imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX11046 evaluation kit (EV kit) provides a proven design to evaluate the MAX11046 8-channel, 16-bit, simultaneous-sampling ADC. The EV kit also includes Windows[®] 2000-, Windows XP[®]-, and Windows Vista[®]- compatible software that provides a simple graphical user interface (GUI) for exercising the features of the MAX11046.

The MAX11046 EV kit PCB comes with a MAX11046ETN+ installed. The MAX11046 EV kit can also be used to evaluate the MAX11044, MAX11045, MAX11047, MAX11048, and MAX11049. Contact the factory for free samples of the pin-compatible MAX11044ETN+, MAX11045ETN+, MAX11047ETN+, MAX11048ETN+, and MAX11049ETN+ to evaluate these parts.

_Features

- ♦ 8 Simultaneous ADC Channel Inputs
- BNC Connectors for all Signal Input Channels
- ♦ 6V to 8V Single Power-Supply Operation
- USB-PC Connection
- Proven PCB Layout
- Windows 2000-, Windows XP-, and Windows Vista (32-Bit)-Compatible Software

_Ordering Information

PART	TYPE
MAX11046EVKIT+	EV Kit

+Denotes lead(Pb)-free and RoHS compliant.

Component List

	1	
DESIGNATION	QTY	DESCRIPTION
BNC1-BNC8	8	50 Ω BNC female jacks
C1, C2, C4, C5, C13	5	33μF ±20%, 6.3V X5R ceramic capacitors (1210)
		Murata GRM32DR60J336ME19
C6, C7, C8, C16, C17	5	2.2μF ±10%, 25V X5R ceramic capacitors (0805) TDK C2012X5R1E225K
C9, C10	2	18pF ±5%, 50V C0G ceramic capacitors (0603) Murata GRM1885C1H180J
C11, C12, C18–C21, C57, C60–C63	11	0.1µF ±10%, 16V X7R ceramic capacitors (0402) TDK C1005X7R1C104K
C14, C15, C87, C88, C89	5	10μF ±10%, 10V X5R ceramic capacitors (0805) Murata GRM21BR71A106K
C22, C23, C54	3	0.01µF ±10%, 25V X7R ceramic capacitors (0603) TDK C1608X7R1E103K
C24–C38, C42–C53, C55	28	0.01µF ±10%, 25V X7R ceramic capacitors (0402) TDK C1005X7R1E103K
C39	1	33μF ±20%, 20V aluminum capacitor (E7) SANYO 20SVP33M
C40, C41	0	Not installed, ceramic capacitors

DESIGNATION	QTY	DESCRIPTION
C56, C58, C59, C64, C73, C74, C75, C78–C82, C91, C92, C93	15	0.1µF ±10%, 25V X7R ceramic capacitors (0603) Murata GRM188R71E104K
C65–C72	8	1000pF ±5%, 50V C0G ceramic capacitors (0402) Murata GRM1555C1H102J
C76, C77, C83–C86	6	330pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H331J
C99, C100	2	1000pF ±5%, 50V C0G ceramic capacitors (0603) Murata GRM1885C1H102J
D1, D2	2	Power zener diodes (430C-01) ON Semi 1SMB10CAT3G
D3	1	Green LED (0603)
FB1, FB2	2	Ferrite beads (0603) TDK MMZ1608R301A
J9	1	USB type-B right-angle PC-mount receptacle
J10–J13	0	Not installed
JU1–JU4, JU9–JU14	10	3-pin headers
JU5, JU6	2	Dual-row (2 x 4) 8-pin headers
JU7, JU8	2	2-pin headers

Windows, Windows XP, and Windows Vista are registered trademarks of Microsoft Corp.

