_{ON}	Difference of ON	4.5	GND	$V_I = V_{IHC}$ or V_{ILC}		10	30		35		45	
	Resistance	4.5	-4.5	$V_{I/O} = V_{CC}$ or V_{EE}		5	12		15		18	Ω
	between switches	6.0	-6.0	I _{I/O} ≤ 2mA		5	10		12		15	
I _{OFF}	Input/Output	6.0	GND	$V_{OS} = V_{CC}$ or			±0.06		± 0.6		± 1.2	
	Leakage Current (SWITCH OFF)	6.0	-6.0	$\begin{aligned} & \text{GND} \\ & \text{V}_{\text{IS}} = \text{GND or V}_{\text{CC}} \\ & \text{V}_{\text{I}} = \text{V}_{\text{ILC}} \text{ or V}_{\text{IHC}} \end{aligned}$			± 0.1		± 1		± 2	μΑ
I _{IZ}	Switch Input	6.0	GND	$V_{OS} = V_{CC}$ or			±0.06		± 0.6		± 1.2	
Leakage Current			$\begin{array}{c} \text{GND} \\ \text{V}_{\text{I}} = \text{V}_{\text{IHC}} \text{ or } \text{V}_{\text{ILC}} \end{array}$			± 0.1		± 1		± 2	μΑ	
I _I	Input Leakage Current	6.0	GND	$V_I = V_{CC}$ or GND			± 0.1		± 0.1		± 1	μΑ
I _{CC}	I _{CC} Quiescent Supply	6.0	GND	$V_I = V_{CC}$ or GND			4		40		80	
	Current	6.0	-6.0	1 - ACC 01 QIAD			8		80		160	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

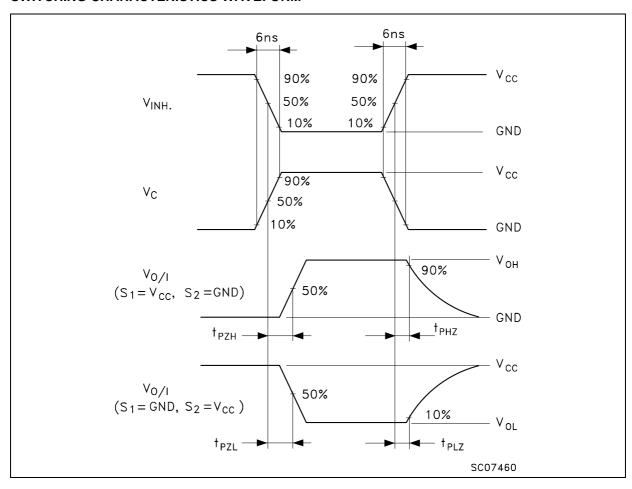
		Test Condition			Value							
Symbol	Parameter	v_{cc}	V _{EE}		T,	T _A = 25°C		-40 to	85°C	-55 to 125°C		Unit
		(V)	(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
$\Phi_{I/O}$	Phase Difference	2.0	GND			25	60		75		90	
	Between Input and	4.5	GND			6	12		15		18	
	Output	6.0	GND			5	10		13		15	ns
		4.5	-4.5			4						
t _{PZL}	Output Enable	2.0	GND			64	225		280		340	ns
t _{PZH}	Time	4.5	GND	$R_1 = 1K\Omega$		18	45		56		68	
		6.0	GND	$N_{\perp} = 1N22$		15	38		48		58	
		4.5	-4.5			18						
t _{PLZ}	Output Disable	2.0	GND			100	250		315		375	
t _{PHZ}	Time	4.5 GNI	GND	D 4KO		33	50		63		70	
		6.0	GND	$R_L = 1K\Omega$		28	43		54		64	ns
		4.5	-4.5			29						

CAPACITIVE CHARACTERISTICS

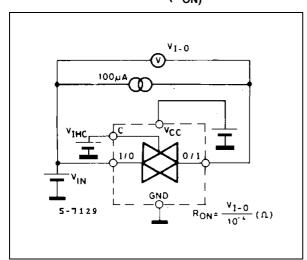
	Parameter	Test Condition		Condition	Value							
Symbol		V _{CC} (V)	V _{EE}		Т			-40 to 85°C		-55 to 125°C		Unit
			(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0				5	10		10		10	pF
C _{I/O}	Common Terminal Capacitance	5.0	-5.0			19	40		40		40	pF
C _{I/O}	Switch Terminal Capacitance	5.0	-5.0			7	15		15		15	pF
C _{IOS}	Feed Through Capacitance	5.0	-5.0			0.85	2		2		2	pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0	GND			71						pF

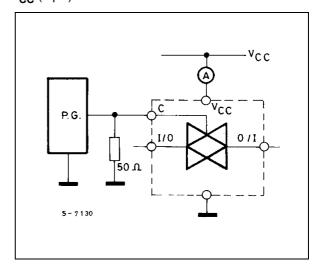

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$

ANALOG SWITCH CHARACTERISTICS (GND = 0V; $T_A = 25$ °C)

