

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Triacs

Silicon Bidirectional Thyristors

Designed for high performance full-wave AC control applications where high noise immunity and high commutating di/dt are required.

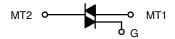
Features

- Blocking Voltage to 800 Volts
- On-State Current Rating of 15 Amperes RMS at 80°C
- Uniform Gate Trigger Currents in Three Modes
- High Immunity to dv/dt 250 V/us minimum at 125°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220 Package
- High Commutating di/dt 9.0 A/ms minimum at 125°C
- Operational in Three Quadrants, Q1, Q2, and Q3
- These Devices are Pb-Free and are RoHS Compliant*

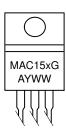
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (-40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open) MAC15M MAC15N	V _{DRM,} V _{RRM}	600 800	V
On–State RMS Current (Full Cycle Sine Wave, 60 Hz, T _C = 80°C)	I _{T(RMS)}	15	Α
Peak Non-repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _J = 125°C)	I _{TSM}	150	A
Circuit Fusing Consideration (t = 8.3 ms)	I ² t	93	A ² s
Peak Gate Power (Pulse Width \leq 1.0 μ s, T _C = 80°C)	P _{GM}	20	W
Average Gate Power (t = 8.3 ms, T _C = 80°C)	P _{G(AV)}	0.5	W
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

ON Semiconductor®


www.onsemi.com

TRIACS 15 AMPERES RMS 600 thru 800 VOLTS

MARKING DIAGRAM

TO-220 CASE 221A STYLE 4

= M or N

A = Assembly Location

/ = Year

NW = Work Week

G = Pb-Free Package

PIN ASSIGNMENT			
1	Main Terminal 1		
2	Main Terminal 2		
3	Gate		
4	Main Terminal 2		

ORDERING INFORMATION

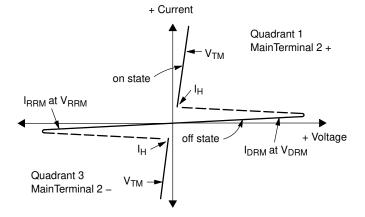
Device	Package	Shipping
MAC15MG	TO-220 (Pb-Free)	50 Units / Rail
MAC15NG	TO-220 (Pb-Free)	50 Units / Rail

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

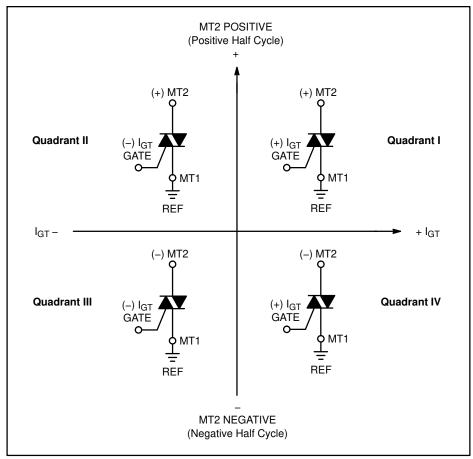
THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case Junction-to-Ambient	$R_{ hetaJC}$ $R_{ hetaJA}$	2.0 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	T _L	260	°C

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted; Electricals apply in both directions)


Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Peak Repetitive Blocking Current (V _D = Rated V _{DRM} , V _{RRM} ; Gate Open)	$T_J = 25$ °C $T_J = 125$ °C	I _{DRM} , I _{RRM}	_ _	_ _	0.01 2.0	mA
ON CHARACTERISTICS		•	•	•	•	•
Peak On-State Voltage (Note 2) (I _{TM} = ±21 A Peak)		V _{TM}	-	1.2	1.6	٧
Gate Trigger Current (Continuous DC) (V_D = 12 V, R_L = 100 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)		I _{GT}	5.0 5.0 5.0	13 16 18	35 35 35	mA
Hold Current ($V_D = 12 \text{ Vdc}$, Gate Open, Initiating Current = $\pm 150 \text{ mA}$)		I _H	-	20	40	mA
Latching Current (V_D = 24 V, I_G = 35 mA) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)		IL	- - -	33 36 33	50 80 50	mA
Gate Trigger Voltage (V _D = 12 V, R _L = 100 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)		V _{GT}	0.5 0.5 0.5	0.75 0.72 0.82	1.5 1.5 1.5	V
DYNAMIC CHARACTERISTICS						
Rate of Change of Commutating Current; See Figure 10. $(V_D=400~V,~I_{TM}=6.0~A,~Commutating~dv/dt=24~V/\mu s,~C_L=10~C_$	1	(di/dt) _c	9.0	-	-	A/ms
Critical Rate of Rise of Off-State Voltage $(V_D = Rated\ V_{DRM},\ Exponential\ Waveform,\ Gate\ Open,\ T_J = 125^{\circ}C)$		dv/dt	250	-	_	V/μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


2. Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

 $\dot{\text{With}}$ in–phase signals (using standard AC lines) quadrants I and III are used.