M/IXI/M

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

DESIGNATION	QTY	DESCRIPTION
JU15	0	Not installed, 2-pin header
RN1, RN2, RN3, RN7	4	$33\Omega \times 8$ -resistor network (0402)
RN4	1	1 k Ω x 4-resistor network (0402)
RN5, RN6	2	$10k\Omega \times 4$ -resistor network (0402)
RN8, RN9, RN10	3	$0\Omega \times 8$ -resistor network (0402)
R1, R2, R11, R41	4	$200\Omega \pm 1\%$ resistors (0603)
R3–R8, R35, R44	8	$1k\Omega \pm 1\%$ resistors (0603)
R9	1	$0\Omega \pm 5\%$ resistor (0603)
R10, R13, R18, R20, R29	5	$10\Omega \pm 1\%$ resistors (0603)
R12, R26, R42, R46	4	$33.2\Omega \pm 1\%$ resistors (0603)
R14	1	680k Ω ±5% resistor (0603)
R15, R16	2	$27\Omega \pm 5\%$ resistors (0603)
R17, R21, R22	3	1.5k Ω ±5% resistors (0603)
R19	1	47k Ω ±5% resistor (0603)
R23, R34, R43	3	10k Ω ±1% resistors (0603)
R24	1	2.2k Ω ±5% resistor (0603)
R25	1	1k Ω ±5% resistor (0805)
R27, R30–R33, R37–R40	0	Not installed, resistors

Component List (continued)

DESIGNATION	QTY	DESCRIPTION
R28	1	300k Ω , ±5% resistor (0603)
R36, R45	2	$100\Omega \pm 1\%$ resistors (0603)
S1	1	Half-pitch, 4-position DIP switch
TP3-TP11	0	Not installed, test points
U1	1	8-channel 16-bit ADC (56 TQFN-EP*) Maxim MAX11046ETN+
U2	1	16-bit 200MHz DSP (179 BGA)
U3	1	Voltage reference (8 SO) Maxim MAX6126AASA41+
U4	1	256k x 16 flash memory (48 TSOP)
U5	1	LDO linear regulator (8 TDFN) Maxim MAX1976AETA160+
U6	1	350mA, 16.5V input, LDO linear regulator (8 SO) Maxim MAX1658ESA+
U7	1	350mA, 16.5V input, LDO linear regulator (8 SO) Maxim MAX1659ESA+
U8	1	64Mbit SDRAM (54 TSOP)
U9, U10	0	Not installed, op amps (8 MOSP)
Y1	1	12MHz, 6mm SMT crystal
Y2	0	Not installed, crystal
_	1	PCB: MAX11046 EVALUATION KIT+

*EP = Exposed pad.

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com
ON Semiconductor	602-244-6600	www.onsemi.com
SANYO Electric Co., Ltd.	619-661-6835	www.sanyodevice.com
TDK Corp.	847-803-6100	www.component.tdk.com

Note: Indicate that you are using the MAX11046, MAX11044, MAX11045, MAX11047, MAX11048, or MAX11049 when contacting these component suppliers.

MAX11046 EV Kit Files

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on your computer
MAX11046.EXE	Application program
LIBUSB.INF	USB device driver file
UNINST.INI	Uninstalls the EV kit software

_Quick Start

Required Equipment

Before beginning, the following equipment is needed:

- MAX11046 EV kit (USB cable included)
- 6V to 8V DC power supply
- 5V signal source
- BNC cable
- A user-supplied Windows 2000/XP/Vista-compatible PC with a spare USB port

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system.

Procedure

The MAX11046 EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- Visit www.maxim-ic.com/evkitsoftware to download the latest version of the EV kit software, 11046Rxx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- Install the EV kit software on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied and icons are created in the Windows <u>Start | Programs</u> menu.
- 3) Verify that all jumpers are in their default positions, as shown in Table 1.
- 4) Connect the 6V power supply to the MAX11046 EV kit between VDD and GND pads.
- 5) Turn on the 6V power supply.
- 6) Set the signal source to generate a 60Hz, 2V_{P-P} sinusoidal wave.
- 7) Using the BNC cable, connect the signal source to the BNC1 jack (CH0).
- 8) Connect the USB cable from the PC to the EV kit board. A <u>New Hardware Found</u> window pops up when installing the USB driver for the first time. If you do not see a window that is similar to the one described above after 30 seconds, remove the USB cable from the board and reconnect it. Administrator privileges are required to install the USB device driver on Windows.

- 9) Follow the directions of the <u>Found New Hardware</u> window to install the USB device driver. Manually specify the location of the device driver to be <u>C:\Program Files\MAX11046</u> (default installation directory) using the <u>Browse</u> button. During device driver installation, Windows may show a warning message indicating that the device driver Maxim uses does not contain a digital signature. This is not an error condition and it is safe to proceed with installation.
- Start the MAX11046 EV kit software by opening its icon in the <u>Start I Programs</u> menu. The EV kit software main window appears, as shown in Figure 1.
- Press the Convert button in the ADC Conversion group box. Observe that the data changes under BNC1 (CH0) in the ADC Value Display group box.

_Detailed Description of Software

The evaluation software's window is shown in Figure 1. There are three sections on the GUI to control the IC. They are **Setup**, **ADC Conversion**, and **Data Logging**.

Setup

The MAX11046 EV kit software supports the MAX11044–MAX11049. The **Part Number** drop-down list provides the selection to evaluate these ICs.

The **Control Register** group box contains four control bits of the MAX11046 control register.

The **Ref. Voltage (V)** edit box sets up the reference voltage of the MAX11046. The voltages are calculated from this reference voltage value.

The **SHDN** checkbox controls the SHDN pin of the MAX11047/MAX11048/MAX11049. When checked, these parts will go into a low-current shutdown state.

When using an external convert start signal, connect it to pin 2 of JU8, and check the **Ext CONVST** checkbox. For an on-board generated convert start signal, uncheck the **Ext CONVST** checkbox and place the shunt of jumper JU8 in the 1-2 position.

ADC Conversion

The **ADC Value Display** group box displays the output data **Code** and the calculated **Voltage** values for a single sample of all channels on the IC specified in the **Part Number** drop-down list. Press the **Convert** button to update the samples.

Check the **Auto Convert** checkbox to continually read the current ADC value at a rate set by the **Time Interval** drop-down list.

Part Number MAX	11046 🔻	_	SHDN	Ext CONVST	
	11040		SHUN		
Control Register	* checked l	boxes equal log	jic1×		. Voltage (V
DB0 : CONVST	Mode	DB1 : Sof	tware Shutdown		4.096
DB2 : Two's Co	mplement	🗖 DB3 : Ext	ernal Reference		4.030
ADC Conversion	⊢ADC Value	Dieplau			
Auto Convert	ADC Value	BNC1	BNC2	BNC3	BNC4
		(CH0)	(CH1)	(CH2)	(CH3)
Time Interval	Code: Voltage:	0x0000 0.00000	0x0000 0.00000	0x0000 0.00000	0x000 0.00000
1s 🔻		BNC5	BNC6	BNC7	BNC8
	Code:	(CH4) 0x0000	(CH5) 0x0000	(CH6) 0x0000	(CH7)
Convert	Voltage:	0.00000	0.00000	0.00000	0x0000 0.00000
		* The channel	# in the () refer to	o IC pin name *	
Data Logging	Carala Dat				
Number of Samples	Sample Rai	te .sps	Start Conve	ert S	ave to File

Figure 1. MAX11046 Evaluation Kit Main Window

Data Logging

Start Convert

The **Number of Samples** drop-down list selects the desired number of conversions. Press the **Start Convert** button to start sampling at the rate set by the **Sample Rate** edit box.

The on-board-generated convert start signal range is from 1ksps to 130ksps. The external convert start signal range is from 1ksps to 180ksps.

If using an external convert start signal, the GUI software will measure and display the sample rate.

Output File Data

The **Save to File** button is not active until the sampling is done. Press the **Save to File** button to save the sampled data into a file.

Table 1. Jumper Configuration

JUMPER	SHUNT POSITION	DESCRIPTION
JU1	1-2*	BNC1 protected by a transient voltage suppressor (D2)
JUI	2-3	BNC1 shorted to ground
	Open	BNC1 disconnected from D2
JU2	1-2*	BNC2 protected by a transient voltage suppressor (D1)
JU2	2-3	BNC2 shorted to ground
	Open	BNC2 disconnected from D1
	1-2*	BNC1 bypassing optional op amp
JU3	2-3	BNC1 connected to an optional op amp
	1-2*	BNC2 bypassing optional op amp
JU4	2-3	BNC2 connected to an optional op amp
	1-2	BNC1 connected to CH0 through a $10k\Omega$ resistor
JU5	3-4	BNC1 connected to CH0 through a $1k\Omega$ resistor
	5-6	BNC1 connected to CH0 through a 100Ω resistor
	7-8*	BNC1 connected to CH0

*Default position.

Note: CH_ refer to MAX11046 and MAX11049 pin names only.

_Detailed Description of Hardware

MAX11046 EV Kit

The MAX11046 EV kit board provides a proven layout for evaluating the MAX11046 8-channel, 16-bit, simultaneous-sampling ADC. The EV kit comes with the MAX11046ETN+ installed. Eight BNC connectors are provided on the EV kit for all input channels of the MAX11046.

Power Supply

One DC power supply is required to power up the MAX11046 EV kit. Connect the power supply (from 6V to 8V) between the VDD and the GND pads on the EV kit.

Jumper Settings

Table 1 provides an overview of jumper settings.

JUMPER	SHUNT POSITION	DESCRIPTION
	1-2	BNC2 connected to CH1 through a $10k\Omega$ resistor
JU6	3-4	BNC2 connected to CH1 through a $1k\Omega$ resistor
	5-6	BNC2 connected to CH1 through a 100Ω resistor
	7-8*	BNC2 connected to CH1
	1-2*	Use on-board external voltage reference (U3)
JU7	Open	Use an internal voltage reference or user-supplied external voltage reference connected to pin 2 of JU7
	1-2*	Use on-board DSP (U2) generated convert start signal
JU8	Open	Use a user-supplied external convert start signal connected to pin 2 of JU8
	1-2*	CH2 connected to BNC3 directly
JU9	2-3	CH2 shorted to ground
109	Open	CH2 connected to BNC3 through a $1k\Omega$ resistor

SHUNT DESCRIPTION	
1-2*	CH3 connected to BNC4 directly
2-3	CH3 shorted to ground
Open	CH3 connected to BNC4 through a $1k\Omega$ resistor
1-2*	CH4 connected to BNC5 directly
2-3	CH4 shorted to ground
Open	CH4 connected to BNC5 through a $1k\Omega$ resistor
1-2*	CH5 connected to BNC6 directly
2-3	CH5 shorted to ground
Open	CH5 connected to BNC6 through a $1k\Omega$ resistor
	POSITION 1-2* 2-3 Open 1-2* 2-3 Open 1-2* 2-3 Open

Table 1. Jumper Configuration (continued)

JUMPER	SHUNT POSITION	DESCRIPTION
	1-2*	CH6 connected to BNC7 directly
	2-3	CH6 shorted to ground
JU13	Open	CH6 connected to BNC7 through a $1k\Omega$ resistor
	1-2*	CH7 connected to BNC8 directly
	2-3	CH7 shorted to ground
JU14	Open	CH7 connected to BNC8 through a $1k\Omega$ resistor

*Default position.

Note: CH_ refer to MAX11046 and MAX11049 pin names only.

Stand-Alone

A user-supplied signal generator and logic analyzer can be used to evaluate the MAX11046 without the onboard DSP (U2). First disconnect the MAX11046 from

Table 2. MAX11046 Breakout to J12

PIN	SIGNAL NAME
1	D0
2	D1
3	D2
4	D3
5	D4
6	D5
7	D6
8	D7
9	D8
10	D9
11	D10
12	D11

U2 by removing RN8, RN9, and RN10. Then connect all necessary signals from the signal generator and logic analyzer to connector J12. The MAX11046 pins are connected to J12, as shown in Table 2.

PIN	SIGNAL NAME
13	D12
14	D13
15	D14
16	D15
17, 18	GND
19	WRB
20	CSB
21	RDB
22	SHDN
23	EOCB
24	CONVST

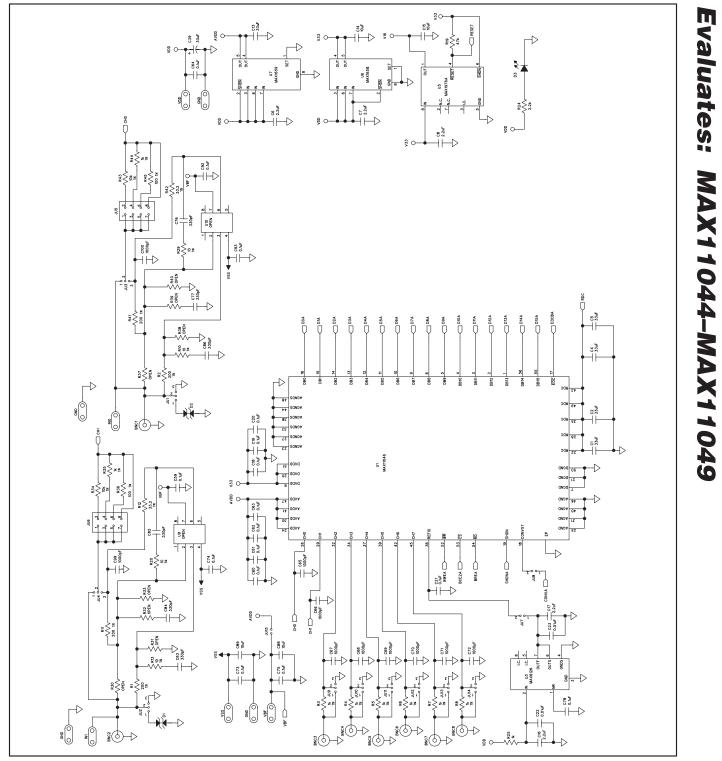


Figure 2a. MAX11046 EV Kit Schematic (Sheet 1 of 3)

7

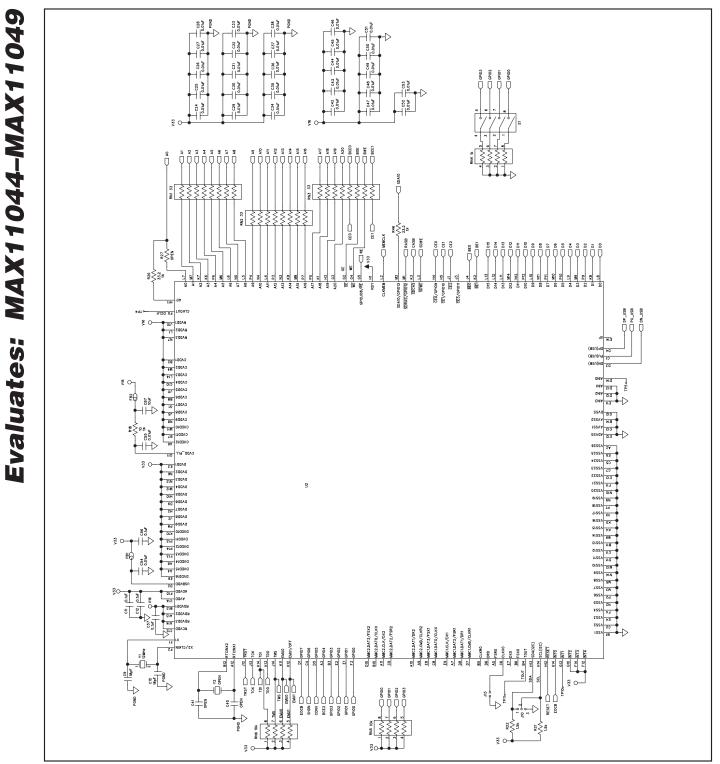


Figure 2b. MAX11046 EV Kit Schematic (Sheet 2 of 3)

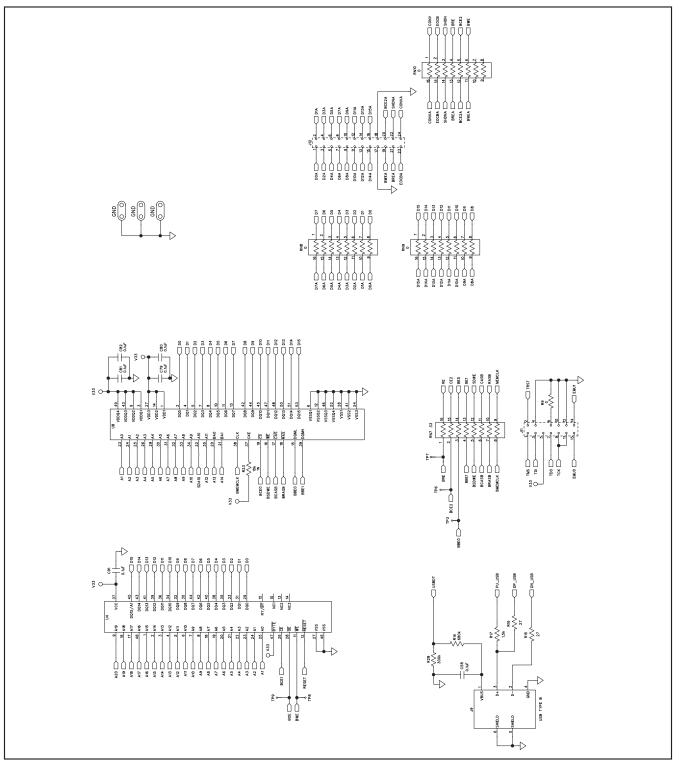


Figure 2c. MAX11046 EV Kit Schematic (Sheet 3 of 3)

Evaluates: MAX11044-MAX11049

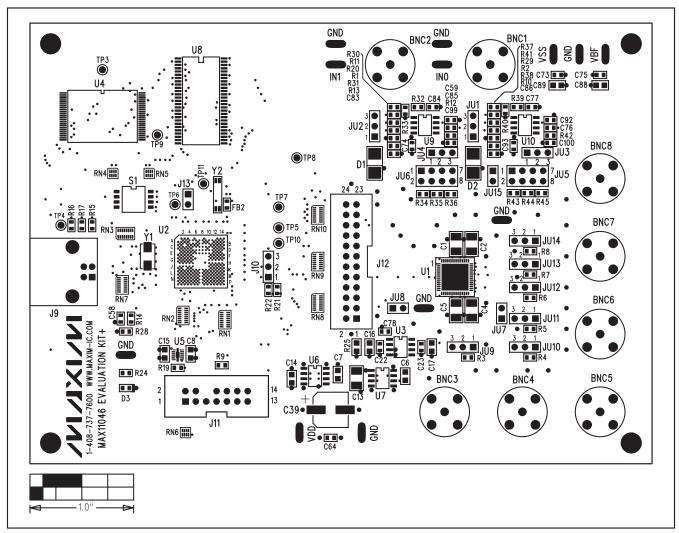
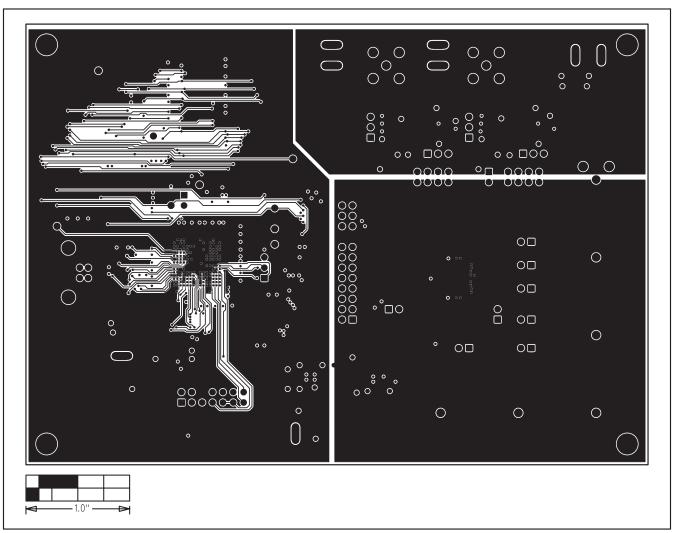



Figure 3. MAX11046 EV Kit Component Placement—Component Side

Figure 4. MAX11046 EV Kit PCB Layout—Component Side

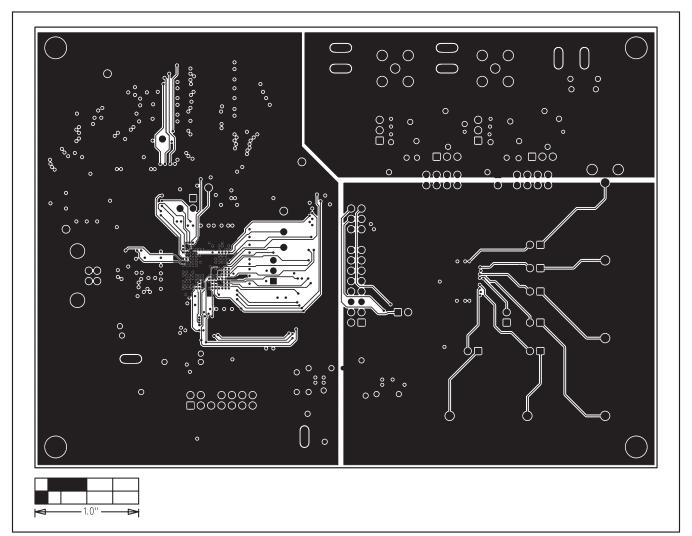


Figure 6. MAX11046 EV Kit PCB Layout—Inner Layer 3 (Power)

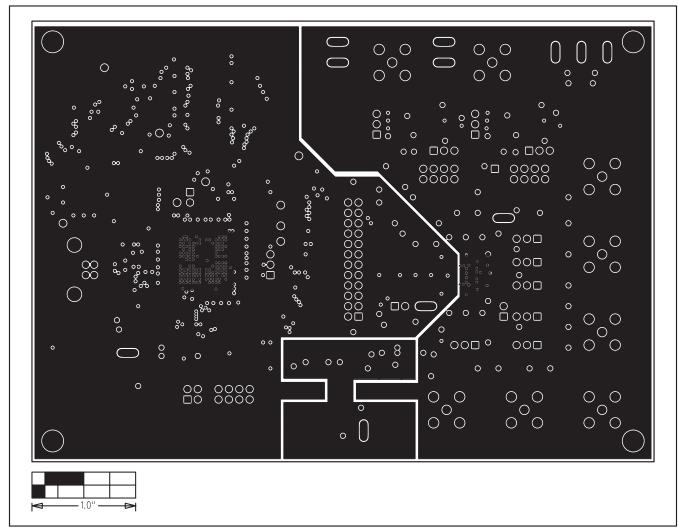


Figure 7. MAX11046 EV Kit PCB Layout—Inner Layer 4 (Ground)

Evaluates: MAX11044-MAX11049

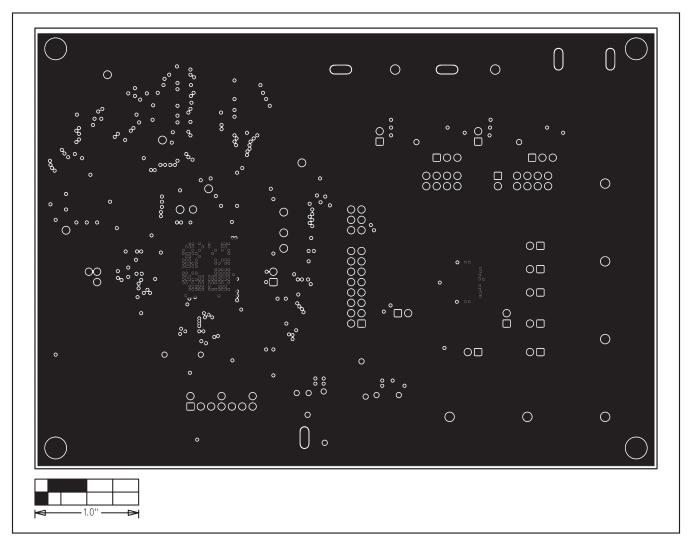


Figure 8. MAX11046 EV Kit PCB Layout—Inner Layer 5

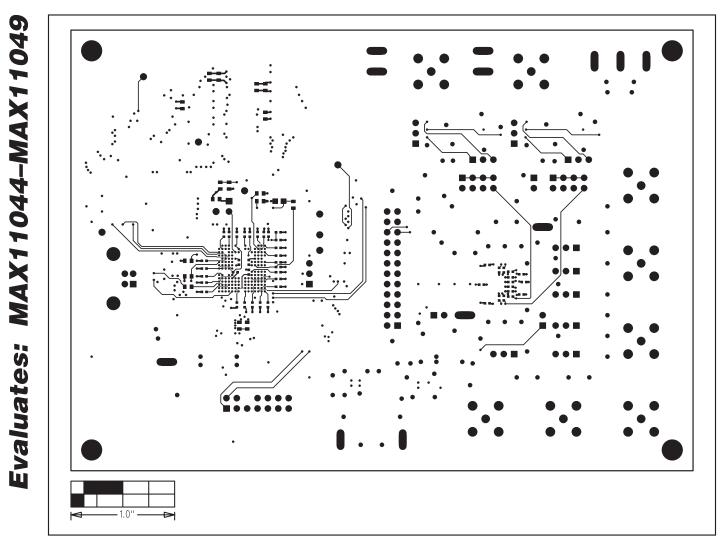


Figure 9. MAX11046 EV Kit PCB Layout—Solder Side

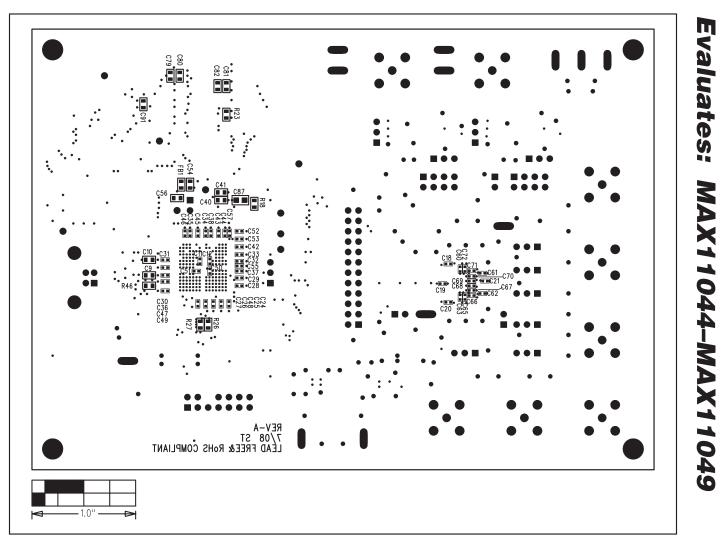


Figure 10. MAX11046 EV Kit Component Placement—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____

_____17