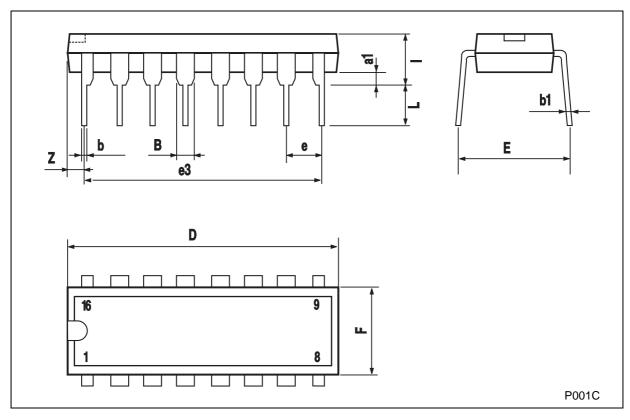

Symbol	Parameter				Test Condition	Value	Unit	
		V _{CC} (V)	V _{EE} (V)	V _{IN} (V _{p-p})		Тур.		
	Sine Wave	2.25	-2.25	4		0.025		
	Distortion	4.5	-4.5	8	$f_{IN} = 1 \text{ KHz R}_L = 10 \text{ K}\Omega, C_L = 50 \text{ pF}$		%	
		6.0	-6.0	11		0.018		
f _{MAX}	Frequency	2.25	-2.25		Adjust f _{IN} voltage to obtain 0 dBm at V _{OS} .	120		
	Response	4.5	-4.5	In	crease f _{IN} Frequency until dB meter reads -3dB	190	MHz	
	(Switch ON) (*)	6.0	-6.0		$R_L = 50\Omega$, $C_L = 10$ pF, $f_{IN} = 1$ KHz sine wave	200		
f _{MAX}	Frequency	2.25	-2.25		Adjust f _{IN} voltage to obtain 0 dBm at V _{OS} .			
	Response	4.5	-4.5	In	crease f _{IN} Frequency until dB meter reads -3dB	110	MHz	
	(Switch ON) (**)	6.0	-6.0		R_L = 50 $\!\Omega,C_L$ = 10 pF, f_{IN} = 1KHz sine wave	140		
	Feedthrough	2.25	-2.25		V _{IN} is centered at (V _{CC} - V _{EE})/2	-50		
	Attenuation	4.5	-4.5		Adjust input for 0 dBm	-50	dB	
	(Switch OFF)	6.0	-6.0		$R_L = 600\Omega$, $C_L = 50$ pF, $f_{IN} = 1$ KHz sine wave	-50		
	Crosstalk (Control	2.25	-2.25		Adjust R_L at set up so that $I_S = 0A$.	60		
	Input to Signal	4.5	-4.5	R	$_{L}$ = 600 Ω , C $_{L}$ = 50 pF, f $_{IN}$ = 1KHz square wave	140	mV	
	Output)	6.0	-6.0			200		
	Crosstalk	2.25	-2.25		Adjust V _{IN} to obtain 0dBm at input			
	(between any two	4.5	-4.5		$R_L = 600\Omega$, $C_L = 50$ pF, $f_{IN} = 1$ KHz sine wave	-50	dB	
	Switches)	6.0	-6.0			-50		

^(*) Input COMMON Terminal, and measured at SWITCH Terminal (**) Input SWITCH Terminal, and measured at common Terminal NOTE: These characteristics are determined by the design of the device.

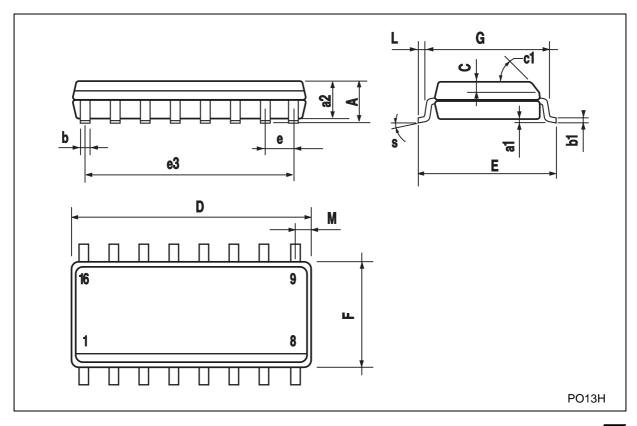

SWITCHING CARACTERISTICS TEST CIRCUIT


SWITCHING CHARACTERISTICS WAVEFORM

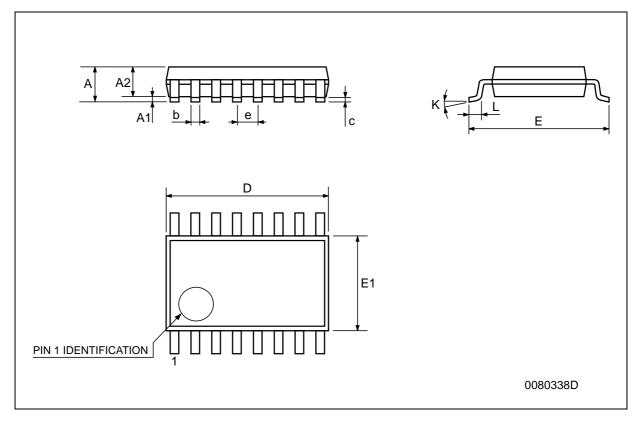
CHANNEL RESISTANCE (R_{ON)}



I_{CC} (Opr.)


Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
Е		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		


SO-16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)	•			
D	9.8		10	0.385		0.393		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
еЗ		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			8° (max.)	·			

TSSOP16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	4.9	5	5.1	0.193	0.197	0.201		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

