imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

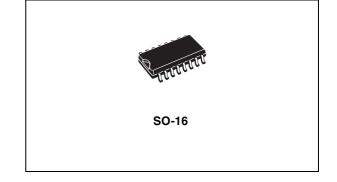
M74HC4852

Dual 4:1 channel analog MUX/DEMUX with injection current protection

Datasheet – production data

Features

- Low power dissipation
 - I_{CC} = 2 µA (max.) at T_A = 25 °C
- Injection current protection: V_Δout < 1 mV at V_{CC} = 5 V, I_{IN} = 1 mA, R_S = 3.9 kΩ
- "ON" resistance at T_A = 25 °C
 - -215Ω typ. (V_{CC} = 3.0 V)
 - 160 Ω typ. (V_{CC} = 4.5 V)
 - 150 Ω typ. (V_{CC} = 6 V)
- Fast switching: t_{pd} = 8.6 ns (typ.) at T_A = 25 °C, V_{CC} = 4.5 V
- Wide operating supply voltage range


-
$$V_{CC} = 2 V \text{ to } 6 V$$

- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min.)
- Pin and function compatible with series 4052, 4852
- Latch-up performance exceeds 500 mA
 (JESD 17)
- ESD performance
 - HBM: 2000 V
 - MM: 200 V
 - CDM: 1000 V

Applications

- Automotive
- Computer
- Consumer
- Industrial

Table 1.Device summary

Description

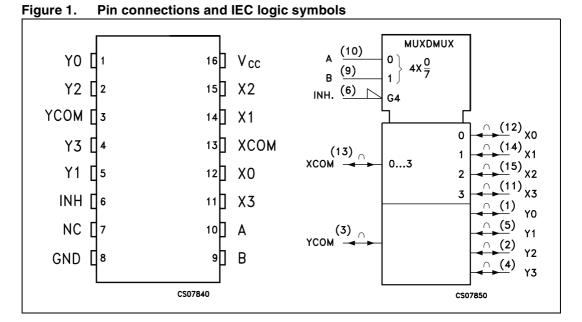
The M74HC4852 device is a dual four-channel analog multiplexer/demultiplexer manufactured with silicon gate C²MOS technology.

It features injection current effect control which makes the device particularly suited for use in automotive applications where voltages in excess of normal logic voltage are common. The injection current effect control allows signals at disabled input channels to exceed the supply voltage range or go down to ground without affecting the signal of the enabled analog channel.

This eliminates the need for external dioderesistor networks typically used to keep the analog channel signals within the supply voltage range.

Order code	Temperature range	Package	Packaging	Marking
M74HC4852RM13TR	-55/+125 °C	SO16	Tape and reel	74HC4852
M74HC4852YRM13TR ⁽¹⁾	-40/+125 °C	SO16 (automotive grade)	Tape and reel	74HC4852Y

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.


October 2012

Doc ID 8791 Rev 7

1/15

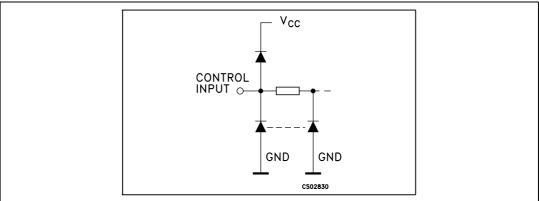
This is information on a product in full production.

1 Pin connections

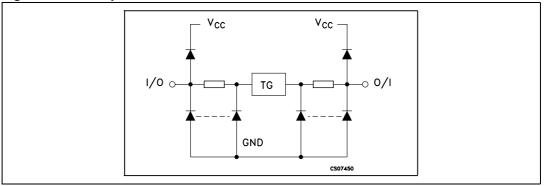
Table 2. Pin descriptions

Pin number	Symbol	Name and function
3, 13	YCOM, XCOM	Common output/input
6	INH	INHIBIT input
7	NC	Not connected
10, 9	А, В	Select inputs
12, 14, 15, 11, 1, 5, 2, 4	X0 to X3, Y0 to Y3	Independent input/outputs
8	GND	Ground (0 V)
16	V _{CC}	Positive supply voltage

Table 3. Truth table


	Input state	On channel				
INH	В	Α	On channel			
L	L	L	X0	Y0		
L	L	Н	X1	Y1		
L	Н	L	X2	Y2		
L	Н	Н	X3	Y3		
Н	х	Х	NONE	NONE		

Note: X: don't care.


