: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

USB 2．0 Hi－Speed and Audio Switches with Negative Signal Capability

Abstract

General Description The MAX14508E－MAX14511E／MAX14509AE high－ESD－ protected DPDT switches multiplex Hi－Speed（480Mbps） USB and analog signals such as AC－coupled audio or video．These devices combine the low on－capacitance （CON）and low on－resistance（RON）necessary for high－ performance switching applications in portable electron－ ics，and include an internal negative supply to pass audio signals that swing below ground（down to VCC－ 5．0V）．The MAX14508E－MAX14511E／MAX14509AE also handle USB low－／full－speed signaling and operate from a +2.7 V to +5.0 V supply． The MAX14508E－MAX14511E feature＋5．5V fault pro－ tection on COM1 and COM2，making these devices compliant with the USB 2.0 fault－protection specification． The MAX14510E／MAX14511E feature a VBUS detection input（VB）to automatically switch to the USB signal path upon detection of a valid VBUS signal．The MAX14508E／ MAX14510E feature internal shunt resistors on the audio path to reduce clicks and pops heard at the output．The MAX14508E／MAX14509E／MAX14509AE have an enable input（EN）to reduce supply current and set all channels to high impedance when driven low． The MAX14508E－MAX14511E／MAX14509AE are avail－ able in a space－saving， 10 －pin， $1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ UTQFN package，and operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temper－ ature range．

Applications

Cell Phones
MP3 Players
Notebook Computers
PDAs

Typical Operating Circuit appears at end of data sheet．
Single＋2．7V to＋5．0V Supply Voltage
Low $12 \mu \mathrm{~F}$ Supply Current
－3dB Bandwidth：950MHz（typ）
Low 2.4Ω（typ）On－Resistance
Low $20 \mathrm{~m} \Omega$（typ）Ron Flatness
THD＋N：0．05\％
COM Analog Inputs Fault Protected Against Shorts
to＋5．5V（MAX14508E／MAX14509E／MAX14510E／
MAX14511E）
Internal Shunt Resistors for Click－and－Pop
Reduction（MAX14508E／MAX14510E）
VBUS Detection for Automatic Switch Path
Selection（MAX14510E／MAX14511E）
Space－Saving Package：10－Pin，1．4mm x 1．8mm
UTQFN

Pin Configurations

Ordering Information／Selector Guide

PART	PIN－PACKAGE	VBUS DETECTION／ ENABLE LINE	FAULT PROTECTION	SHUNT RESISTORS	
MAP					
MAX14508EEVB＋	10 Ultra－Thin QFN	Enable	Yes	Yes	
MAX14509EEVB＋${ }^{*}$	10 Ultra－Thin QFN	Enable	Yes	No	
MAX14509AEEVB＋	10 Ultra－Thin QFN	Enable	No	AAI	
MAX14510EEVB＋	10 Ultra－Thin QFN	VBUS	Yes	No	YAL
MAX14511EEVB＋${ }^{*}$	10 Ultra－Thin QFN	VBUS	Yes	AAJ	

Note：All devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range．
＋Denotes a lead（Pb）－free／RoHS－compliant package．
＊Future product－contact factory for availability．

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

ABSOLUTE MAXIMUM RATINGS
(Voltages referenced to GND.)
VCc, CB, EN, VB, AOR...-0.3V to +6.0 V
COM_ (VEN > VIH) (Note 1)(VCC $-5.0 \mathrm{~V})$ to +6.0 V
COM_ (VEN < VIL) \qquad-0.3V to +6.0 V
ANO_ $\left(V_{E N}>V_{I H}\right)$. \qquad $\left(\mathrm{V}_{\mathrm{CC}}-5.0 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{C C}+0.3 \mathrm{~V}\right)$
ANO_ ($\mathrm{V}_{\mathrm{EN}}<\mathrm{V}_{\mathrm{IL}}$) \qquad -0.3 V to ($\mathrm{V} \mathrm{CC}+0.3 \mathrm{~V}$)
UNC_.
Continuous Current into Any Terminal..
-0.3 V to (VCC +0.3 V)
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
10-Pin UTQFN (derate $6.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).

