

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Rev. V2

Features

Gain: 24.5 dB
 P_{-1dB}: 29 dBm
 P_{SAT}: 30 dBm
 PAE at P_{SAT}: 40%
 OIP3: 40 dBm

Typical bias conditions: 9 V, 265 mA

Fully matched output

Lead-Free 3 mm 16-LD PQFN package

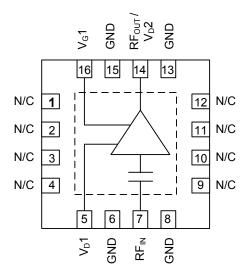
Halogen-Free "Green" Mold Compound

RoHS* Compliant

Description

The MAAP-011232 is a 2-stage power amplifier with gain shut off, operating from 100 MHz to 3 GHz. For operation in the 100 MHz to 1 GHz frequency range no I/O matching is required. Internal DC blocking is provided at the input, while the RF output port is DC coupled through an external bias-tee. Bias current, RF gain and output power are controlled with a gate bias voltage ($V_{\rm G}$). Typical current consumption is less than 300 mA at maximum output power.

The MAAP-011232 is well suited to both power and driver requirements for multiple applications such as LMR, Milcom, Sensors & Telemetry, Test & Measurement and Satcom.


The MAAP-011232 is fabricated using a GaAs D-mode high breakdown process which features full passivation for increased performance and reliability.

Ordering Information^{1,2}

Part Number	Package
MAAP-011232	Bulk
MAAP-011232-TR0500	500 Piece Reel
MAAP-011232-TR1000	1000 Piece Reel
MAAP-011232-001SMB	Sample Board Type A
MAAP-011232-002SMB	Sample Board Type B

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.
- * Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

Functional Schematic

Pin Configuration^{3,4}

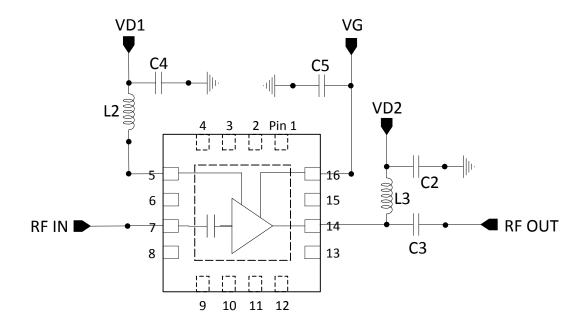
Pin No.	Function					
1 - 4	No Connection					
5	Drain Voltage V _D 1					
6	Ground					
7	RF Input					
8	Ground					
9 - 12	No Connection					
13	Ground					
14	RF Output and Drain Voltage V _D 2					
15	Ground					
16	Shut Off Voltage V _G					

- MACOM recommends connecting unused package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

1


Rev. V2

Electrical Specifications:

Freq. = 1 GHz, T_A = +25°C, V_D1 = V_D2 = 9 V, $I_{DQ}2$ = 200 mA, Z_0 = 50 Ω , V_G pulsed with 1 ms pulse width and 10% duty cycle

Parameter	Symbol	Test Conditions	Units	Min.	Тур.	Max.
Small-Signal Gain	SSG	-10 dBm input drive level	dB	23	24.5	_
Output Power at 1dB compression	P _{-1dB}	_	dBm	_	29	_
Saturated Output Power	P _{SAT}	3 dB Gain compression	dBm	28.5	30	_
Power Added Efficiency	PAE	3 dB Gain compression	%	35	40	_
Reverse Isolation	S12	-10 dBm input drive level	dB	_	50	
Input Return Loss	IRL	-10 dBm input drive level	dB	_	8	
Output Return Loss	ORL	-10 dBm input drive level	dB	_	12	
Output Third Order Intercept	OIP3	-13 dBm/tone, F1-F2 = 6 MHz	dBm	_	40	
Gate Bias Voltage	V_{G}	_	V	_	-0.55	_
Quiescent Drain Current	I _{DQ} 1	_	mA	_	65	_

Schematic of the Production Test Board

Rev. V2

Absolute Maximum Ratings^{5,6}

Parameter	Absolute Maximum			
RF Input Power	20 dBm			
Gate Voltage	-4 V to 0 V			
Drain Voltage VD1	10 V			
Drain Voltage VD2	10 V			
Junction Temperature ^{7,8}	+150°C			
Operating Temperature	-40°C to +85°C			
Storage Temperature	-55°C to +150°C			

- 5. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 7. Operating at nominal conditions with $T_J \le +150^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.
- 8. Junction Temperature (T_J) = $T_C + \Theta_{JC} * [(V * I) (P_{OUT} P_{IN})]$ Typical thermal resistance (Θ_{IC}) = 29°C/W.

