: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HMICTM PIN Diode SPDT 50 Watt Switch for

Features

- Exceptional Broadband Performance, 0.05-6.0 GHz
- Low Loss: $T_{X}=0.33 \mathrm{~dB}$ @ $2010 \mathrm{MHz}, 5 \mathrm{~V} / 20 \mathrm{~mA}$
- $\mathrm{T}_{\mathrm{X}}=0.38 \mathrm{~dB}$ @ $3.5 \mathrm{GHz}, 5 \mathrm{~V} / 20 \mathrm{~mA}$
- High Isolation: $\mathrm{Rx}=44 \mathrm{~dB}$ @ $2010 \mathrm{MHz}, 20 \mathrm{~mA} / 5 \mathrm{~V}$
- $\mathrm{Rx}=36 \mathrm{~dB}$ @ $3.5 \mathrm{GHz}, 20 \mathrm{~mA} / 5 \mathrm{~V}$
- High T_{x} RF Input Power = 50 W C.W. @ 2010MHz
- High Tx RF Input Peak Power > 1000 W
- Suitable for Very High Power TD-SCDMA \& WiMAX Applications
- Surface Mount 4mm PQFN Package, RoHS* Compliant

Description and Applications

The MASW-000834-13560T is a SPDT Broadband, high linearity, common anode, PIN diode T/R switch for 0.05 6.0 GHz applications, including WiMAX \& WiFi. The device is provided in industry standard 4mm PQFN plastic packaging. This device incorporates a PIN diode die fabricated with M/A-COM Technology Solutions patented Silicon-Glass $\mathrm{HMIC}^{\text {TM }}$ process. This chip features two silicon pedestals embedded in a low loss, low dispersion glass. The diodes are formed on the top of each pedestal. The topside is fully encapsulated with silicon nitride and has an additional polymer passivation layer. These polymer protective coatings prevent damage and contamination during handling and assembly.

This compact 4mm PQFN package, SPDT switch offers wideband $0.05-6.0 \mathrm{GHz}$ performance with excellent isolation to loss ratio for both T_{X} and R_{X} states. The PIN diode provides 50 W typical C.W. power handling and 65 dBm IIP3 at 2010 MHz for maximum switch performance.

Absolute Maximum Ratings ${ }^{1,2}$
 $@ T_{A}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Absolute Maximum
Forward Current	$\|100 \mathrm{~mA}\|$
Reverse Voltage (RF \& D.C.)	$\|-200 \mathrm{~V}\|$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+175^{\circ} \mathrm{C}$
T_{X} Incident C.W. Power	$50 \mathrm{~W}(47 \mathrm{dBm})^{3}$
$\mathrm{~T}_{\mathrm{X}}$ Peak Incident Power	$>300 \mathrm{~W}, 5 \mathrm{Ms}, 1 \%$ duty

Exceeding these limits may cause permanent damage.
2. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.
3. Baseplate Temperature must be controlled to a constant $+25^{\circ} \mathrm{C}$. See page 7 for derating curve.

Functional Diagram (TOP VIEW)

Pin Configuration:

(Center Metal Area is RF, D.C., and Thermal Ground)

Pin	Function	Pin	Function
1	GND	9	DC2
2	ANT	10	N/C
3	GND	11	N/C
4	N/C	12	N/C
5	N/C	13	GND
6	GND	14	TX
7	RX	15	GND
8	GND	16	N/C

Ordering Information

Part Number	Package
MASW-000834-13560T	Tape and Reel
MASW-000834-001SMB	Sample Board
MADR-008851-0001TB	Sample Board with recommended external Driver \& MASW-00083413560T Switch

Static Sensitivity

These devices are rated Class 1B Human Body. Proper ESD control techniques should be used when handling these devices.

Electrical Specifications at $+\mathbf{2 5}^{\circ} \mathrm{C}$, Characteristic Impedance, $20 \mathrm{~mA} / 5 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=\mathbf{5 0 \Omega}$

Parameter	Symbol	20mA / 5V Conditions	Units	Min.	Typ.	Max.
F = 900 MHz						
Insertion Loss, R_{X}	R_{x}	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.34	0.56
Insertion Loss, T_{X}	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.26	0.445
Isolation, ANT To Rx	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	45.8	52.1	-
Isolation, ANT To T_{X}	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	21.7	27.1	-
$\mathrm{F}=1800 \mathrm{MHz}$						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.40	0.72
Insertion Loss, T_{X}	$\begin{aligned} & \text { Tx } \\ & \text { IL } \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.32	0.49
Isolation, ANT To R_{X}	$\begin{gathered} \mathrm{Rx} \\ \mathrm{ISO} \\ \hline \end{gathered}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	43.7	48.9	-
Isolation, ANT To ${ }_{\text {x }}$	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \\ \hline \end{gathered}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	18.4	21.4	
F = 2010 MHz						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.42	0.75
Insertion Loss, T_{X}	T_{x}	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.33	0.5
Isolation, ANT To Rx	$\begin{gathered} \mathrm{R}_{\mathrm{x}} \\ \mathrm{ISO} \end{gathered}$	See Bias Table 1, pg. 10, $\text { Pinc }=0 \mathrm{dBm}$	dB	43.2	44.6	-
Isolation, ANT To T_{X}	$\begin{gathered} \hline \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	17.7	19.9	-
Input Return Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \\ & \hline \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	32.1	-
Input Return Loss, Rx_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	24.2	-

0.05 - 6.0 GHz Higher Power Applications

Electrical Specifications at $+\mathbf{2 5}^{\circ} \mathrm{C}$, Characteristic Impedance, $20 \mathrm{~mA} / 5 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=\mathbf{5 0 \Omega}$

Parameter	Symbol	20mA / 5V Conditions	Units	Min.	Typ.	Max.
$\mathrm{F}=\mathbf{2 . 3 - 2 . 7 ~ G H z}$						
Insertion Loss, R_{X}	$\underset{x}{R_{x}}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.46	0.84
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{x}} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.35	0.525
Isolation, ANT To Rx	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \mathrm{ISO} \end{gathered}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	40.2	41.2	-
Isolation, ANT To T_{x}	$\begin{array}{r} \hline \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{array}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	16.2	18.6	-
Input Return Loss, T_{x}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	30.5	-
Input Return Loss, R_{X}	$\begin{aligned} & R_{x} \\ & R L \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	22.9	-
$\mathrm{F}=3.3$-3.8 GHz						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.56	1.0
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{x}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.38	0.575
Isolation, ANT To Rx	$\begin{array}{r} \mathrm{R}_{\mathrm{X}} \\ \mathrm{ISO} \\ \hline \end{array}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	33.7	35.9	-
Isolation, ANT To Tx	$\begin{array}{r} \mathrm{T}_{\mathrm{X}} \\ \mathrm{ISO} \\ \hline \end{array}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	13.6	16.1	-
Input Return Loss, T_{X}	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	27.4	-
Input Return Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	21.9	-
$\mathrm{F}=4.9-5.9 \mathrm{GHz}$						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \text { LL } \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.78	-
Insertion Loss, T_{X}	T_{X}	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	0.52	-
Isolation, ANT To Rx	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	26.4	-
Isolation, ANT To Tx	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \text { ISO } \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	11.8	-
Input Return Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	-	20.3	-
Input Return Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 1, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	24.2	-

0.05 - 6.0 GHz Higher Power Applications

Electrical Specifications at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $50 \mathrm{~mA} / 25 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=\mathbf{5 0 \Omega}$

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Typ.	Max.
F $=900 \mathrm{MHz}$						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \\ & \mathrm{IL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	0.27	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	0.22	-
Isolation, ANT To R_{X}	$\begin{array}{r} \mathrm{R}_{\mathrm{x}} \\ \mathrm{ISO} \\ \hline \end{array}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \\ \hline \end{gathered}$	dB	-	53.3	-
Isolation, ANT To Tx	$\begin{array}{r} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{array}$	See Bias Table 2, pg. 10, $\text { Pinc }=0 \mathrm{dBm}$	dB	-	27.4	-
F = 1800 MHz						
Insertion Loss, R_{X}	R_{x}	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.32	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	0.27	-
Isolation, ANT To Rx	$\begin{array}{r} \mathrm{R}_{\mathrm{X}} \\ \mathrm{ISO} \end{array}$	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	-	50.2	-
Isolation, ANT To Tx	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	-	21.6	-
F $=2010 \mathrm{MHz}$						
Insertion Loss, R_{X}	R_{x}	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.34	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	0.28	-
Isolation, ANT To Rx	$\begin{array}{r} \mathrm{R}_{\mathrm{x}} \\ \mathrm{ISO} \end{array}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	45.5	-
Isolation, ANT To T_{x}	$\begin{array}{r} \mathrm{T}_{\mathrm{X}} \\ \mathrm{ISO} \\ \hline \end{array}$	See Bias Table 2, pg. 10, $\text { Pinc }=0 \mathrm{dBm}$	dB	-	20.1	-
Input Return Loss, T_{x}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	33.1	-
Input Return Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{RL} \\ & \hline \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \\ \hline \end{gathered}$	dB	-	24.1	-

0.05 - 6.0 GHz Higher Power Applications

Electrical Specifications at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $50 \mathrm{~mA} / 25 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=50 \Omega$

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Typ.	Max.
$\mathrm{F}=2.3$-2.7 GHz						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.38	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.30	-
Isolation, ANT To R ${ }_{\text {X }}$	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \mathrm{ISO} \end{gathered}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	41.8	-
Isolation, ANT To ${ }_{\text {x }}$	$\begin{gathered} \hline \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{gathered}$	$\begin{gathered} \hline \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	18.7	-
Input Return Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	-	31.3	-
Input Return Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	22.8	-
$\mathrm{F}=3.3$-3.8 GHz						
Insertion Loss, R_{X}	$\underset{\mathrm{IL}}{\mathrm{R}_{\mathrm{X}}}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.47	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{IL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.33	-
Isolation, ANT To R ${ }_{\text {x }}$	$\begin{gathered} \mathrm{R}_{\mathrm{x}} \\ \text { ISO } \end{gathered}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	36.2	-
Isolation, ANT To T_{x}	$\begin{gathered} \mathrm{T}_{\mathrm{x}} \\ \text { ISO } \\ \hline \end{gathered}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	16.2	-
Input Return Loss, T_{x}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 2, pg. 10, $\text { Pinc }=0 \mathrm{dBm}$	dB	-	28.0	-
Input Return Loss, R_{X}	$\begin{aligned} & R_{X} \\ & R L \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	21.8	-
$\mathrm{F}=4.9-5.9 \mathrm{GHz}$						
Insertion Loss, R_{X}	$\begin{aligned} & \mathrm{RX} \\ & \mathrm{IL} \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	0.72	-
Insertion Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \text { IL } \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	0.48	-
Isolation, ANT To R ${ }_{\text {X }}$	$\begin{array}{r} \hline \mathrm{R}_{\mathrm{X}} \\ \mathrm{ISO} \end{array}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	26.6	-
Isolation, ANT To T_{x}	$\begin{array}{r} \mathrm{T}_{\mathrm{X}} \\ \text { ISO } \end{array}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	11.8	-
Input Return Loss, T_{X}	$\begin{aligned} & \mathrm{T}_{\mathrm{X}} \\ & \mathrm{RL} \end{aligned}$	See Bias Table 2, pg. 10, Pinc $=0 \mathrm{dBm}$	dB	-	20.5	-
Input Return Loss, R_{X}	$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \\ & \mathrm{RL} \\ & \hline \end{aligned}$	$\begin{gathered} \text { See Bias Table 2, pg. 10, } \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	-	24.2	-

Electrical Specifications at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $50 \mathrm{~mA} / 25 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Typ.	Max.
Tx Input P1dB ${ }^{3}$	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \mathrm{P} 1 \mathrm{~dB} \end{gathered}$	2010 MHz, Tx to Antenna	dBm	-	>45.5	-
Tx $2^{\text {nd }}$ Harmonic	$\begin{gathered} \hline \mathrm{T}_{\mathrm{X}} \\ 2 \mathrm{Fo} \end{gathered}$	2010 MHz , Pin $=+30 \mathrm{dBm}$	dBc	-	80	-
Tx $3^{\text {rd }}$ Harmonic	$\begin{array}{r} \mathrm{T}_{\mathrm{X}} \\ 3 \mathrm{Fo} \\ \hline \end{array}$	2010 MHz , Pin $=+30 \mathrm{dBm}$	dBc	-	95	-
T_{X} Input Third Order Intercept Point	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \text { IIP3 } \\ \hline \end{gathered}$	$\mathrm{Pi}=+10 \mathrm{dBm}, \mathrm{F} 1=2010 \mathrm{MHz}, \mathrm{F} 2=2020 \mathrm{MHz}$	dBm	-	>64	-
Tx C.W. Input Power ${ }^{3}$	$\begin{gathered} \mathrm{T}_{\mathrm{x}} \\ \text { Pinc } \\ \hline \end{gathered}$	$\mathrm{F}=2010 \mathrm{MHz}$	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{aligned} & 47 \\ & 50 \end{aligned}$	-
Rx C.W. Input Power	R_{X} Pinc	$\mathrm{F}=2010 \mathrm{MHz}$	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 41.5 \\ 14 \end{gathered}$	-
Tx RF Switching Speed	$t_{\text {RF }}$	$\text { F = } 2010 \mathrm{MHz} \text { (10-90\% RF Voltage) }$ 1 MHz Rep Rate in Modulating Mode	ns	-	200	-

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Typ.	Max.
T_{x} Input P1dB	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ \mathrm{P} 1 \mathrm{~dB} \end{gathered}$	$3.5 \mathrm{GHz}, \mathrm{T}_{\mathrm{x}}$ to Antenna	dBm	-	>45	-
Tx $2^{\text {nd }}$ Harmonic	$\begin{gathered} \hline \mathrm{T}_{\mathrm{X}} \\ 2 \mathrm{Fo} \end{gathered}$	3.5 GHz, Pin $=+30 \mathrm{dBm}$	dBc	-	88	-
Tx $3^{\text {rd }}$ Harmonic	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \\ 3 \mathrm{Fo} \end{gathered}$	3.5 GHz, Pin $=+30 \mathrm{dBm}$	dBc	-	105	-
T_{X} Input Third Order Intercept Point	$\begin{gathered} \hline \mathrm{T}_{\mathrm{X}} \\ \text { IIP3 } \end{gathered}$	$\mathrm{Pi}=+10 \mathrm{dBm}, \mathrm{F} 1=3.500 \mathrm{GHz}, \mathrm{F} 2=3.510 \mathrm{GHz}$	dBm	-	>64	-
$\mathrm{R}_{\mathrm{x}} \mathrm{C} . \mathrm{W}$. Input Power	R_{x} Pinc	$\mathrm{F}=3.5 \mathrm{GHz}$	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 40.5 \\ 11 \end{gathered}$	-
TX RF Switching Speed	$t_{\text {RF }}$	F = 3.5 GHz ($10-90 \%$ RF Voltage) 1 MHz Rep Rate in Modulating Mode	ns	-	200	-

HMICTM PIN Diode SPDT 50 Watt Switch for

0.05 - 6.0 GHz Higher Power Applications

Electrical Specifications at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $50 \mathrm{~mA} / 25 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

Note that this part must be held to a constant baseplate temperature to achieve the power handling results specified above. Adding a heatsink to the baseplate will improve performance to values greater than shown here. The increase in maximum input power from using a heatsink depends on the specific heatsink design.

With a sample board mounted onto a heatsink of dimensions and fins shown below, this switch can handle up to 35 Watts C.W. of incident power.

MASW-000834-13560T

HMICTM PIN Diode SPDT 50 Watt Switch for
0.05 - 6.0 GHz Higher Power Applications
T_{X} Performance Curves at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $\mathrm{Z}_{\mathbf{0}}=50 \Omega$

Tx Insertion Loss 20mA \& 50mA Forward Bias

Tx Isolation
5V \& 25V Reverse Bias

MASW-000834-13560T

R_{X} Performance Curves at $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $\mathrm{Z}_{0}=50 \Omega$

Rx Isolation
5V \& 25V Reverse Bias

Rx Insertion Loss
20mA \& 50mA Forward Bias

HMICTM PIN Diode SPDT 50 Watt Switch for
0.05 - 6.0 GHz Higher Power Applications

Bias Diagrams \& Tables

Bias Table 1	Tx	R_{X}	DC2	ANT
	Pin 14	Pin 7	Pin 9	Pin 2
T X -ANT Insertion Loss	-20 mA	$+5 \mathrm{~V}, 0 \mathrm{~mA}$	-20 mA	OV
R_{x}-ANT Isolation				
R_{X}-ANT Insertion Loss	+5V, 0 mA	-20 mA	+5V, 0 mA	OV
T_{x}-ANT Isolation				

Bias Table 2	T_{X}	R_{X}	DC2	ANT
	Pin 14	Pin 7	Pin 9	Pin 2
TX-ANT Insertion Loss	-50 mA	+25V, 0 mA	-50 mA	OV
R_{x}-ANT Isolation				
R_{x}-ANT Insertion Loss	+25V, 0 mA	-50 mA	+25V, 0 mA	OV
T_{x}-ANT Isolation				

*Note - Diode Based Products require different minimum reverse bias voltages depending on the frequency and incident power levels. More details can be found on page 11 of this datasheet.

MASW-000834 Minimum Required Reverse Bias Voltage

Minimum reverse bias voltage on a PIN diode based product varies with frequency of operation and incident power levels. As a rule of thumb, a designer can always use the magnitude of the peak RF voltage or empirically locate lower bias values than the peak RF voltage magnitude. However, it has been shown that lower DC voltages can be used depending on the RF environment in which a diode is placed. In the plot below, the minimum required reverse voltage vs. frequency is shown for an incident RF power of 50 Watts. This trend line will shift lower if the incident RF power is decreased. The biasing values have not been verified through measurement at M/A-COM Technology Solutions. As a result, please use the data below as a guide only for biasing requirements as this data is based solely on generic PIN diode equations. ${ }^{4}$

Please be cautious in that lower reverse bias levels can degrade isolation and distortion in a PIN diode based product.

4. R. Caverly and G. Hiller, "Establishing the Minimum Reverse Bias for a P-I-N Diode in a High Power Switch," IEEE Transactions on Microwave Theory and Techniques, Vol.38, No.12, December 1990

MASW-000834 and Recommended Driver with +5V \& +28V DC Power 5 5,6,7,8,9,10,11,12

MADR-008851 is the recommended driver for the MASW-000834 Switch.

Link to MADR-008851 Datasheet

TX

5. Forward Bias Diode Voltage: $\Delta \mathrm{Vf}$ is $\sim 0.9 \mathrm{~V} @ 22 \mathrm{~mA} ; \Delta \mathrm{Vf}$ is $\sim 1.0 \mathrm{~V} @ 35 \mathrm{~mA}$
6. R 1 is calculated by $(\mathrm{Vcc}-1.5 \mathrm{~V}) / I_{\text {series }}$, where $\mathrm{I}_{\text {series }}$ is the desired bias current for the series diodes. For 21 mA load current, $\mathrm{R} 1=165 \Omega @$ $\mathrm{VCC}=5.0 \mathrm{~V}$ and $82 \Omega @ \mathrm{VCC}=3.3 \mathrm{~V}$. For 32 mA load current, $\mathrm{R} 1=110 \Omega @ \mathrm{VCC}=5.0 \mathrm{~V}$ and $56 \Omega @ \mathrm{VCC}=3.3 \mathrm{~V}$.
7. R 2 is calculated by $(\mathrm{Vdd}-1 \mathrm{~V}) / I_{\text {shunt }}$, where $\mathrm{I}_{\text {shunt }}$ is the desired forward bias current for the shunt diode. The power dissipation is calculated by $I_{\text {shunt }} \times 27 \mathrm{~V}$. For 20 mA of $I_{\text {shunt }}, R 2$ should use a $2511,1 \mathrm{~W}, 1.3 \mathrm{k}$ ohm resistor.
8. C8 is already built-in for M/A-COM MASW-000834-13560T switch.
9. The voltage at the common anode will be approximately 1.5 V .
10. The current in through the back-biased diodes will be the leakage current for the diodes
11. C1-C5, L1-L4, R1, R2, and the switch are discrete components that should be installed on the user's board. It is recommended that Coilcraft 0603CS-27NXJLW or equivalent be used for L1-L4 at 2 GHz (values may vary based on the frequency).
12. There are 33 pF bypass capacitors included in the driver for the RX, TX, and SH 1 ports. There are cases, especially at higher frequencies, where the optional 12 pF bypass capacitors (C 6 and C 7) that are shown on the schematic are needed.

MASW-000834-13560T Outline - 4mm PQFN 16-Lead Saw Singulated

[^0]M/A-COM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

> THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

[^0]: \dagger Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

