: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- 20 V to 250 V Back Bias in Off State
- 200 mA Series Diode Bias Current at $+25^{\circ} \mathrm{C}$
- 50 mA Shunt Diode Bias Current at $+25^{\circ} \mathrm{C}$
- Propagation Delay less than $8 \mu \mathrm{~s}$
- Low Quiescent Current Consumption
- 3 V or 5 V CMOS Logic Control
- 7 mm QFN-16LD Package
- Tape and Reel Packaging Available
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible

Description

The MADR-010574 switch driver is designed to work with M/A-COM Technology Solutions high power and high voltage PIN diodes. This driver consists of two independently controlled drivers which are able to provide 200 mA series / 50 mA shunt current to a series/shunt, series/shunt SPDT PIN diode switch. The back bias voltage is configurable from 20 V to 250 V . High voltage level shifters are integrated so that it can be easily controlled by 3 V or 5 V CMOS logic. While consuming low quiescent current, this driver has a typical delay of less than $8 \mu \mathrm{~s}$ when driving 220 pF capacitor load. If needed, the switching speed can be improved by consuming more quiescent power.

This driver is packaged in a lead free 7 mm PQFN16LD package and is available in tape and reel packaging for high volume applications.

Ordering Information

Part Number	Package
MADR-010574-000100	Bulk Packaging
MADR-010574-0001TR	1000 piece Reel
MADR-010574-001SMB	 MA4P504-1072T Diodes

Functional Schematic

Pin Configuration ${ }^{1}$

Pin No.	Pin Name	Description
1	SH1	Shunt1
2	C1	Control Logic 1
3	$\mathrm{I}_{\text {BIAS }}$	Bias Voltage
4	SER1	Series1
5	$\mathrm{N} / \mathrm{C}^{2}$	No Connection
6	GND	Ground
7	GND	Ground
8	N/C ${ }^{2}$	No Connection
9	SH2	Shunt2
10	$\mathrm{V}_{\text {cc }}$	Control Voltage
11	C2	Control Logic 2
12	SER2	Series2
13	GND	Ground
14	$\mathrm{N} / \mathrm{C}^{2}$	No Connection
15	$\mathrm{N} / \mathrm{C}^{2}$	No Connection
16	$V_{D D}$	Drain Voltage
17	Paddle	Ground

1. The paddle of the QFN package should be tied to ground.
2. N/C pins (except Pin 15) can be grounded. The clearance from high voltage pins should be at least 0.8 mm . Pin 15 must be left open.
[^0]
20V to 250V Driver for High Power PIN Diode Switches

Rev. V1
Recommended Operating Conditions

Parameter	Test Conditions	Unit	Min.	Typ.	Max.
V_{cc}	Nominal $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ Nominal $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	V	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 5.5 \end{aligned}$
$V_{D D}$	-	V	20	-	250
Control1, Control2 ${ }^{3}$	$\begin{aligned} & \text { Logic "0" } \\ & \text { Logic " } 1 \text { " } \end{aligned}$	V	$\begin{gathered} 0.0 \\ 0.7 \times V_{\mathrm{cc}} \end{gathered}$	$\begin{aligned} & 0.0 \\ & \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\begin{gathered} 0.3 \times V_{C C} \\ V_{C C} \end{gathered}$
Series1/Series2 Sinking Current ${ }^{4}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	mA	-	-	$\begin{aligned} & 300 \\ & 200 \\ & 150 \end{aligned}$
Shunt1/Shunt2 Sinking Current ${ }^{4}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	mA	-	-	$\begin{aligned} & 65 \\ & 55 \\ & 50 \end{aligned}$
$\mathrm{I}_{\text {BIAS }}{ }^{5,6}$	$+25^{\circ} \mathrm{C}$	$\mu \mathrm{A}$	2	6	150
Operating Temperature	-	${ }^{\circ} \mathrm{C}$	-40	+25	+85

3. Unused Controls should be either grounded or connected to V_{cc}. They should never be left open.
4. Refer to "Application Circuit: Driving SPDT Switch with MA4P504-1072T Pin Diodes" for configuration of diode bias currents.
5. This sinking bias current is necessary for normal driver operation. The easiest way is to connect a 0402 resistor RBIAS between Pin V_{CC} and Pin $I_{B A S}$. Then $I_{\text {BIAS }}$ can be calculated by: $I_{B I A S}=\left(V_{C C}-0.6\right) /\left(500+R_{B I A S}\right)$
6. Refer to graph "Typ. Ton Driving 220 pF Caps vs. IBIAS" on page 3 and the chart "Typ. IDD vs. IBIAS at $25^{\circ} \mathrm{C}$ " on page 4 for the tradeoff between switching speed and power consumption.