Handling Procedures

Please observe the following precautions to avoid damage:

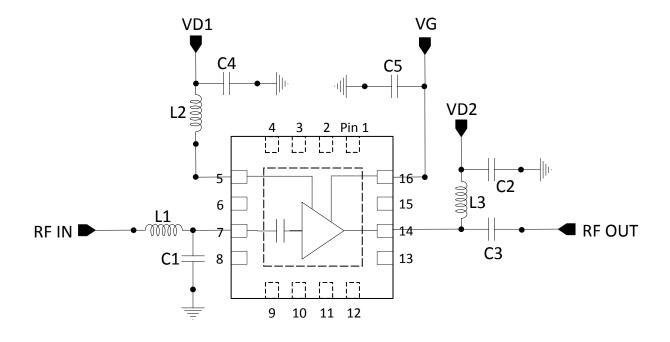
Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these (HBM) Class 1A devices.

Operating the MAAP-011232

To operate the device, follow these steps:

- 1. Set VG to -2 V.
- 2. Turn on VD1 and VD2 to 5-9 V.
- 3. Adjust VG to set $I_{DQ}2$ ($I_{DQ}1$ varies).
- 4. Turn off in reverse order with VG last.

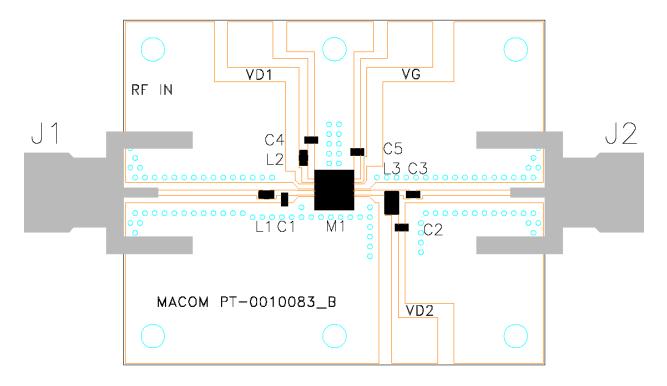


Rev. V2

Typical Electrical Specifications: Test Board A: 100 - 1600 MHz Input Tuning T_A = +25°C, V_D1 = V_D2 = 9 V, $I_{DQ}2$ = 200 mA, Z_0 = 50 Ω , CW

Parameter	Sym-	Test Conditions	Units	Typical Values			
Frequency	F	_	MHz	100	700	1100	1600
Small-Signal Gain	SSG	-10 dBm input drive level	dB	16	26	25	21
Output Power at 1dB compression	P _{-1dB}	1 dB Gain compression	dBm	29	29	30	29
Saturated Output Power	P _{SAT}	3 dB Gain compression	dBm	30	30	30.5	30
Power Added Efficiency	PAE	3 dB Gain compression	%	32	40	45	37
Reverse Isolation	S12	-10 dBm input drive level	dB	79	56	55	53
Input Return Loss	IRL	-10 dBm input drive level	dB	4	17	28	7
Output Return Loss	ORL	-10 dBm input drive level	dB	17	16	15	14
Output Third Order Intercept	OIP3	-13 dBm/tone, F1-F2 = 6 MHz	dBm	41	44	43	40
Gate Bias Voltage	V_{G}	_	V	-0.55			
Quiescent Drain Current	I _{DQ} 1	_	mA	65			

Schematic of the Test Board Type A: 100-1600 MHz Input Tuning



4

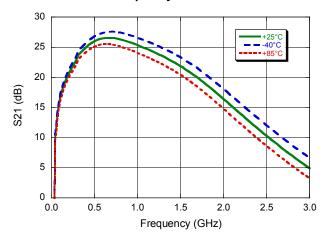
Rev. V2

Test Board Type A: 100 - 1600 MHz Input Tuning

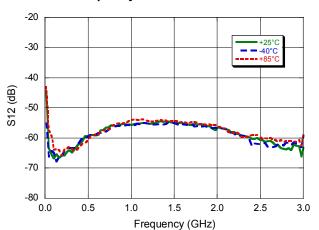
PCB Material: R4003C LoPro, 0.008" THICK, Solid Copper filled vias