Doc ID 8791 Rev 7

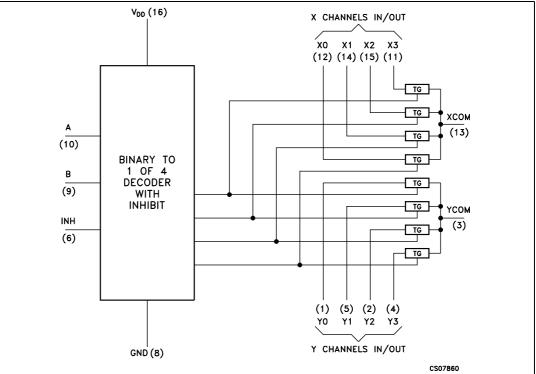


Figure 3. I/O equivalent circuit

2 Absolute maximum ratings and operating conditions

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

0		Parameter					
Symbol	Para	meter	Value	Unit			
V _{CC}	Supply voltage		-0.5 to +7	V			
V _{IN}	Control input voltage	-0.5 to V _{CC} + 0.5	V				
V _{I/O}	Switch I/O voltage	-0.5 to V _{CC} + 0.5	V				
Ι _{CK}	Control input diode current	± 25	mA				
I _{IOK}	I/O diode current	± 25	mA				
I _{CC}	DC V _{CC} or ground current		± 50	mA			
PD	Power dissipation	SO-16	500 ⁽¹⁾	mW			
T _{stg}	Storage temperature	·	-65 to +150	°C			
ΤL	Lead temperature (10 sec.)		300	°C			
_	Human body model (HBM)	Human body model (HBM)					
ESD (JESD22)	Machine model (MM)	200	V				
(=======)	Charged device model (CDM)		1000	V			

Table 4. Absolute maximum ratings

1. Power dissipation at 65 °C. Derating from 65 °C to 125 °C: SO package -7 mW/°C.

Table 5. Recommended operating conditions

Symbol	Parameter		Value	Unit
V _{CC}	Supply voltage		2 to 6	V
V _{I/O}	Input output voltage		0 to V _{CC}	V
V _{I/O}	Static or dynamic voltage across switcl	n ⁽¹⁾	0 to 1.2	V
V _{IN}	Control input voltage	0 to V _{CC}	V	
Ŧ		SO16	-55 to +125	°C
T _{op}	Operating temperature	SO16 (automotive grade)	-40 to +125	°C
		V _{CC} = 2.0 V	0 to 1000	ns
		V _{CC} = 3.0.V	0 to 800	
t _r , t _f	Input rise and fall time ⁽²⁾ (channel select or enable inputs only)	V _{CC} = 3.3 V	0 to 700	
		V _{CC} = 4.5 V	0 to 500	
		V _{CC} = 6.0 V	0 to 400	

For voltage drops across the switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn; i.e., the current
out of the switch may contain both V_{CC} and switch input components. The reliability of the device is unaffected unless the
maximum ratings are exceeded.