Absolute Maximum Ratings ${ }^{7,8}$

Parameter	Absolute Maximum
$\mathrm{V}_{\text {cc }}$	-0.5 V to +7 V
$V_{D D}$	-0.5 V to 275 V
C1, C2 (Logic)	-0.5 V to 7 V
$\begin{gathered} \text { Series1/Series2 Sinking Current } \\ -40^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +85^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 550 \mathrm{~mA} \\ & 450 \mathrm{~mA} \\ & 350 \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { Shunt1/Shunt2 Sinking Current } \\ & -40^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~mA} \\ & 150 \mathrm{~mA} \\ & 100 \mathrm{~mA} \end{aligned}$
Series/Shunt Outputs Sourcing Current	25 mA
$\mathrm{I}_{\text {BIAS }}$	$500 \mu \mathrm{~A}$
ESD HBM Rating	$>1 \mathrm{kV}$
Operating Temperature	-40 to $+125^{\circ} \mathrm{C}$
Storage Temperature	-55 to $+150^{\circ} \mathrm{C}$

7. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.
8. Exceeding any one or combination of these limits may cause permanent damage to this device.

Truth Table ${ }^{9}$

C1	C2	Series1	Shunt1	Series2	Shunt2
0	0	Low	High	Low	High
0	1	Low	High	High	Low
1	0	High	Low	Low	High
1	1	High	Low	High	Low

9. The actual voltage levels for "Low" and "High" are dependent on the current load to the driver. They can be estimated from the driver on resistance.

Powering On/Off Sequence:

$V_{D D}$ should be turned on after $V_{C C}$, and the rise time of $V_{D D}$ should be slower than $2.5 \mu \mathrm{~s}$. When powering off, V_{DD} should be turned off before V_{CC}.

20 V to 250V Driver for High Power PIN Diode Switches

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=250 \mathrm{~V}, \mathrm{I}_{\mathrm{BIAS}}=6 \mu \mathrm{~A}^{10}$

Parameter	Test Conditions	Unit	Min.	Typ.	Max.
Quiescent Supply Currents	$\begin{aligned} & V_{\mathrm{CC}}(3.3 \mathrm{~V})^{11} \\ & \mathrm{~V}_{\mathrm{DD}}(250 \mathrm{~V}) \end{aligned}$	$\mu \mathrm{A}$	-	$\begin{gathered} 6 \\ 25 \end{gathered}$	$\begin{aligned} & 10 \\ & 37 \end{aligned}$
Control Input Leakage Current	-	$\mu \mathrm{A}$	-	-	1
Series Pull-down FET On Resistance	200 mA Load	Ω	-	9	11.4
Shunt Pull-down FET On Resistance	50 mA Load	Ω	-	26	30
Switching Speed Driving 220pF Caps: Series ${ }^{12}$ $\mathrm{~T}_{\text {ON }}$ $\mathrm{T}_{\text {OFF }}$ Tr Tf	50\% CTL to 95% Voltage 50% CTL to 5% Voltage $\begin{aligned} & 10 \%-90 \% \\ & 90 \%-10 \% \end{aligned}$	$\mu \mathrm{s}$	-	$\begin{gathered} 6.2 \\ 0.22 \\ 5.1 \\ 0.1 \end{gathered}$	-
Switching Speed Driving 220pF Caps: Shunt ${ }^{12}$ $\mathrm{~T}_{\text {ON }}$ $\mathrm{T}_{\text {OFF }}$ Tr Tf	50\% CTL to 95\% Voltage 50\% CTL to 5\% Voltage $\begin{aligned} & 10 \%-90 \% \\ & 90 \%-10 \% \end{aligned}$	$\mu \mathrm{s}$	-	$\begin{gathered} 3.1 \\ 0.2 \\ 2.6 \\ 0.08 \end{gathered}$	-