Parts List

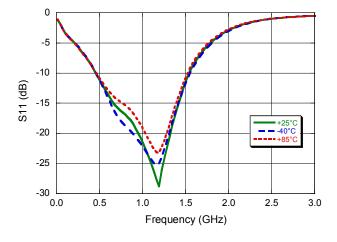
Part	Description	Value	Size	Manufacturer
C1	Capacitor	0.6 pF	0402	Murata
C2, C4	Capacitor	0.1 μF	0402	Murata
C3	Capacitor	100 pF	0402	Murata
C5	Capacitor	10 nF	0402	Murata
L1	Inductor	7.5 nH	0402	0402CS, Coilcraft
L2	Inductor	560 nH	0402	0402AF, Coilcraft
L3	Inductor	110 nH	0603	0603HP, Coilcraft
J1, J2	SMA Connector	_	_	142-0701-881 Emerson

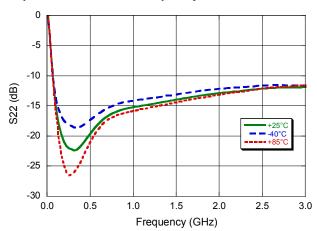


Rev. V2


Test Board Type A: S-parameters over Temperature

Test Conditions: $T_A = +25^{\circ}C$, $V_D 1 = V_D 2 = 9 \text{ V}$, $I_{DQ} 1 = 65 \text{ mA}$, $I_{DQ} 2 = 200 \text{ mA}$, $Z_0 = 50 \Omega$, CW

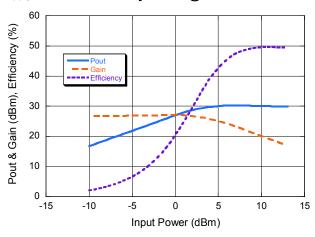

Insertion Gain vs. Frequency


Isolation vs. Frequency

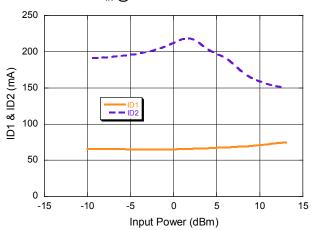
Input Return Loss vs. Frequency

Output Return Loss vs. Frequency

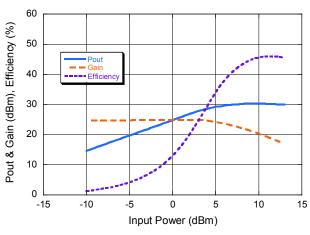
MAAP-011232

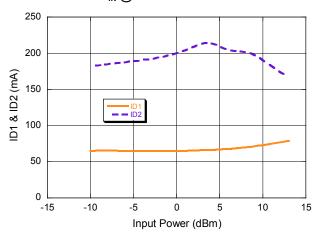

1 W Driver Amplifier with VG Enable 0.1 - 3.0 GHz

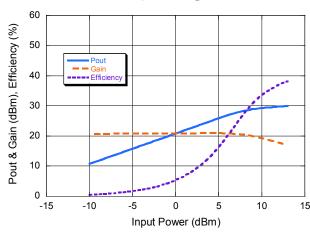
Rev. V2

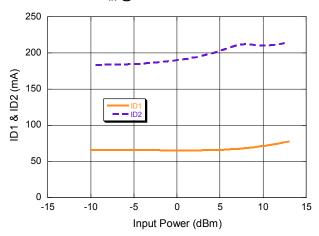

Test Board Type A - Power Performance @ Room Temperature

Test Conditions: $T_A = +25^{\circ}C$, $V_D 1 = V_D 2 = 9 \text{ V}$, $I_{DQ} 1 = 65 \text{ mA}$, $I_{DQ} 2 = 200 \text{ mA}$, $Z_0 = 50 \Omega$, CW


Pout, Gain and Efficiency vs. PIN @ 700 MHz


Bias Current vs. PIN @ 700 MHz


Pout, Gain and Efficiency vs. P_{IN} @ 1100 MHz


Bias Current vs. PIN @ 1100 MHz

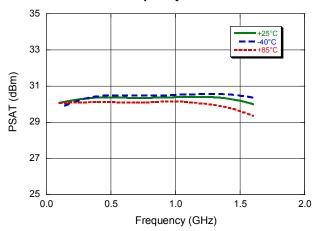
Pout, Gain and Efficiency vs. P_{IN} @ 1600 MHz

Bias Current vs. P_{IN} @ 1600 MHz

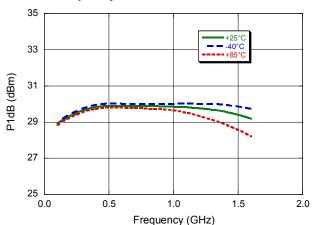
7

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

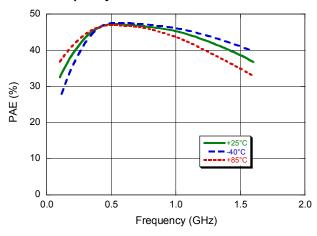
Visit www.macom.com for additional data sheets and product information.

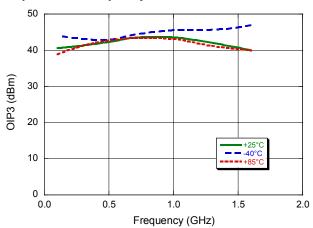


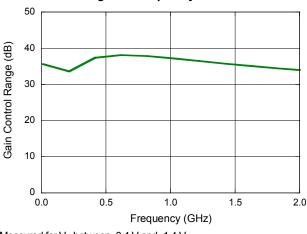
Rev. V2


Test Board Type A - Power Performance over Temperature

Test Conditions: $T_A = +25$ °C, $V_D 1 = V_D 2 = 9$ V, $I_{DQ} 1 = 65$ mA, $I_{DQ} 2 = 200$ mA, $Z_0 = 50$ Ω , CW


Saturated Power vs. Frequency


P1dB vs. Frequency


PAE vs. Frequency

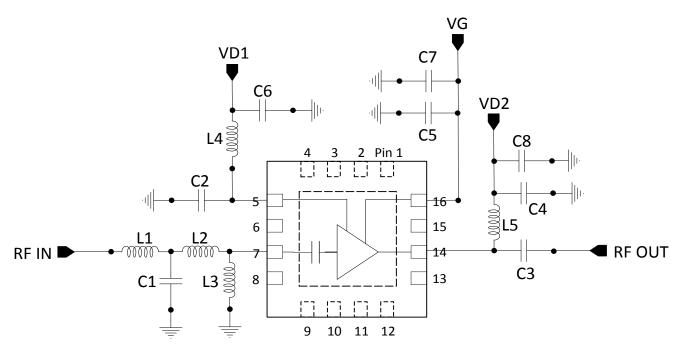
Output IP3 vs. Frequency

Gain Control Range vs. Frequency

 P_{IN} = -13 dBm/tone, tone separation = 6 MHz

Measured for V_G between -0.4 V and -1.4 V

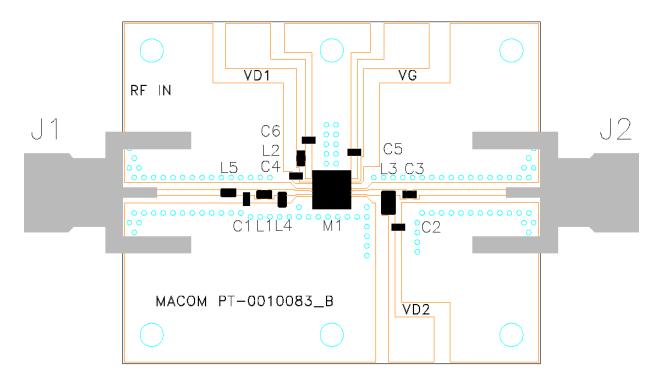
8



Rev. V2

Typical Electrical Specifications: Test Board B: 1600 - 3000 MHz Input Tuning T_A = +25°C, V_D1 = V_D2 = 9 V, $I_{DQ}2$ = 200 mA, Z_0 = 50 Ω , CW

Parameter	Symbol	Test Conditions Units		T	ypical Values	
Frequency	F	<u> </u>		2000	2500	3000
Small-Signal Gain	SSG	-10 dBm input drive level	dB	24	24	17
Output Power @ 1dB compression	P _{-1dB}	1 dB Gain compression	dBm	29	29	30
Saturated Output Power	P _{SAT}	3 dB Gain compression	dBm	30	30	30.5
Power Added Efficiency	PAE	3 dB Gain compression	%	37	40.5	37
Reverse Isolation	S12	-10 dBm input drive level	dB	51	52	54
Input Return Loss	IRL	-10 dBm input drive level	dB	9	11	2
Output Return Loss	ORL	-10 dBm input drive level	dB	10	9	9
Output Third Order Intercept	OIP3	-13 dBm/tone, F1-F2 = 6 MHz	dBm	40	42	40
Gate Bias Voltage	V_{G}	_	V	-0.55		
Quiescent Drain Current	I _{DQ} 1	_	mA	65		