2. V_{IN} from 30% to 70% V_{CC} of channel selected or enable inputs.

			Test con	dition				Value	e			
Symbol	Parameter	v _{cc}			T _A = 25 °C		Up to	85 °C	Up to 125 °C		Unit	
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
		2.0			1.5			1.5		1.5		
		3.0			2.1			2.1		2.1		
V _{IHC}	High level input voltage	3.0			2.3			2.3		2.3		V
		4.5		3				3.15		3.15		
		6.0			4.2			4.2		4.2		
		2.0					0.5		0.5		0.5	
		3.0					0.9		0.9		0.9	
V _{ILC}	Low level input ILC voltage	3.3					1.0		1.0		1.0	V
		4.5					1.35		1.35		1.35	
		6.0					1.8		1.8		1.8	
		2.0	$I_S = 2 \text{ mA}$			500	650		670		700	
		3.0		$V_{IN} = V_{IHC}$		215	280		320		360	Ω
R _{ON}	ON resistance	3.3	l _S ≤2mA	or V _{ILC} V _{IS} = V _{CC} to		210	270		305		345	
		4.5		GND		160	210		240		270	
		6.0				150	195		220		250	
		2.0	$I_S = 2 \text{ mA}$			4	10		15		20	
	Difference of	3.0				2	8		12		16	Ω
ΔR_{ON}	ON resistance between	3.3	L < 0 m A	$V_{IN} = V_{IHC}$ or V_{ILC} $V_{IS} = V_{CC}/2$		2	8		12		16	
	switches	4.5	I _S ≤2 mA	$V_{IS} = V_{CC}/2$		2	8		12		16	
		6.0				3	9		13		18	
I _{OFF}	Input/output leakage current (switch off) (any channel)	6.0					±0.1		±0.5		±1.0	μΑ
I _{OFF}	Input/output leakage current (switch off) (common channel)	6.0	V _{IN} = V _{CC} or GND				±0.2		±2		±4	μA
I _{ON}	Switch input leakage current (switch on, output open)	6.0	V _{IN} = V ₀	_{CC} or GND			±0.1		±0.5		±1	μA

Table 6.DC specifications

			Test condition	Value							
Symbol Parameter		v _{cc}		Т,	T _A = 25 °C		Up to 85 °C		Up to 125 °C		Unit
	(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
I _{IN}	Control input current	6.0	$V_{IN} = V_{CC}$ or GND			±0.1		±0.1		±1	μA
ICC	Quiescent supply current	6.0	V _{IN} = V _{CC} or GND V _{IN (analog)} = GND			2		20		40	μA

Table 6. DC specifications (continued)

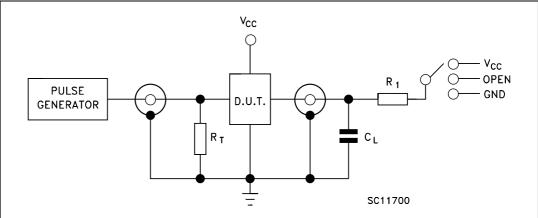
Table 7. AC electrical characteristics ($C_L = 50 \text{ pF}$, input $t_r = t_f = 6 \text{ ns}$)

			Test condition				Value	•			
Symbol	Parameter	v _{cc}		Τ,	A = 25	°C	Up to	85 °C	Up to	125 °C	Unit
		(Ŭ)	Test circuit 1	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
		2.0			19.5	25		29		32	
	Propagation	3.0			12	15.5		17.5		19.5	
t _{PHL,} t _{PLH}	delay time, analog input to	3.3			11	14.5		16.5		18.5	ns
1 211	analog output	4.5			8.6	11.5		12.5		13.5	
		6.0			8	10		11		12	
		2.0			23	30		35		40	
	Propagation	3.0			13.5	17.5		20		23	ns
t _{PHL,} t _{PLH}	delay time channel-select	3.3			12.5	16.5		19		22	
	to analog output	4.5			10	13		15		17	
		6.0			9.5	12.5		14.5		16.5	
		2.0				95		105		115	
t _{PHZ} ,	Enable disable	3.0				90		100		110	
t _{PZH} t _{PLZ,} ,	time, enable or channel-select	3.3				85		95		105	ns
t _{PZL}	to analog output	4.5				80		90		100	
		6.0				78		80		80	
C _{IN}	Input capacitance (digital pins)				3.5	10		10		10	pF
C _{IN}	Input capacitance (switches off, any single analog pins)				6.7	15		15		15	pF

		Test condition		Value							
Symbol I	Parameter	V _{CC} (V) Test circuit 1		T _A = 25 °C			Up to 85 °C		Up to 125 °C		Unit
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
C _{IN}	Input capacitance (switches off, any common analog pins)				22	40		40		40	pF
Power	3.3			24						_	
C _{PD}	dissipation capacitance ⁽¹⁾	5.0			28						pF

