imall

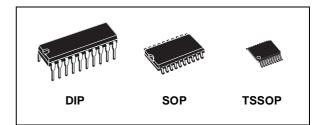
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

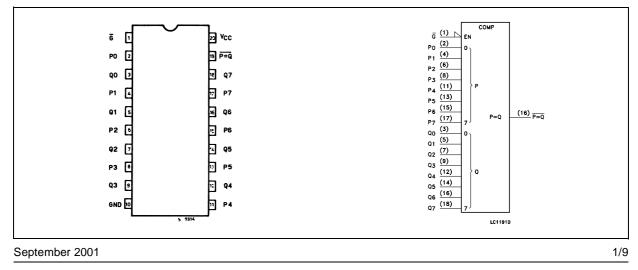

8 BIT EQUALITY COMPARATOR

- HIGH SPEED: t = 21pp (TVE)
- t_{PD} = 21ns (TYP.) at V_{CC} = 4.5V ■ LOW POWER DISSIPATION:
- $I_{CC} = 4\mu A(MAX.)$ at $T_A=25^{\circ}C$
- COMPATIBLE WITH TTL OUTPUTS :
 V_{IH} = 2V (MIN.) V_{IL} = 0.8V (MAX)
- SYMMETRICAL OUTPUT IMPEDANCE:
 |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: $t_{PLH} \cong t_{PHL}$
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 688

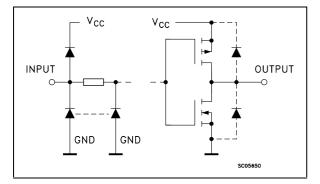
DESCRIPTION

The M74HCT688 is an high speed CMOS 8 BIT EQUALITY COMPARATOR fabricated with silicon gate C²MOS technology.

The M74HCT688 compares bit for bit two 8-bit words applied on inputs P0 - P7 and inputs Q0 -Q7 and indicates whether or not they are equal. A single active low enable is provided to facilitate



ORDER CODES


PACKAGE	TUBE	T & R
DIP	M74HCT688B1R	
SOP	M74HCT688M1R	M74HCT688RM13TR
TSSOP		M74HCT688TTR

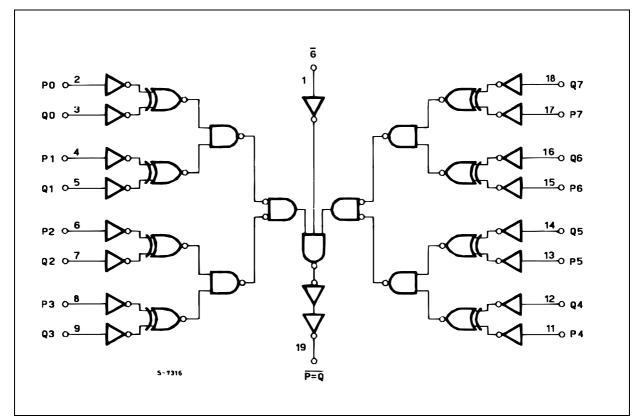
cascading several packages to enable comparison of words greater than 8 bits. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	G	Enable Input (Active LOW)
2, 4, 6, 8, 11, 13, 15, 17	P0 to P7	Word Inputs
3, 5, 7, 9, 12, 14, 16, 18	Q0 to Q7	Word Outputs
19	P = Q	Equal to Output
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage


57

TRUTH TABLE

INP	UTS	OUTPUT
P, Q	G	$\overline{P} = Q$
P = Q	L	L
P <> Q	L	Н
Х	Н	Н

X: Don't Care

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Ι _Ο	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
PD	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied (*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

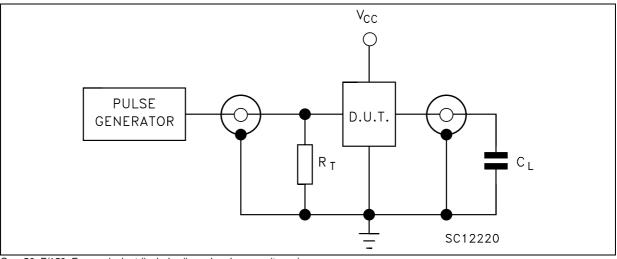
Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	4.5 to 5.5	V
VI	Input Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
t _r , t _f	Input Rise and Fall Time ($V_{CC} = 4.5$ to 5.5V)	0 to 500	ns

DC SPECIFICATIONS

		1	Test Condition				Value				
Symbol	Parameter	v _{cc}		т	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	4.5 to 5.5		2.0			2.0		2.0		V
V _{IL}	Low Level Input Voltage	4.5 to 5.5				0.8		0.8		0.8	V
V _{OH}	V _{OH} High Level Output Voltage	4.5	I _O =-20 μΑ	4.4	4.5		4.4		4.4		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		V
V _{OL}	Low Level Output	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	V
	Voltage	4.5	l _O =4.0 mA		0.17	0.26		0.33		0.40	v
I	Input Leakage Current	5.5	$V_{I} = V_{CC} \text{ or } GND$			± 0.1		± 1		± 1	μΑ
Icc	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			4		40		80	μΑ
ΔI _{CC}	Additional Worst Case Supply Current	5.5	Per Input pin $V_I = 0.5V$ or $V_I = 2.4V$ Other Inputs at V_{CC} or GND $I_O = 0$			2.0		2.9		3.0	mA

