: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

- LOW POWER DISSIPATION:
$\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}$ (MAX.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- LOGIC LEVEL TRANSLATION TO ENABLE TTL LOGIC SIGNAL TO COMMUNICATE WITH $\pm 5 \mathrm{~V}$ ANALOG SIGNAL
- LOW "ON" RESISTANCE: 70Ω TYP. $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}\right)$ 50Ω TYP. $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9 \mathrm{~V}\right)$
- WIDE ANALOG INPUT VOLTAGE RANGE: $\pm 6 \mathrm{~V}$
- FAST SWITCHING:
$\mathrm{t}_{\mathrm{pd}}=13 \mathrm{~ns}$ (TYP.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- LOW CROSSTALK BETWEEN SWITCHES
- HIGH ON/OFF OUTPUT VOLTAGE RATIO
- WIDE OPERATING SUPPLY VOLTAGE

RANGE ($\left.\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=2 \mathrm{~V}$ TO 12V

- LOW SINE WAVE DISTORTION:
0.02% at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9 \mathrm{~V}$
- COMPATIBLE WITH TTL OUTPUTS:
$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}(\mathrm{MIN}.) \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ (MAX.)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 4053

DESCRIPTION

The M74HCT4053 is a triple two-channel analog MULTIPLEXER/DEMULTIPLEXER fabricated with silicon gate C^{2} MOS technology and it is pin to pin compatible with the equivalent metal gate CMOS4000B series.
It contains 6 bidirectional and digitally controlled analog switches.

PIN CONNECTION AND IEC LOGIC SYMBOLS

ORDER CODES

PACKAGE	TUBE	T\&R
DIP	M74HCT4053B1R	
SOP	M74HCT4053M1R	M74HCT4053RM13TR
TSSOP		M74HCT4053TTR

A built-in level shifting is included to allow an input range up to $\pm 6 \mathrm{~V}$ (peak) for an analog signal with digital control signal of 0 to 6 V .
V_{EE} supply pin is provided for analog input signals. It has an inhibit (INH) input terminal to disable all the switches when high, compatible with TTL output level. For operation as a digital multiplexer/demultiplexer, VEE is connected to GND. A, B and C control inputs select one of a pair of channels, they are compatible with TTL output level.
All inputs are equipped with protection circuits against static discharge and transient excess voltage.

CONTROL INPUT EQUIVALENT CIRCUIT

I/O EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
2,1	bx, by	Independent Input Out- puts
5,3	cx, cy	Independent Input Out- puts
6	INH	INHIBIT Input
7	$\mathrm{~V}_{\text {EE }}$	Negative Supply Voltage
$11,10,9$	$\mathrm{~A}, \mathrm{~B}, \mathrm{C}$	Select Inputs
12,13	ax, ay	Independent Input Out- puts
$14,15,4$	ax to cy	Common Output/Input
8	GND	Ground (OV)
16	$\mathrm{~V}_{\mathrm{CC}}$	Positive Supply Voltage

TRUTH TABLE

INPUT STATE		ON CHANNEL
INH	A or B or C	
L	L	ax or bx or cx
L	H	ay or by or cy
H	X	NONE

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Supply Voltage	-0.5 to +13	V
$\mathrm{~V}_{\mathrm{I}}$	Control Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Switch I/O Voltage	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{CK}	Control Input Diode Current	± 20	mA
$\mathrm{I}_{\mathrm{IOK}}$	I / O Diode Current	± 20	mA
I_{T}	Switch Through Current	± 25	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	$500\left(^{*}\right)$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature $(10$ sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
$\left(^{*}\right) 500 \mathrm{~mW}$ at $65^{\circ} \mathrm{C}$; derate to 300 mW by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	4.5 to 5.5	V
$\mathrm{~V}_{\mathrm{EE}}$	Supply Voltage	-6 to 0	V
$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Supply Voltage	2 to 12	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{CC}	V
$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	I / O Voltage	V_{EE} to V_{CC}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V	0 to 500
n			