Table 7.AC electrical characteristics ($C_L = 50 \text{ pF}$, input $t_r = t_f = 6 \text{ ns}$) (continued)

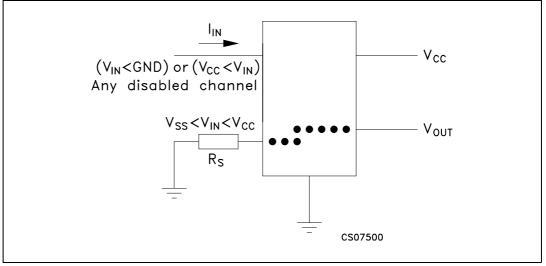
1. C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load (refer to *Figure 5*). The average operating current can be obtained by the following equation: I_{CC} (opr.) = $C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/8$.


Table 8. Injection current coupling specification (T_A= -55 °C to +125 °C)

		Те	st condition	Va	lue	
Symbol	Parameter	V _{CC} (V)	Test circuit 2	Typ. ⁽¹⁾	Max.	Unit
		3.3	$I_{IN} \le 1 \text{ mA}, R_S \le 3.9 \text{ k}\Omega$	0.050	1.0	
	5.0	$I_{\rm IN} \ge 1$ IIIA, $H_{\rm S} \ge 3.9$ K22	0.100	1.0		
		3.3	l _{IN} ≤ 10 mA, R _S ≤ 3.9 kΩ	0.345	5.0	
V	Shift of output voltage of	5.0	$\eta_N \ge 10$ mA, $\eta_S \ge 0.3$ K22	0.067	5.0	mV
V _{∆OUT}	enabled analog channel	3.3	I _{IN} ≤ 1 mA, R _S ≤ 20 kΩ	0.050	2.0	111.0
	cnannei	5.0	$I_{N} \ge I IIIA, \Pi_{S} \ge 20 \text{ km}$	0.110	2.0	
		3.3	l _{IN} ≤ 10 mA, R _S ≤ 20 kΩ	0.050	20	
		5.0	$\eta_N \ge 10 \eta_A, \eta_S \ge 20 Rs2$	0.024	20	

1. Typical values are measured at $T_A = 25 \text{ °C}$. They are calculated as the difference from V_{OUT} without injection current and V_{OUT} with injection current. I_{IN} = total current injected into any other disabled channels, one at time.

Figure 5. **Test circuit 1**


Table 9. Test circuit 1 - switch configuration table

Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

Note:

 $C_L = 50 \text{ pF}$ or equivalent (includes jig and probe capacitance). $R_L = R1 = 10 \text{ k}\Omega$ or equivalent. $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω).

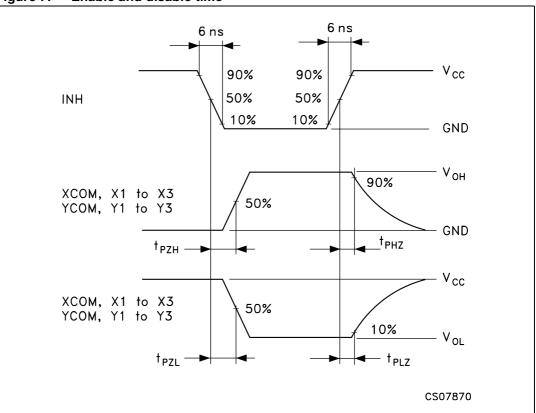
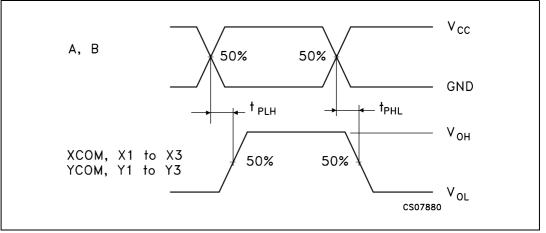