Note 1: Limits are only for the MAX14508E/MAX14509E/MAX14510E/MAX14511E. For the MAX14509AE (VCC $\geq 2.7 \mathrm{~V}$), the limits are from ($\mathrm{V}_{\mathrm{CC}}-5.0 \mathrm{~V}$) to min of 6.0 V or ($\mathrm{V} C \mathrm{C}+1.0 \mathrm{~V}$).
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to $+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Power-Supply	VCC			2.7		5.0	V
Supply Current	ICC	$V_{C C}=3.3 \mathrm{~V}$	MAX14508E/MAX14509E/ MAX14509AE, VEN = OV			1	$\mu \mathrm{A}$
			$\begin{aligned} & \left(V_{E N}=V_{C C}, V_{C B}=0 V\right) \text { or } \\ & \left(V_{A O R}=0 V, V_{V B}=V_{V B D E T}\right) \end{aligned}$		6	12	
			$\begin{aligned} & \left(V_{E N}=V_{C C}, V_{C B}=V_{C C}\right) \text { or } \\ & \left(V_{A O R}=V_{C C}, V_{V B}=0 V\right) \end{aligned}$		6	12	
		$V_{C C}=5.0 \mathrm{~V}$	MAX14508E/MAX14509E/ MAX14509AE, VEN = OV	1			
			$\begin{aligned} & \left(V_{E N}=V_{C C}, V_{C B}=0 V\right) \text { or } \\ & \left(V_{A O R}=0 V, V_{V B}>V_{V B D E T}\right) \end{aligned}$		6	12	
			$\begin{aligned} & \left(V_{E N}=V_{C C}, V_{C B}=V_{C C}\right) \text { or } \\ & \left(V_{A O R}=V_{C C}, V_{V B}=0 V\right) \end{aligned}$		6	12	
Power-Supply Rejection Ratio	PSRR	$\mathrm{f}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{CC}}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{R}_{\text {com }}=50 \Omega$		60			dB
COM Overvoltage Detect Threshold	$V_{\text {FP }}$	MAX14508E/MAX14509E/MAX14510E/ MAX14511E, $\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}$ to +3.3 V , Figure 1 (Note 4)		$\begin{gathered} V_{C C}+ \\ 0.8 \end{gathered}$		$\begin{gathered} V_{C C}+ \\ 1.6 \end{gathered}$	V
Fault-Protection Response Time	tFP	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} \text { to } 5 \mathrm{~V} \text { step, } \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \text { Runc_ }^{+} \\ & \text {RANO_ }^{2}=1 \mathrm{k} \Omega \\ & \hline \end{aligned}$			1.3	5.0	$\mu \mathrm{s}$
Fault-Protection Recovery Time	tFPR	$\begin{aligned} & \mathrm{V}_{\text {COM }}=5 \mathrm{~V} \text { to } 1 \mathrm{~V} \text { step, } \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \text { RUNC_ }_{-}+ \\ & \text {RANO_ }^{2} 1 \mathrm{k} \Omega \end{aligned}$			2		$\mu \mathrm{s}$
Analog Signal Range	VUNC_			0		VCC	V
	VANO, VCOM_	$\mathrm{V}_{\mathrm{EN}}>\mathrm{V}_{\text {IH }}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 5.0 \end{gathered}$		VCC	
		$\mathrm{V}_{\text {EN }}<\mathrm{V}_{\text {IL }}$		0		VCC	

