

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

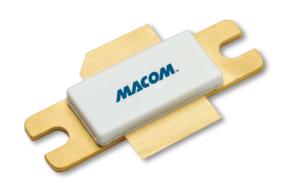
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaN on SiC HEMT Pulsed Power Transistor 650 W Peak, 1200-1400 MHz, 300 µs Pulse, 10% Duty

Rev. V3

Features

- GaN on SiC Depletion-Mode Transistor Technology
- Internally Matched
- Common-Source Configuration
- Broadband Class AB Operation
- RoHS* Compliant and 260°C Reflow Compatible
- +50 V Typical Operation
- MTTF = 600 Years (T_J < 200 °C)


Applications

• L-Band pulsed radar.

Description

The MAGX-001214-650L0x is a gold-metalized matched Gallium Nitride (GaN) on Silicon Carbide (SiC) RF power transistor optimized for pulsed L-Band radar applications. Using state of the art wafer fabrication processes, these high performance transistors provide high gain, efficiency, bandwidth, and ruggedness over a wide bandwidth for today's demanding application needs. High breakdown voltages allow for reliable and stable operation under more extreme mismatch load conditions compared with older semiconductor technologies.

MAGX-001214-650L00

Ordering Information

Part Number	Description
MAGX-001214-650L00	GaN Transistor
MAGX-L21214-650L00	1200-1400 MHz Evaluation Board

Typical RF Performance Under Standard Operating Conditions, $P_{OUT} = 650 \text{ W}$ (Peak)

Freq. (MHz)	P _{IN} (W)	Gain (dB)	I _D (A)	Eff. (%)	RL (dB)	Droop (dB)	+1dB OD (W)	VSWR-S (3:1)
1200	8.7	18.8	21.3	61.0	-13.9	0.2	717	8
1250	8.5	18.9	22.0	58.9	-13.8	0.3	726	S
1300	8.0	19.1	22.4	57.8	-13.5	0.3	724	S
1350	7.0	19.7	21.8	59.7	-15.8	0.3	723	S
1400	7.0	19.7	21.1	61.4	-15.0	0.2	697	S

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

GaN on SiC HEMT Pulsed Power Transistor 650 W Peak, 1200-1400 MHz, 300 µs Pulse, 10% Duty

Rev. V3

Electrical Specifications: Freq. = 1200 - 1400 MHz, T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units	
RF Functional Tests	RF Functional Tests						
Peak Input Power	V _{DD} = 50 V, I _{DQ} = 500 mA Pulse Width = 300 µs, Duty Cycle = 10% P _{OUT} = 650 W Peak (65 W avg.)	P _{IN}	-	7.5	10.3	W	
Power Gain		G_P	18	19.5	-	dB	
Drain Efficiency		η_{D}	55	60	-	%	
Pulse Droop		Droop	-	0.3	0.6	dB	
Load Mismatch Stability		VSWR-S	-	2:1	-	-	
Load Mismatch Tolerance		VSWR-T	-	3:1	-	-	

Electrical Characteristics: $T_A = 25$ °C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
DC Characteristics						
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 175 V	I _{DS}	-	1.7	33	mA
Gate Threshold Voltage	$V_{DS} = 5 \text{ V}, I_{D} = 90 \text{ mA}$	V _{GS (TH)}	-5	-2.9	-2	V
Forward Transconductance	V _{DS} = 5 V, I _D = 21 mA	G _M	16.2	21.7	-	S
Dynamic Characteristics						
Input Capacitance	Not applicable - Input matched	C _{ISS}	N/A	N/A	N/A	pF
Output Capacitance	V _{DS} = 50 V, V _{GS} = -8 V,	Coss	-	55	-	pF
Reverse Transfer Capacitance	Freq. = 1 MHz	C _{RSS}	-	5.5	-	pF

GaN on SiC HEMT Pulsed Power Transistor 650 W Peak, 1200-1400 MHz, 300 µs Pulse, 10% Duty

Rev. V3

Absolute Maximum Ratings^{1,2,3}

Parameter	Limit
Drain Voltage (V _{DD})	+65 V
Gate Voltage (V _{GG})	-8 to 0 V
Drain Current (I _{DD})	27 A
Input Power ⁴ (P _{IN})	P _{IN} (nominal) + 3 dB
Operating Junction Temperature ⁵	250°C
Peak Pulsed Power Dissipation at 85°C	700 W
Operating Temperature Range	-40 to +85°C
Storage Temperature Range	-65 to +150°C
ESD Min Charged Device Model (CDM)	1300 V
ESD Min Human Body Model (HBM)	4000 V

^{1.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Thermal Characteristics

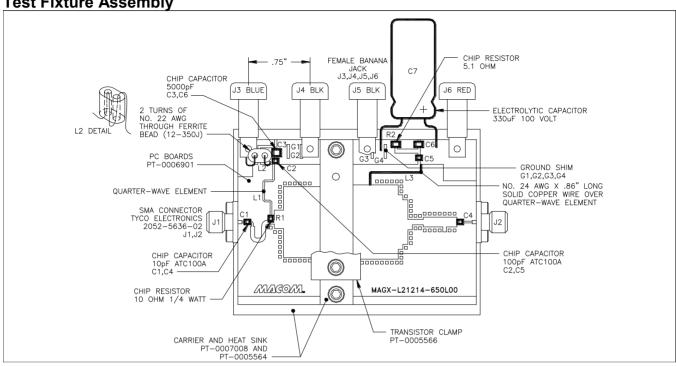
Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	T_C = 70°C, V_{DD} = 50 V, I_{DQ} = 500 mA, P_{OUT} = 650 W Pulse Width = 300 μ s, Duty Cycle = 10%	Θ _{JC}	0.25	°C/W

^{2.} MACOM does not recommend sustained operation near these survivability limits.