Schematic of the Test Board Type B: 1600-3000 MHz Input Tuning

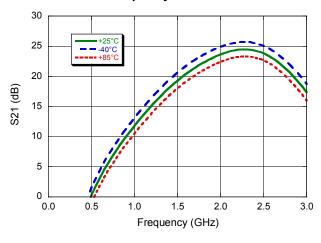
Rev. V2

Test Board Type B: 1600 - 3000 MHz Input Tuning

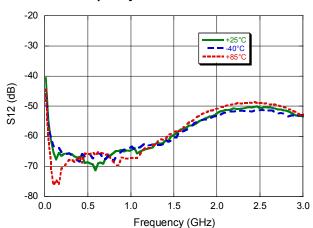
PCB Material: R4003C LoPro, 0.008" THICK, Solid Copper filled vias

Parts List

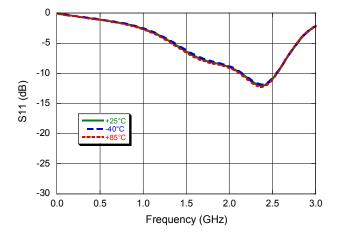
Part	Description	Value	Size	Manufacturer
C1	Capacitor	1.2 pF	0402	PPI
C4, C5	Capacitor	10 nF	0402	Murata
C2, C6	Capacitor	0.1 μF	0402	Murata
C3	Capacitor	100 pF	0402	Murata
L1	Inductor	5.6 nH	0402	0402HP, Coilcraft
L2	Inductor	560 nH	0402	0402AF, Coilcraft
L3	Inductor	110 nH	0603	0603HP, Coilcraft
L4	Inductor	10 nH	0402	0402HP, Coilcraft
L5	Inductor	3.3 nH	0402	0402HP, Coilcraft
J1, J2	SMA Connector	_	_	142-0701-881 Emerson

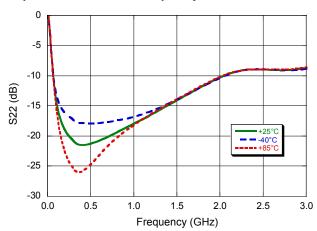


Rev. V2


Test Board Type B: S-parameters over Temperature

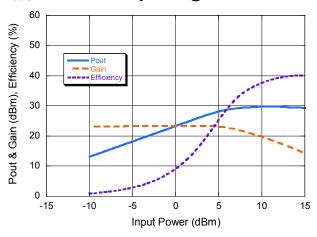
Test Conditions: $T_A = +25^{\circ}C$, $V_D 1 = V_D 2 = 9 \text{ V}$, $I_{DQ} 1 = 65 \text{ mA}$, $I_{DQ} 2 = 200 \text{ mA}$, $Z_0 = 50 \Omega$, CW

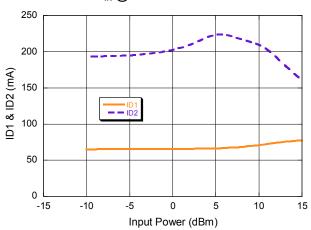

Insertion Gain vs. Frequency


Isolation vs. Frequency

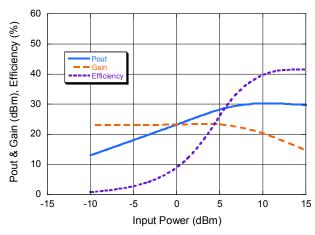
Input Return Loss vs. Frequency

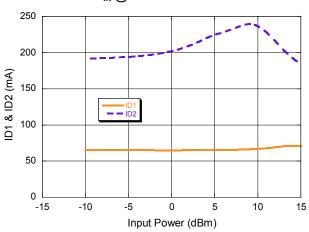
Output Return Loss vs. Frequency

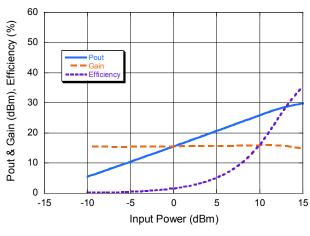


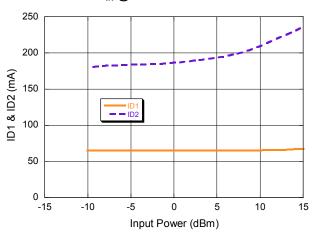

Rev. V2

Test Board Type B - Power Performance @ Room Temperature Test Conditions: T_A = +25°C, V_D 1 = V_D 2 = 9 V, I_{DQ} 1 = 65 mA, I_{DQ} 2 = 200 mA, Z_0 = 50 Ω , CW


Pout, Gain and Efficiency vs. PIN @ 2 GHz


Bias Current vs. PIN @ 2 GHz


Pout, Gain and Efficiency vs. PIN @ 2.5 GHz

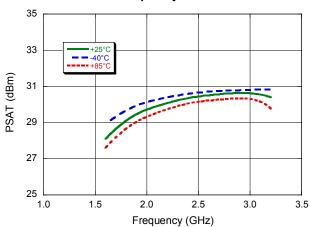

Bias Current vs. PIN @ 2.5 GHz

Pout, Gain and Efficiency vs. PIN @ 3 GHz

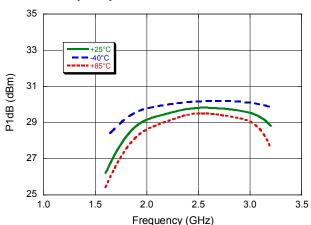
Bias Current vs. PIN @ 3 GHz

12

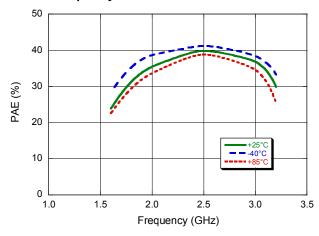
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

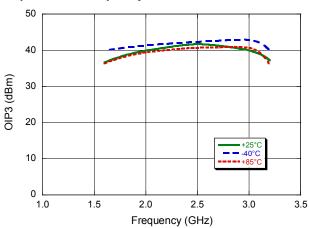


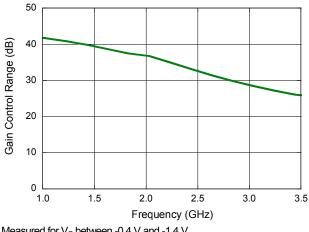
Rev. V2


Test Board Type B - Power Performance over Temperature

Test Conditions: $T_A = +25$ °C, $V_D 1 = V_D 2 = 9$ V, $I_{DQ} 1 = 65$ mA, $I_{DQ} 2 = 200$ mA, $Z_0 = 50$ Ω , CW

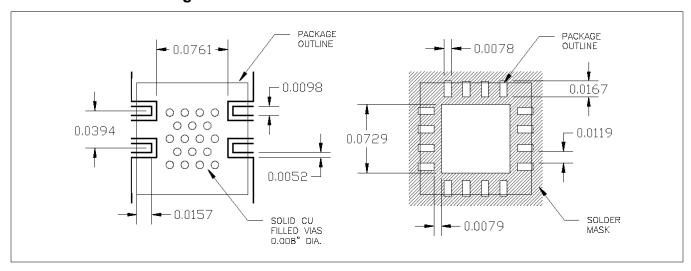

Saturated Power vs. Frequency


P1dB vs. Frequency

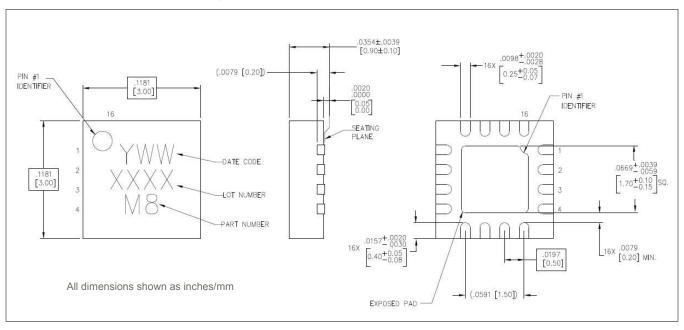

PAE vs. Frequency

Output IP3 vs. Frequency

Gain Control Range vs. Frequency


 P_{IN} = -13 dBm/tone, tone separation = 6 MHz

Measured for V_G between -0.4 V and -1.4 V


Rev. V2

Recommended Landing Pattern 9,10

- 9. All dimensions are in inches.
- Landing pattern indicates solder mask opening. Cu-filled via-holes under the ground are used for optimal thermal performance. Recommended pattern: 8-mil diameter, 8-mil spacing.

Lead-Free 3 mm 16-Lead PQFN[†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.

MAAP-011232

1 W Driver Amplifier with VG Enable 0.1 - 3.0 GHz

Rev. V2

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.