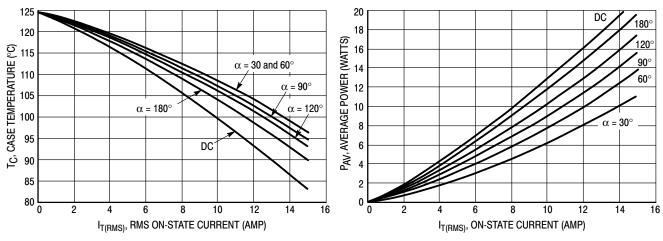
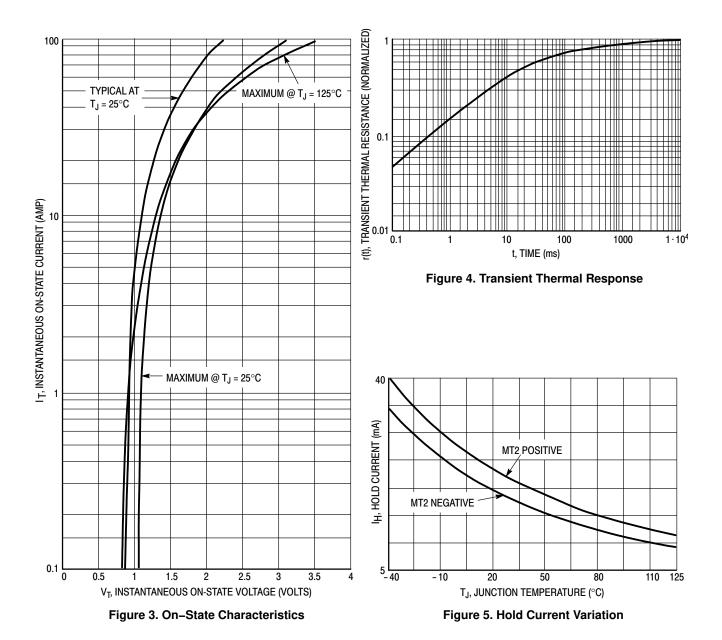



Figure 1. RMS Current Derating

Figure 2. On-State Power Dissipation

www.onsemi.com

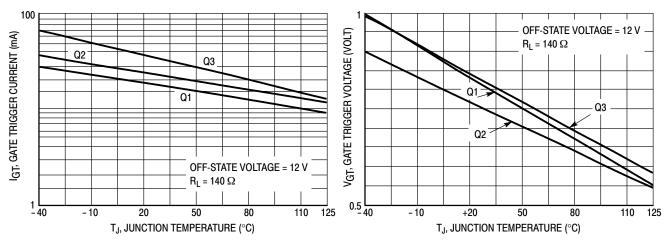


Figure 6. Typical Holding Current versus Junction **Temperature**

Figure 7. Gate Trigger Voltage versus Junction **Temperature**

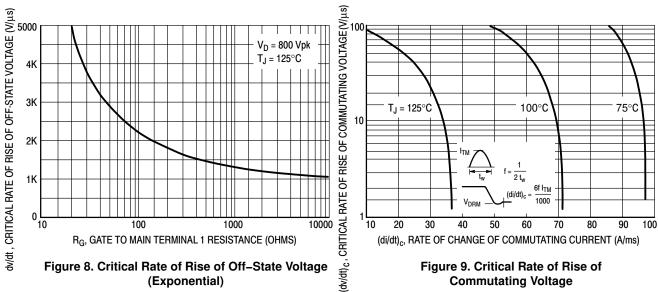
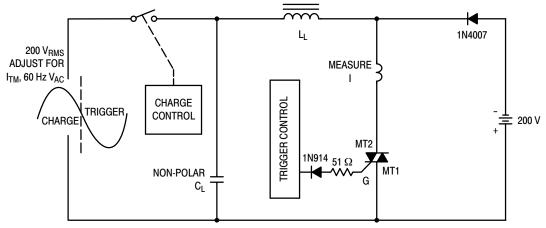
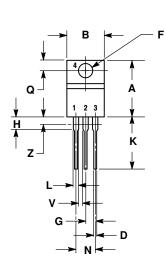



Figure 8. Critical Rate of Rise of Off-State Voltage (Exponential)

Figure 9. Critical Rate of Rise of **Commutating Voltage**



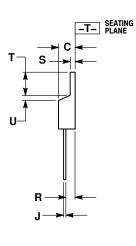

Note: Component values are for verification of rated (di/dt)_c. See AN1048 for additional information.

Figure 10. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)c

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AH**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 4: PIN 1. MAIN TERMINAL 1

- 2. MAIN TERMINAL 2
- 3. GATE
- MAIN TERMINAL 2

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for survival implant into the body or other applications in which are polications i or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative