

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

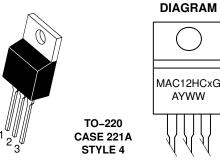
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Expertise Applied | Answers Delivered

Littelfuse.com

TRIACS 12 AMPERES RMS 400 thru 800 VOLTS

MARKING

A = Assembly Location (Optional)*

Y = Year
WW = Work Week
G = Pb-Free Package

* The Assembly Location code (A) is optional. In cases where the Assembly Location is stamped on the package the assembly code may be blank.

PIN ASSIGNMENT				
1	Main Terminal 1			
2	Main Terminal 2			
3	Gate			
4	Main Terminal 2			

ORDERING INFORMATION

OTIDETHING INTO OTHER PROPERTY.					
Device	Package	Shipping			
MAC12HCDG	TO-220 (Pb-Free)	50 Units / Rail			
MAC12HCMG	TO-220 (Pb-Free)	50 Units / Rail			
MAC12HCNG	TO-220 (Pb-Free)	50 Units / Rail			

Triacs

Silicon Bidirectional Thyristors

Designed primarily for full-wave ac control applications, such as motor controls, heating controls or dimmers; or wherever full-wave, silicon gate-controlled devices are needed.

Features

- Uniform Gate Trigger Currents in Three Quadrants, Q1, Q2, and Q3
- High Commutating di/dt and High Immunity to dv/dt @ 125°C
- Minimizes Snubber Networks for Protection
- Blocking Voltage to 800 Volts
- On-State Current Rating of 12 Amperes RMS at 80°C
- High Surge Current Capability 100 Amperes
- Industry Standard TO-220AB Package for Ease of Design
- Glass Passivated Junctions for Reliability and Uniformity
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

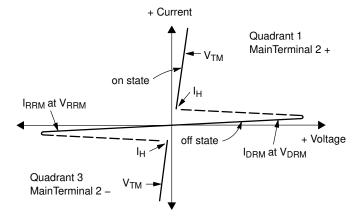
Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (T _J = -40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open)	V _{DRM,} V _{RRM}		V
MAC12HCDG MAC12HCMG MAC12HCNG		400 600 800	
On-State RMS Current (All Conduction Angles; T _C = 80°C)	I _{T(RMS)}	12	Α
Peak Non-Repetitive Surge Current (One Full Cycle, 60 Hz, T _J = 125°C)	I _{TSM}	100	Α
Circuit Fusing Consideration (t = 8.33 ms)	I ² t	41	A ² sec
Peak Gate Power (Pulse Width \leq 1.0 μ s, T _C = 80°C)	P _{GM}	16	W
Average Gate Power (t = 8.3 ms, T _C = 80°C)	P _{G(AV)}	0.35	W
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

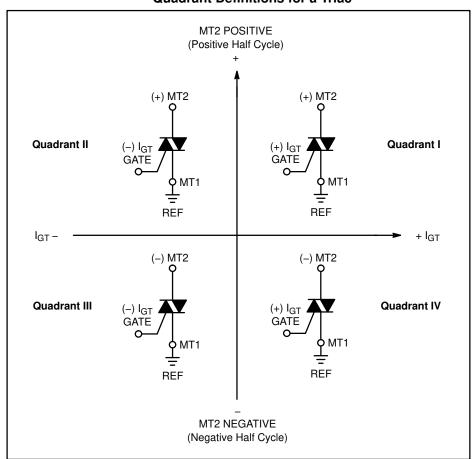
 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case Junction-to-Ambient	$R_{ hetaJC} \ R_{ hetaJA}$	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds		260	°C


Characteristic		Symbol	Min	Тур	Max	Unit
DFF CHARACTERISTICS						
Peak Repetitive Blocking Current (V _D = Rated V _{DRM} , V _{RRM} , Gate Open)	T _J = 25°C T _J = 125°C	I _{DRM} , I _{RRM}	- -	_ _	0.01 2.0	mA
ON CHARACTERISTICS						
Peak On-State Voltage (Note 2) $(I_{TM} = \pm 17 \text{ A})$		V _{TM}	ı	_	1.85	٧
Gate Trigger Current (Continuous dc) (V_D = 12 V, R_L = 100 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)		I _{GT}	10 10 10		50 50 50	mA
Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = $\pm 150 \text{ mA}$)		I _H	-	-	60	mA
Latch Current (V_D = 12 V, I_G = 50 mA) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)		IL	- - -	- - -	60 80 60	mA
Gate Trigger Voltage (Continuous dc) (V_D = 12 V, R_L = 100 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)		V _{GT}	0.5 0.5 0.5	- - -	1.5 1.5 1.5	V
DYNAMIC CHARACTERISTICS						
Rate of Change of Commutating Current ($V_D = 400~V$, $I_{TM} = 4.4~A$, Commutating dv/dt = 18 V/ μ s, Gate Open, $T_J = 125^{\circ}$ C, $f = 250~Hz$, $C_L = 10~\mu$ F, $L_L = 40~m$ H, with Snubber)		(di/dt) _c	15	-	-	A/ms
Critical Rate of Rise of Off-State Voltage $(V_D = Rated\ V_{DRM},\ Exponential\ Waveform,\ Gate\ Open,\ T_J = 125^{\circ}C)$		dv/dt	600	-	-	V/μs
Repetitive Critical Rate of Rise of On-State Current IPK = 50 A; PW = 40 μsec; diG/dt = 200 mA/μsec; f = 60 Hz		di/dt	_	-	10	A/μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


2. Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

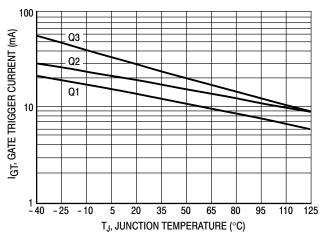


Figure 1. Typical Gate Trigger Current versus Junction Temperature

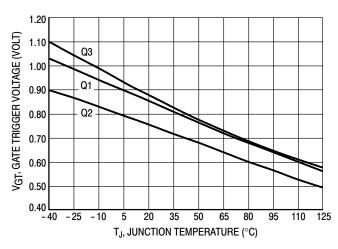


Figure 2. Typical Gate Trigger Voltage versus Junction Temperature

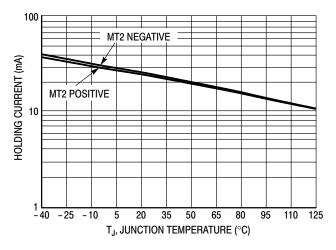


Figure 3. Typical Holding Current versus Junction Temperature

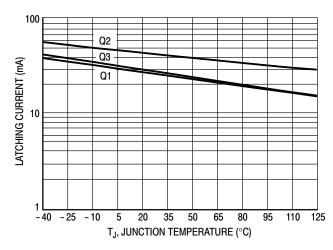


Figure 4. Typical Latching Current versus Junction Temperature

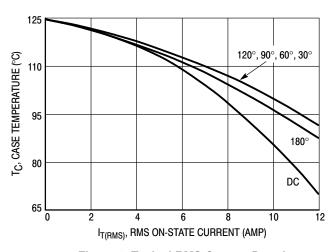


Figure 5. Typical RMS Current Derating

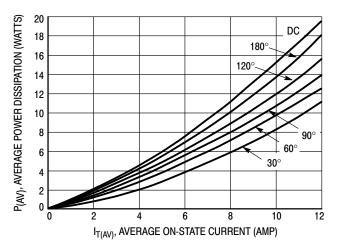


Figure 6. On-State Power Dissipation

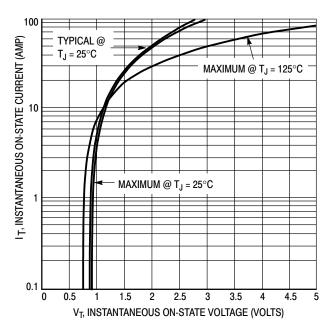


Figure 7. Typical On-State Characteristics

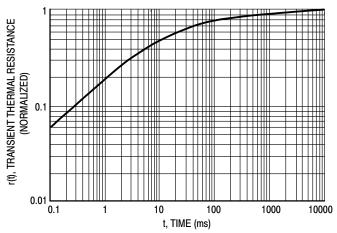
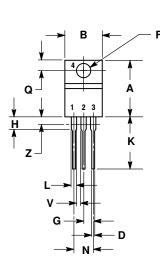
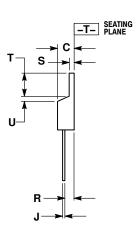




Figure 8. Typical Thermal Response

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AH**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

PIN 1. MAIN TERMINAL 1

- 2. MAIN TERMINAL 2
- 3. GATE
- MAIN TERMINAL 2

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com