10. The parameters were measured with $500 \mathrm{k} \Omega \mathrm{R}_{\text {BIAS }}$ connecting between pin V_{CC} and pin $\mathrm{I}_{\text {BIAS }}$.
11. $\mathrm{I}_{\mathrm{BIAS}}$ is included in the quiescent V_{CC} current due to the bias configuration.
12. Switching parameters were measured driving 220 pF capacitors with no current load. Controls C 1 and C 2 were tied together. It will be faster when C 2 is inverted from C 1 , which is case driving a SPDT switch.

Typ. Ton Driving 220pF Caps vs VDD
VCC $=3.3 \mathrm{~V}$, $\mathrm{IBIAS}=6 \mu \mathrm{~A}, 25^{\circ} \mathrm{C}$

Typ. Ton Driving 220pF Caps vs IbiAs VCC $=3.3 \mathrm{~V}, \mathrm{VDD}=250 \mathrm{~V}, 25^{\circ} \mathrm{C}$

Performance Driving M/A-COM MA4P504-1072T PIN Diode SPDT Switch ${ }^{13}$

Typ. Ton (50\% Ctl to 90\% RF) VDD $=250 \mathrm{~V}, \mathrm{VCC}=3.3 \mathrm{~V}$, IBIAS $=6 \mu \mathrm{~A}$

Typ. Ton (50\% Ctl to 90\% RF) vs. VDD
$\mathrm{VCC}=3.3 \mathrm{~V}$, $\mathrm{IBIAS}=6 \mu \mathrm{~A}$ Iseries $=200 \mathrm{~mA}$, Ishunt=50mA

Typ. IDD vs IBIAS at $25^{\circ} \mathrm{C}$

Typ. Toff (50\% Ctl to 10\% RF) VDD $=250 \mathrm{~V}, \mathrm{VCC}=3.3 \mathrm{~V}$, IBIAS $=6 \mu \mathrm{~A}$

- Isereis=200mA,Ishunt=50mA * Iseries=100mA,Ishunt=50mA

Typ. Toff (50\% Ctl to 10\% RF) vs. VDD VCC=3.3V, IbIAs=6 $\mu \mathrm{A}$ Iseries $=200 \mathrm{~mA}$, Ishunt=50mA

13. The switch is a series/shunt, series/shunt SPDT switch using four M/A-COM MA4P504-1072T PIN diodes. Schematic is on next page. Switching parameters were measured with 500 MHz 20W CW RF signal.

Application Circuit: Driving SPDT Switch with MA4P504-1072T PIN Diodes ${ }^{14}$

14. This is the schematic of MADR-010547-001SMB. The frequency range for this application circuit is 200 MHz to 500 MHz . The bias current for the series diodes is 200 mA . The bias current for the shunt diodes is 50 mA . The recommended inductors are Coil Craft 0603LS-181XJLB for both current and frequency considerations. For different frequency applications, both capacitors and inductors should be adjusted accordingly.

Recommended PCB

Parts List

Part	Value	Size
C5	$0.01 \mu \mathrm{~F}, 500 \mathrm{~V}$	0805
C6 - C12	$100 \mathrm{pF}, 500 \mathrm{~V}$	0805
C13 - C15	$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$	0402
L1 - L8	180 nH	0603
R1	$1.5 \Omega, 1 \mathrm{~W}$	2512
R2	$15 \Omega, 0.5 \mathrm{~W}$	1206
R3	$499 \mathrm{~K} \Omega, 1 / 16 \mathrm{~W}$	0402
D1 - D4	MA4P504-1072	

Footprint

20 V to 250V Driver for High Power PIN Diode Switches

Lead Free 7mm PQFN-16LD ${ }^{\dagger}$

[^1]
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Silicon Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

20 V to 250V Driver for High Power PIN Diode Switches

M/A-COM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

> THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[^1]: ${ }^{\dagger}$ This is not a JEDEC standard package. Please refer to Application Note for footprint and lead-free solder reflow recommendations.

