imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Features

- GaN on SiC Depletion Mode Transistor
- **Common-Source Configuration**
- Broadband Class AB Operation
- Thermally Enhanced Package (Flanged: Cu/W, Flangeless: Cu)
- **RoHS*** Compliant
- +50V Typical Operation
- MTTF = 600 years (T_{\downarrow} < 200°C)

Primary Applications

- Commercial Wireless Infrastructure (WCDMA, LTE, WIMAX)
- Air Traffic Control Radar Commercial
- Weather Radar Commercial
- Military Radar Military
- Public Radio
- Industrial. Scientific and Medical •
- SATCOM •
- Instrumentation •

Description

The MAGX-000035-01500X is a gold-metalized unmatched Gallium Nitride (GaN) on Silicon Carbide RF power transistor suitable for a variety of RF power amplifier applications. Using state of the art wafer fabrication processes, these high performance transistors provide high gain, efficiency, bandwidth, and ruggedness over multiple octave bandwidths for today's demanding application needs.

The MAGX-000035-01500X is constructed using a thermally enhanced flanged (Cu/W) or flangeless (Cu) ceramic package which provides excellent thermal performance. High breakdown voltages allow for reliable and stable operation in extreme mismatched load conditions unparalleled with older semiconductor technologies.

MAGX-000035-015000 (Flanged)

MAGX-000035-01500S (Flangeless)

Ordering Information

Part Number	Description
MAGX-000035-015000	Flanged, Bulk Packaging
MAGX-000035-01500S	Flangeless, Bulk Packaging
MAGX-L20035-015000	Sample Board (1.2 - 1.4 GHz, Flanged)
MAGX-L20035-01500S	Sample Board (1.2 - 1.4 GHz, Flangeless)

* Restrictions on Hazardous Substances, European Union Directive 2002/95/EC. 1

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Rev. V1

Electrical Specifications¹: Freq. = 1.2 - 1.4 GHz, T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
RF Functional Tests: V _{DD} = 50 V, I _{DQ} = 15 mA, 1 ms Pulse, 10% Duty						
Output Power	P _{IN} = 0.5 W	P _{OUT}	15.0	17.7	-	W
Power Gain	P _{IN} = 0.5 W	G _P	14.8	15.5	-	dB
Drain Efficiency	P _{IN} = 0.5 W	η_{D}	55	63	-	%
Droop	P _{IN} = 0.5 W	Droop	-	0.1	0.4	dB
Load Mismatch Stability	P _{IN} = 0.5 W	VSWR-S	-	5:1	-	-
Load Mismatch Tolerance	P _{IN} = 0.5 W	VSWR-T	-	10:1	-	-

Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
DC Characteristics						
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 175 V	I _{DS}	-	-	750	μA
Gate Threshold Voltage	$V_{DS} = 5 V$, $I_{D} = 2 mA$	V _{GS (TH)}	-5	-3	-2	V
Forward Transconductance	$V_{DS} = 5 V$, $I_{D} = 500 mA$	G _M	0.35	-	-	S
Dynamic Characteristics						
Input Capacitance	V_{DS} = 0 V, V_{GS} = -8 V, F = 1 MHz	C _{ISS}	-	4.4	-	pF
Output Capacitance	V_{DS} = 50 V, V_{GS} = -8 V, F = 1 MHz	C _{oss}	-	1.9	-	pF
Reverse Transfer Capacitance	V_{DS} = 50 V, V_{GS} = -8 V, F = 1 MHz	C _{RSS}	-	0.2	-	pF

Correct Device Sequencing

Turning the device ON

- 1. Set V_{GS} to the pinch-off (V_P), typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (+50V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to $V_{P.}$
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}

1. Electrical Specifications measured in MACOM RF evaluation board.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

2

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Absolute Maximum Ratings^{2,3,4}

Parameter	Absolute Max.
Input Power	P _{IN} (nominal) + 3 dB
Drain Supply Voltage, V _{DD}	+65 V
Gate Supply Voltage, V_{GG}	-8 V to 0 V
Supply Current, IDD	800 mA
Power Dissipation (P _{AVG}), Pulsed @ 85°C	10.3 W
MTTF (TJ<200°C)	600 years
Junction Temperature ⁵	200°C
Operating Temperature	-40°C to +95°C
Storage Temperature	-65°C to +150°C
Mounting Temperature	See solder reflow profile
ESD Min Charged Device Model (CDM)	150 V
ESD Min Human Body Model (HBM)	500 V

2. Operation of this device above any one of these parameters may cause permanent damage.

3. Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime. 4. For saturated performance it is recommended that the sum of $(3^*V_{DD} + abs(V_{GG})) < 175 V$.

5. Junction Temperature $(T_J) = T_C + \Theta_{JC} * ((V * I) - (P_{OUT} - P_{IN}))$

Typical transient thermal resistances:

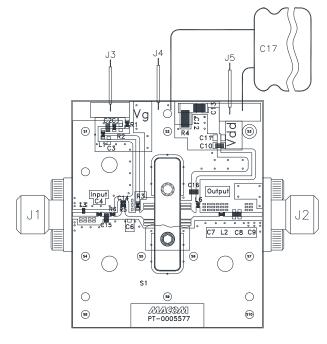
1 ms pulse, 10% duty cycle, Θ_{JC} = 5.0°C/W

For $T_C = 85^{\circ}C$,

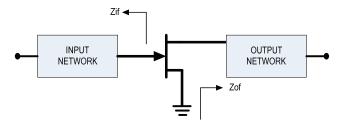
3

 $T_J = 132^{\circ}C @ 50 V, 520 mA-pk, P_{OUT} = 17.0 W, P_{IN} = 0.5 W$

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.


• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300


GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Test Fixture Assembly (1.2 - 1.4 GHz, 1 ms Pulse, 10% Duty, V_{DD} = 50 V, Idq = 15 mA)

Test Fixture Impedances

F (GHz)	Z _{IF} (Ω)	Z _{OF} (Ω)
1.2	1.4 + j3.5	2.5 + j3.5
1.3	1.3 + j3.8	2.7 + j3.9
1.4	1.8 + j4.0	3.1 + j4.2

Parts List

Reference Designator	Part	Vendor
C4	0402, 5.1 pF, ±0.1 pF	ATC
C15	0603, 6.8 pF, ±0.1 pF	ATC
C2	0603, 82 pF, ±10%	ATC
C16	0603, 100 pF, ±10%	ATC
C1, C10	0402, 1000 pF, 100 V, 5%	ATC
C8	0603, 30 pF, ±10%	ATC
C13	0805, 1 μF, 100 V, ±20%	ATC
C14	0402, 12 pF, ±10%	ATC
C17	100 µF, 160 V, Electrolytic Capacitor	Panasonic
C3, C6, C7, C9, C11, C12, R2	Do Not Populate	-
R3	240 Ω, 0603, 5%	Panasonic
L1, R1	1.0 Ω, 0402, 5%	Panasonic
R4	1.0 Ω, 1206, 5%	Panasonic
R5	10 Ω, 0402, 5%	Panasonic
L3, L6	0402, 3.9 nH, 2%	Coilcraft
L2, R6	0402, 0.0 Ω Resistor	Panasonic
J1, J2	SMA Connector	Tyco Electronics

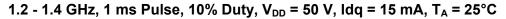
Contact factory for Gerber file or additional circuit information. 4

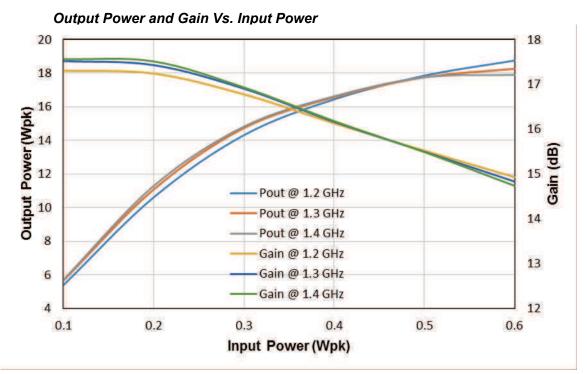
M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

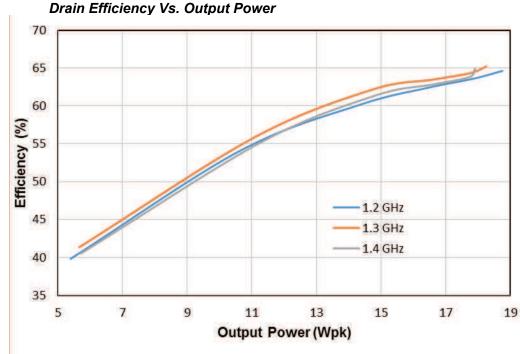
[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298



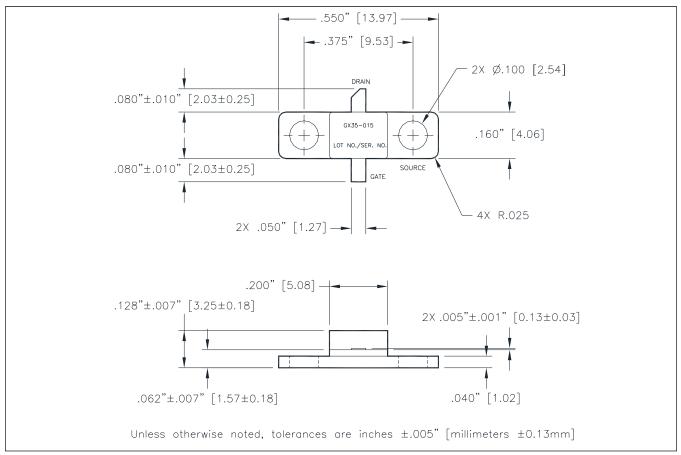

Rev. V1


GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Application Section

Typical Performance Curves

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.


[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

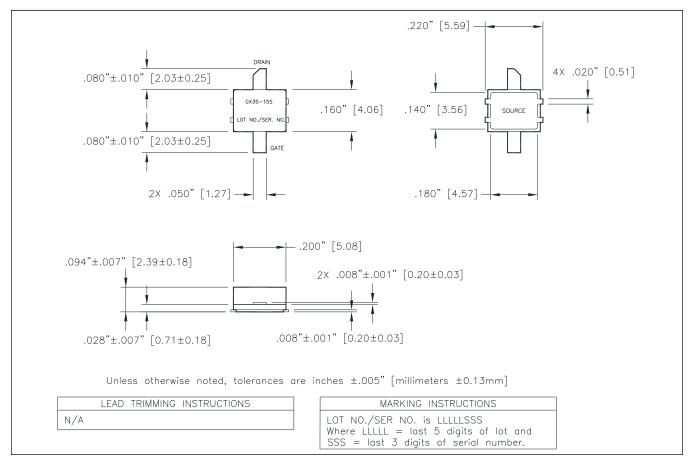
Outline Drawing MAGX-000035-015000 (Flanged)

• North America Tel: 800.366.2266 / Fax: 978.366.2266

6

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

• Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298



GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Rev. V1

Outline Drawing MAGX-000035-01500S (Flangeless)

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

7

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300