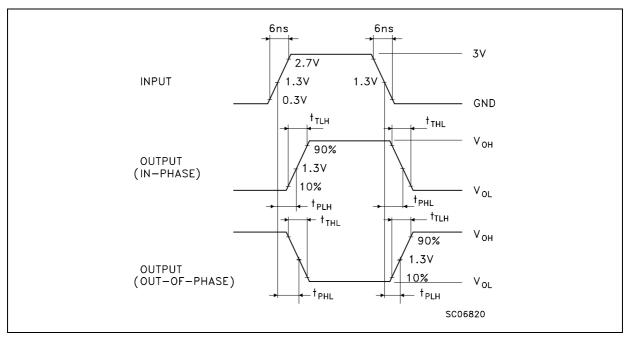
57

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

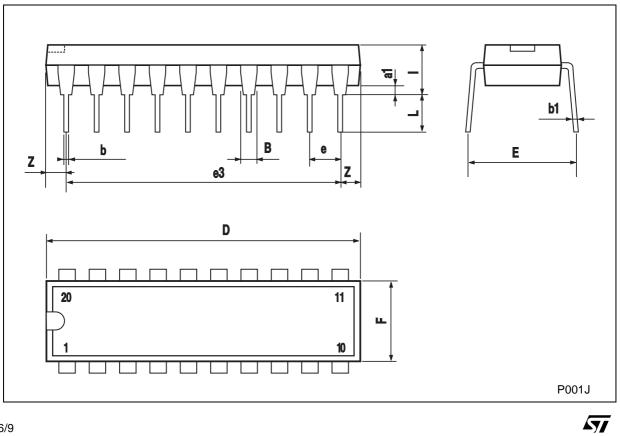

		٦	Test Condition		Value						
Symbol	Parameter	v _{cc}		т	_A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition Time	4.5			8	15		19		22	ns
t _{PLH} t _{PHL}	Propagation Delay Time (Pn, Qn - P=Q)	4.5			21	32		40		48	ns
t _{PLH} t _{PHL}	Propagation Delay Time (G - P=Q)	4.5			15	23		29		35	ns

CAPACITIVE CHARACTERISTICS

			Test Condition			Value							
Symbol	Symbol Parameter	v _{cc}		T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit		
		(V)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.			
C _{IN}	Input Capacitance				5	10		10		10	pF		
C _{PD}	Power Dissipation Capacitance (note 1)				32						pF		

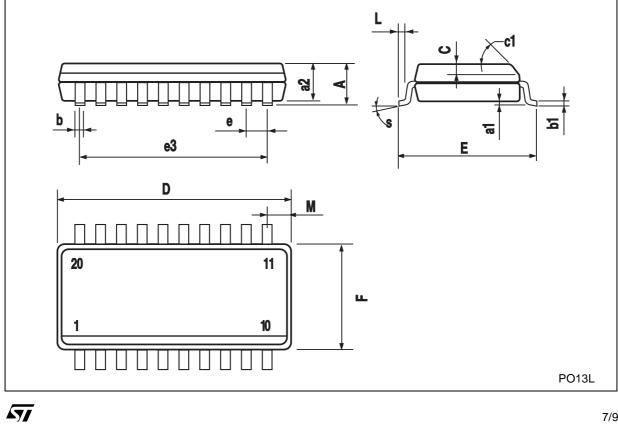

 $\frac{1}{1} + \frac{1}{1} + \frac{1}$

TEST CIRCUIT


57

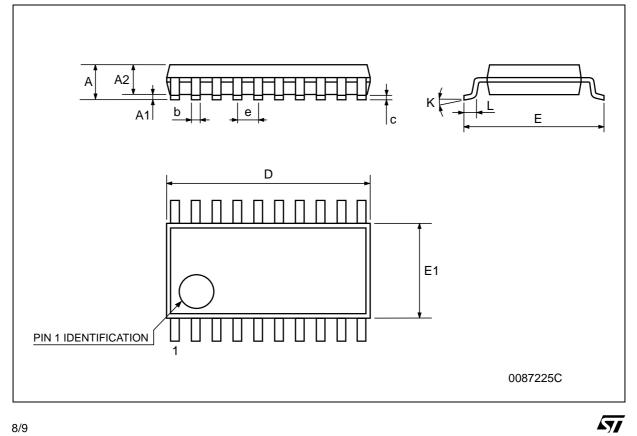
 C_L = 50pF/150pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM : PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)


Plastic DIP-20 (0.25) MECHANICAL DATA											
DIM		mm.			inch						
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.					
a1	0.254			0.010							
В	1.39		1.65	0.055		0.065					
b		0.45			0.018						
b1		0.25			0.010						
D			25.4			1.000					
E		8.5			0.335						
е		2.54			0.100						
e3		22.86			0.900						
F			7.1			0.280					
I			3.93			0.155					
L		3.3			0.130						
Z			1.34			0.053					

6/9

DIM.		mm.		inch					
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
А			2.65			0.104			
a1	0.1		0.2	0.004		0.008			
a2			2.45			0.096			
b	0.35		0.49	0.014		0.019			
b1	0.23		0.32	0.009		0.012			
С		0.5			0.020				
c1		·	45°	(typ.)					
D	12.60		13.00	0.496		0.512			
E	10.00		10.65	0.393		0.419			
е		1.27			0.050				
e3		11.43			0.450				
F	7.40		7.60	0.291		0.300			
L	0.50		1.27	0.020		0.050			
М			0.75			0.029			



7/9

Г

		mm.		inch				
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	6.4	6.5	6.6	0.252	0.256	0.260		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

_ . — .

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom

© http://www.st.com

