mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaN on SiC HEMT Power Transistor 14 W, DC - 2.5 GHz, CW Power

Features

- GaN on SiC Depletion Mode Transistor
- **Common-Source Configuration**
- Broadband Class AB Operation
- Thermally Enhanced Cu/W Package
- **RoHS*** Compliant •
- +50V Typical Operation
- MTTF = 600 years (T_{\downarrow} < 200°C)

Primary Applications

- RF Liahtina
- RF Plasma Generation
- RF Heating
- RF Drying
- Material Processing
- Power Industrial Equipment
- ISM
- Broadcast
- MILCOM •
- Datalinks •
- Air Traffic Control Radar Commercial
- Weather Radar - Commercial
- Military Radar Military •

Description

The MAGX-000245-014000 is a gold metalized unmatched Gallium Nitride (GaN) on Silicon Carbide (SiC) RF power transistor suitable for CW applications centered at 2.45GHz for application in ISM/Broadcast/Plasma applications. This product differentiates itself from other GaN power transistors in that it runs well in CW. The matching network is compact and small. The frequency of operation covers DC - 2.5 GHz which captures commercial as well as military applications. This product is designed as a high power driver amplifier or final stage depending on the application. Using state of the art wafer fabrication processes, these high performance transistors provide high gain, efficiency, bandwidth and ruggedness over a wide bandwidth for today's demanding application needs. The MAGX-000245 -014000 is constructed using a thermally enhanced Cu/W flanged ceramic package which provides excellent thermal performance.

MAGX-000245-014000

Ordering Information

Part Number	Description
MAGX-000245-014000	Bulk Packaging
MAGX-S00245-014000	Sample Board (2.45 GHz)

* Restrictions on Hazardous Substances, European Union Directive 2002/95/EC. 1

Rev. V2

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN on SiC HEMT Power Transistor 14 W, DC - 2.5 GHz, CW Power

Rev. V2

Electrical Specifications¹: Freq. = 2450 MHz, T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
RF Functional Tests: V _{DD} = +50 V, I _{DQ} = 15 mA, CW Operation						
Input Power	P _{OUT} = 14 W	P _{IN}	-	0.43	0.58	W
Power Gain	P _{OUT} = 14 W	G _P	13.8	15.2	-	dB
Drain Efficiency	P _{OUT} = 14 W	η_{D}	55	57	-	%
2 nd Harmonics	P _{OUT} = 14 W	2Fc	-	-50	-	dBc
3 rd Harmonics	P _{OUT} = 14 W	3Fc	-	-49	-	dBc
Load Mismatch Stability	P _{OUT} = 14 W	VSWR-S	-	5:1	-	-
Load Mismatch Tolerance	P _{OUT} = 14 W	VSWR-T	-	10:1	-	-

Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
DC Characteristics						
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 175 V	I _{DS}	-	-	750	μA
Gate Threshold Voltage	V_{DS} = 5 V, I_D = 2 mA	V _{GS (TH)}	-5	-3	-2	V
Forward Transconductance	V _{DS} = 5 V, I _D = 500 mA	G _M	0.35	-	-	S
Dynamic Characteristics						
Input Capacitance	V_{DS} = 0 V, V_{GS} = -8 V, F = 1 MHz	CISS	-	4.4	-	pF
Output Capacitance	V_{DS} = 50 V, V_{GS} = -8 V, F = 1 MHz	C _{oss}	-	1.9	-	pF
Reverse Transfer Capacitance	V_{DS} = 50 V, V_{GS} = -8 V, F = 1 MHz	C _{RSS}	-	0.2	-	pF

Correct Device Sequencing

Turning the device ON

- 1. Set V_{GS} to the pinch-off (V_P), typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (+50V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to $V_{P.}$
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off $V_{GS.}$

1. Electrical Specifications measured in MACOM RF evaluation board.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

2

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Rev. V2

GaN on SiC HEMT Power Transistor 14 W, DC - 2.5 GHz, CW Power

Absolute Maximum Ratings^{2,3,4}

Parameter	Limit		
Supply Voltage (V _{DD})	+65 V		
Supply Voltage (V _{GG})	-8 to 0 V		
Supply Current (I_{DMAX}) for CW Operation at V_{DD} = +65 V	800 mA		
Input Power (P_{IN}) for CW Operation at V_{DD} = +50 V	P _{IN} (nominal) + 3 dB		
Absolute Max. Junction/Channel Temperature	200°C		
Power Dissipation at 85°C for CW Operation at V_{DD} = +50 V	11.2 W		
MTTF (T _J < 200°C)	600 years		
Thermal Resistance, (T_J = 200°C) V _{DD} = 50 V, I _{DQ} = 15 mA, CW Operation	8.5°C/W		
Operating Temperature	-40 to +95°C		
Storage Temperature	-65 to +150°C		
Mounting Temperature	See solder reflow profile		
ESD Min Charged Device Model (CDM)	150 V		
ESD Min Human Body Model (HBM)	500 V		

2. Operation of this device above any one of these parameters may cause permanent damage.

3. Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime.

4. For saturated performance it is recommended that the sum of (3*V_{DD} + abs(V_{GG})) <175 V.


M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

3

[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Test Fixture Assembly (2450 MHz, CW Operation)

Parts List

Reference Designator	Part	Vendor
C1	0402, 0.1 μF, X7R, 10%, 16 V	Murata
C2	0402, 10 nF, X7R, 10%, 50 V	Murata
C13	0805, 0.1 µf, X7R, 10%, 100 V	ТДК
C3, C4	0402, 12 pF, ±1%, 200 V	ATC
C8, C11	0603, 12 pF, ±2%, 250 V	ATC
C5, C15	0402, 2.2 pF, ±0.1 pF , 200 V	ATC
C6	0402, 3.9 pF, ±0.1 pF , 200 V	ATC
C7	0603, 2.4 pF, ±0.05 pF, 250 V	ATC
C17	100 µF, 160 V, Electrolytic Capacitor	Panasonic
C9	0603, 1.5 pF, ±0.05 pF, 250 V	ATC
C10, C12	Do Not Populate	-
L1	10 nH, 0402, 2%	Coilcraft
R1	200 Ω, 0402, 5%	Panasonic
R2	3 ΚΩ, 0402, 5%,	Panasonic
R3	11 Ω, 0402, 1%	Panasonic
R4	2.2 Ω, 1206, 1%	Panasonic
C14, L2, L6, R6	Copper Shorting Tab	MACOM
J1, J2	SMA Connector	Tyco Electronics

Contact factory for Gerber file or additional circuit information. 4

> M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

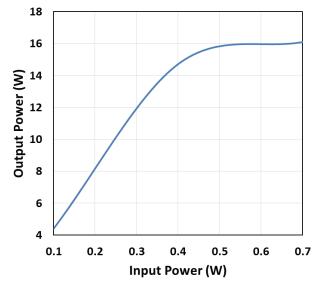
• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

• Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

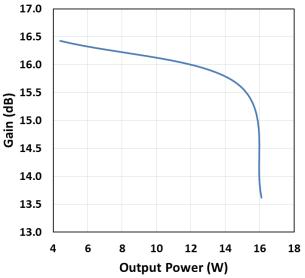
Rev. V2

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

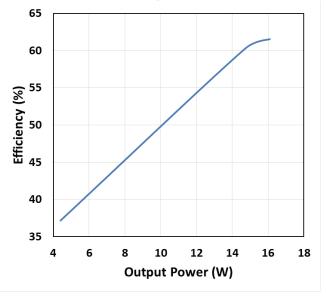
GaN on SiC HEMT Power Transistor 14 W, DC - 2.5 GHz, CW Power


Rev. V2

Application Section


Typical Performance Curves

2450 MHz, V_{DD} = 50 V, I_{DQ} = 15 mA, CW Operation, T_A = 25°C


Output Power vs. Input Power

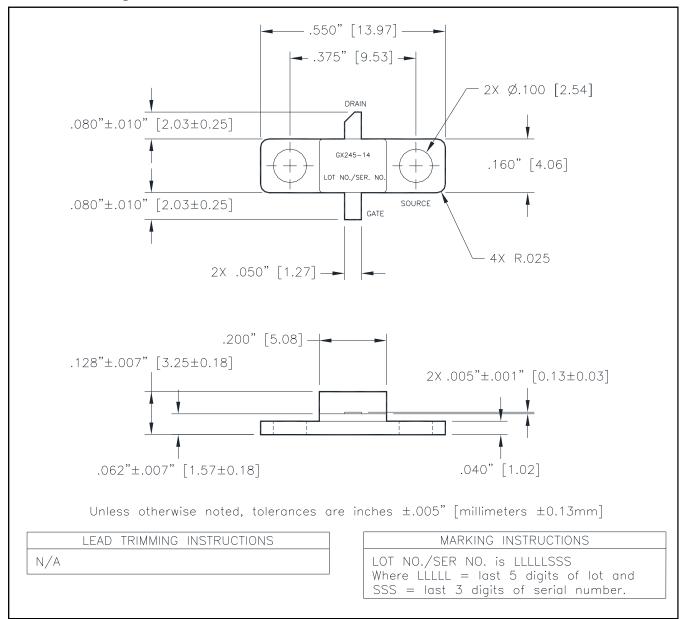
Gain vs. Output Power

Drain Efficiency vs. Output Power

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300


[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Rev. V2

MACOM

Outline Drawing MAGX-000245-014000

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

6

- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298