DC SPECIFICATIONS

Symbol	Parameter	Test Condition			Value							Unit
		$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & V_{E E} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		$\begin{aligned} & -55 \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$		
					Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{V}_{\mathrm{IHC}}$	High Level Input Voltage	$\begin{array}{\|c\|} \hline 4.5 \\ \text { to } \\ 5.5 \end{array}$			2.0			2.0		2.0		V
$\mathrm{V}_{\text {ILC }}$	Low Level Input Voltage	$\begin{array}{\|c\|} \hline 4.5 \\ \text { to } \\ 5.5 \end{array}$					0.8		0.8		0.8	V
R_{ON}	ON Resistance	4.5	GND	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IHC}} \text { or } \mathrm{V}_{\mathrm{ILC}} \\ \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ \mathrm{I}_{I / O} \leq 2 \mathrm{~mA} \end{gathered}$		85	180		225		270	Ω
		4.5	-4.5			55	120		150		180	
		4.5	GND	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IHC}} \text { or } \mathrm{V}_{\mathrm{ILC}} \\ \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ \mathrm{I}_{/ / \mathrm{O}} \leq 2 \mathrm{~mA} \end{gathered}$		70	150		190		230	
		4.5	-4.5			50	100		125		150	
$\Delta \mathrm{R}_{\text {ON }}$	Difference of ON Resistance between switches	4.5	GND	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IHC}} \text { or } \mathrm{V}_{\mathrm{ILC}} \\ \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ \mathrm{I}_{\mathrm{IO}} \leq 2 \mathrm{~mA} \end{gathered}$		10	30		35		45	Ω
		4.5	-4.5			5	12		15		18	
$\mathrm{I}_{\text {OFF }}$	Input/Output Leakage Current (SWITCH OFF)	5.5	GND	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ILC}} \text { or } \mathrm{V}_{\mathrm{IHC}} \end{array}$,	± 0.06		± 0.6		± 1.0	$\mu \mathrm{A}$
		5.5	-6.0				± 0.1		± 1		± 1	
$I_{I Z}$	Switch Input Leakage Current (SWITCH ON, OUTPUT OPEN)	5.5	GND	$\begin{array}{\|l} \mathrm{V}_{\mathrm{OS}}=V_{\mathrm{CC}} \text { or } \mathrm{GND} \\ \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IHC}} \text { or } \mathrm{V}_{\mathrm{ILC}} \end{array}$			± 0.06		± 0.6		± 1.0	$\mu \mathrm{A}$
		5.5	-6.0				± 0.1		± 1		± 1	
1	Input Leakage Current	5.5	GND	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			± 0.1		± 0.1		± 1	$\mu \mathrm{A}$
${ }_{\text {I C }}$	Quiescent Supply Current	5.5	GND	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$ or GND			4		40		80	$\mu \mathrm{A}$
		5.5	-6.0				8		80		160	
$\Delta_{\text {cC }}$	Additional Quiescent Supply Current per input pin	$\begin{gathered} 4.5 \\ \text { to } \\ 5.5 \end{gathered}$	GND	$V_{I}=V_{C C}-2.1 V$ other input at V_{CC} or GND		100	360		450		490	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition			Value							Unit
		$\begin{aligned} & V_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		$\begin{aligned} & -55 \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$		
					Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\Phi_{\text {I/O }}$	Phase Difference Between Input and Output	4.5	GND	$C_{L}=50 \mathrm{pF}$		5	12		15		18	ns
		4.5	-4.5			4	8		10		12	
$\mathrm{t}_{\text {PZL }}$	Output Enable	4.5	GND	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		13	45		56		68	ns
$\mathrm{t}_{\text {PZH }}$		4.5	-4.5			11	34		43		51	
tpLZ	Output Disable Time	4.5	GND	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		25	38		48		58	ns
$\mathrm{t}_{\mathrm{PHZ}}$		4.5	-4.5			19	31		39		47	

CAPACITANCE CHARACTERISTICS

Symbol	Parameter	Test Condition			Value							Unit
		$\begin{array}{\|l} \mathrm{V}_{\mathrm{Cc}} \\ (\mathrm{~V}) \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40 \text { to } 85^{\circ} \mathrm{C}$		$\begin{aligned} & -55 \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$		
					Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5.0				5	10		10		10	pF
$\mathrm{C}_{\text {I/O }}$	Common Terminal Capacitance	5.0	-5.0		5	11	20		20		20	pF
$\mathrm{C}_{1 / \mathrm{O}}$	Switch Terminal Capacitance	5.0	-5.0			7	15		15		15	pF
$\mathrm{C}_{\text {IOS }}$	Feed Through Capacitance	5.0	$\begin{array}{\|l\|} \hline-5.0 \\ \hline \end{array}$	51		0.75	2		2		2	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	5.0	GND	-		67						pF

1) $\mathrm{C}_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{C C(o p r)}=C_{P D} \times V_{C C} \times f_{I N}+I_{C C}$

ANALOG SWITCH CHARACTERISTICS (GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

[^0]NOTE: These characteristics are determined by the design of the device.

SWITCHING CARACTERISTICS TEST CIRCUIT

CROSSTALK (control to output)

BANDWIDTH AND FEEDTHROUGH ATTENUATION CROSSTALK BETWEEN ANY TWO SWITCHES

SWITCHING CHARACTERISTICS WAVEFORM

CHANNEL RESISTANCE (R_{ON})

$I_{\text {cc }}$ (Opr.)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20		0.335	
E		17.78			0.700	
e						
e3						
F		3.3				0.787
I						
L						0.28
Z						0.201

SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	51
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

PO13H

TSSOP16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°		8°	0		8
L	0.45	0.60	0.75	0.018	0.024	0.030

0080338D

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com

[^0]: (*) Input COMMON Terminal, and measured at SWITCH Terminal