^{3.} For saturated performance it is recommended that the sum of (3 * V_{DD} + $|V_{GG}|$) < 175 V.

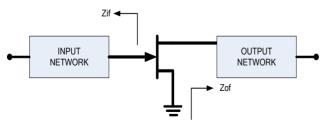
^{4.} Input Power Limit is +3 dB over nominal drive required to achieve P_{OUT} = 650 W.

^{5.} Operating junction temperature is measured with infrared (IR) microscope. Junction temperature directly affects a device's MTTF and should be kept as low as possible to maximize lifetime.


MTTF = 5.3 x 10⁶ hours (T_J < 200°C)
MTTF = 6.8 x 10⁴ hours (T_J < 250°C)

GaN on SiC HEMT Pulsed Power Transistor 650 W Peak, 1200-1400 MHz, 300 µs Pulse, 10% Duty

Rev. V3


Test Fixture Assembly

Contact factory for gerber file or additional circuit information.

Test Fixture Impedances

F (MHz)	Z _{IF} (Ω)	Z _{OF} (Ω)
1200	0.8 - j0.9	1.4 + j0.2
1250	0.8 - j0.7	1.4 + j0.2
1300	0.7 - j0.6	1.4 + j0.1
1350	0.7 - j0.4	1.2 + j0.1
1400	0.7 - j0.2	1.1 + j0.2

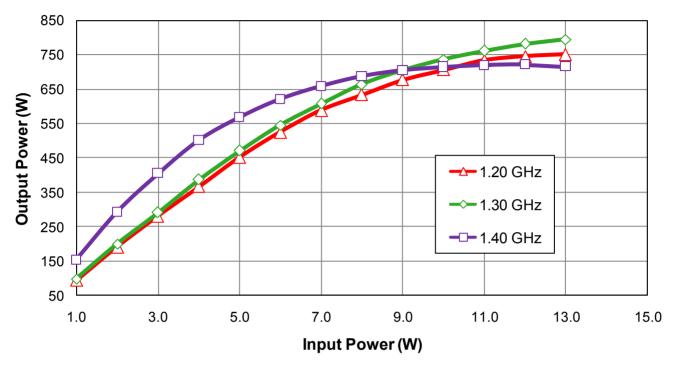
Contact factory for gerber file or additional circuit information.

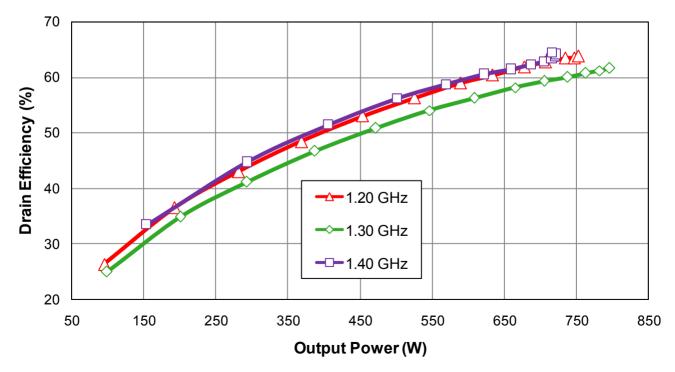
Correct Device Sequencing

Turning the device ON

- 1. Set V_{GS} to the pinch-off (V_P) , typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

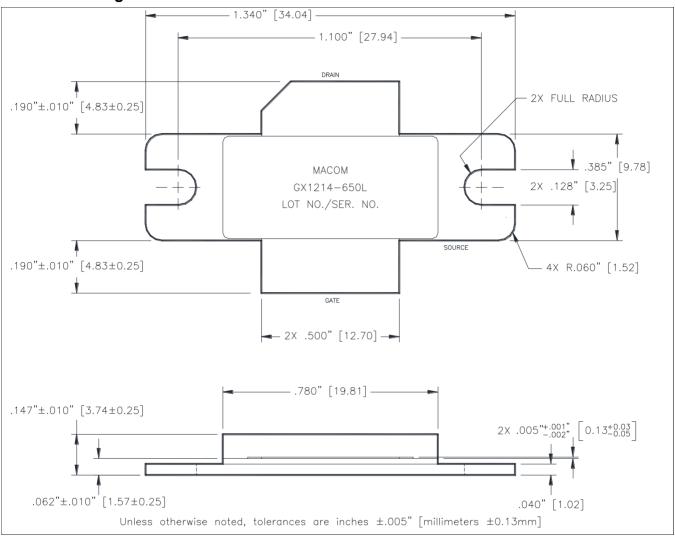

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to V_P.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}


GaN on SiC HEMT Pulsed Power Transistor 650 W Peak, 1200-1400 MHz, 300 µs Pulse, 10% Duty

Rev. V3

RF Power Transfer Curve (Output Power vs. Input Power)

RF Power Transfer Curve (Drain Efficiency vs. Output Power)



GaN on SiC HEMT Pulsed Power Transistor 650 W Peak, 1200-1400 MHz, 300 µs Pulse, 10% Duty

Rev. V3

Outline Drawing MAGX-001214-650L00

GaN on SiC HEMT Pulsed Power Transistor 650 W Peak, 1200-1400 MHz, 300 µs Pulse, 10% Duty

Rev. V3

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.