Figure 7. Enable and disable time

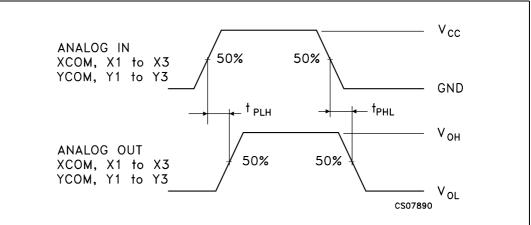
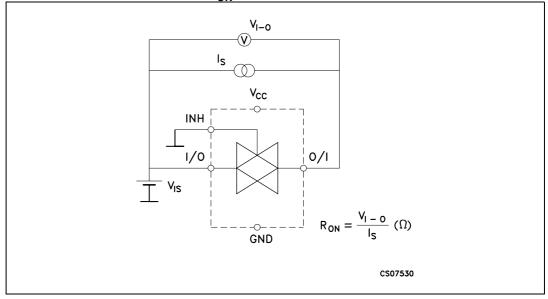
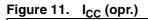
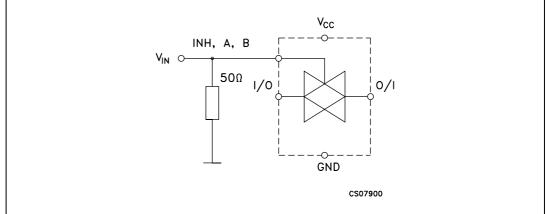
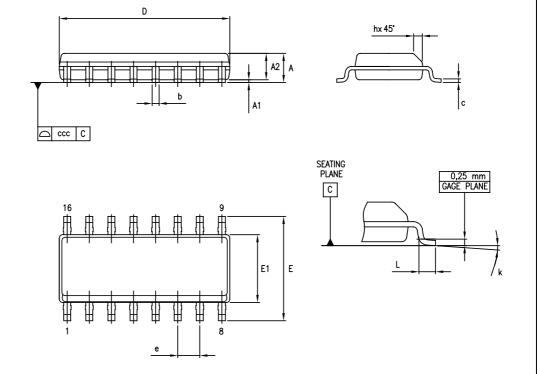





Figure 10. Channel resistance R_{ON}


3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

3.1 SO-16 package information

Table 10. SO-16 package mechanical data

	Dimensions									
Symbol		Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.				
А			1.75			0.069				
A1	0.10		0.25	0.004		0.010				
A2	1.25			0.049						
b	0.31		0.51	0.012		0.020				
С	0.17		0.25	0.007		0.010				
D	9.80	9.90	10.00	0.386	0.390	0.394				
Е	5.80	6.00	6.20	0.228	0.236	0.244				
E1	3.80	3.90	4.00	0.150	0.154	0.157				
е		1.27			0.050					
h	0.25		0.50	0.010		0.020				
L	0.40		1.27	0.016		0.050				
k	0		8							
ccc			0.10			0.004				

4 Ordering information

Table 11. Order codes

Order code	Temperature range	Package	Packaging	Marking
M74HC4852RM13TR	-55/+125 °C	SO-16	Tape and reel	74HC4852
M74HC4852YRM13TR ⁽¹⁾	-40/+125 °C	SO-16 (automotive grade)		74HC4852Y

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

5 Revision history

Date	Revision	Changes	
05-Apr-2012	5	Document reformatted. Added ESD charged device model feature on cover page. Added ESD values to <i>Table 4: Absolute maximum ratings</i> . Modified <i>Chapter 3: Package information</i> . Modified <i>Chapter 4: Ordering information</i> .	
15-Jun-2012	6	Corrected ON-resistance values in <i>Features on page 1</i> Added <i>Applications on page 1</i> Shortened <i>Description on page 1</i> Added <i>Table 1: Device summary on page 1</i> Updated T _{op} in <i>Table 5: Recommended operating conditions</i> Updated <i>Table 11: Order codes on page 13</i>	
18-Oct-2012	7	Updated ESD values in <i>Features</i> . Updated <i>Table 1</i> (added Packaging and Marking, updated note <i>1</i>). Updated <i>Table 11</i> (updated note <i>1</i>). Minor corrections throughout document.	

Table 12. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 8791 Rev 7