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to $+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANO_ On-Resistance	Ron(ANO_)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AN}} \\ & \mathrm{ICOM}_{-}=10 \mathrm{~mA} \end{aligned}$	$=-1.5 \mathrm{~V},+1.5 \mathrm{~V} ;$		2.4	5	Ω
UNC_ On-Resistance	Ron(UNC_)	VCC $=3.0 \mathrm{~V}$; VUN	$=0 \mathrm{~V}, \mathrm{VCC} ; \mathrm{ICOM}_{-}=10 \mathrm{~mA}$		2.4	5	Ω
		$\begin{aligned} & \mathrm{MAX}_{14509 \mathrm{AE}, \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=3.6 \mathrm{~V},} \\ & \mathrm{I}_{\mathrm{COM}}^{-}=10 \mathrm{~mA} \end{aligned}$			2.4	5	
ANO_On-Resistance Match Between Channels	$\Delta \mathrm{RON}\left(\mathrm{ANO}_{-}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ANO}_{-}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ & (\text { Notes 5, 6) } \end{aligned}$				0.2	Ω
UNC_ On-Resistance Match Between Channels	$\Delta \mathrm{RON}(\mathrm{UNC}$ _)	$\begin{aligned} & \mathrm{VCC}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{UNC}}^{-} \end{aligned}=0 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}$				0.2	Ω
ANO_ On-Resistance Flatness	RFLAt(ANO_)	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \mathrm{~V}_{\text {ANO_ }}=-1.5 \mathrm{~V} \text { to } \\ +1.5 \mathrm{~V}(\text { Note } 7) \end{array}$			0.03	0.25	Ω
UNC_ On-Resistance Flatness	RFLAt(UNC_)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \mathrm{~V}_{\text {UNC_ }}=0 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{CC}} \text { (Note } 7 \text {) } \end{aligned}$			0.05	0.5	Ω
Shunt Switch Resistance	RSH	MAX14508E/MAX14510E, IANO_ $=10 \mathrm{~mA}$			100	200	Ω
AOR Pulldown Resistance	RAOR			250		1200	k Ω
UNC_ Off-Leakage Current	IUNC_(OFF)	$\begin{aligned} & \hline \mathrm{V} C \mathrm{CC}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{UN}} \\ & \mathrm{~V}_{\mathrm{COM}}=-1.5 \mathrm{~V}, \\ & \text { MAX14508E/MA } \end{aligned}$	$\begin{aligned} & =+2.5 \mathrm{~V}, 0 \mathrm{~V} ; \\ & 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{C C} \text { for } \\ & 4509 \mathrm{E} / \mathrm{MAX} 14509 \mathrm{AE} \end{aligned}$	-10		+10	nA
ANO_ Off-Leakage Current	IANO_(OFF)	$\begin{aligned} & \text { MAX14509E/MA } \\ & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AN}} \\ & +2.5 \mathrm{~V} \end{aligned}$	4511E/MAX14509AE; $=+2.5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V},$	-10		+10	nA
COM_ Off-Leakage Current	ICOM_(OFF)	MAX14508E/MAX14509E/MAX14509AE, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3.6 \mathrm{~V}$, $V_{U N C_{-}}=V_{A N O_{-}}=0 \mathrm{~V}$		-10		+10	$\mu \mathrm{A}$
		$\begin{array}{\|l} \hline \text { MAX14508E/MAX14509E/MAX14509AE, } \\ \mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {COM }}^{-}=0 \mathrm{~V}, \\ \mathrm{~V}_{\text {UNC_ }}=\mathrm{V}_{\text {ANO_ }}=0 \mathrm{~V} \\ \hline \end{array}$		-10		+10	nA
		$\mathrm{V}_{C C}=0 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {UNC_ }}=\mathrm{V}_{\text {ANO_ }}=0 \mathrm{~V}$		10		600	$\mu \mathrm{A}$
COM_ On-Leakage Current	ICOM_(ON)	USB mode	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{ANO}_{-}}=0 \mathrm{~V},$ 2.5 V ; unconnected; $\mathrm{V}_{\mathrm{COM}}^{-}=0 \mathrm{~V}, 2.5 \mathrm{~V}$	-200		+200	nA
		Audio mode	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{V}_{\text {UNC_ }}=0 \mathrm{~V}$, 2.5 V ; unconnected; $\mathrm{V}_{\text {COM }}=-1.5 \mathrm{~V},+2.5 \mathrm{~V}$	-200		+200	
Turn-On Time (Figure 2)	ton	$\begin{aligned} & \mathrm{ANO}_{-} \text {to } \mathrm{COM}_{-}, \\ & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \left(\mathrm{V}_{\text {ANO }}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega,\right. \\ & \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V} \text { to } \\ & \left.\mathrm{V}_{\mathrm{CC}}\right) \text { or }\left(\mathrm{V}_{\text {AOR }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{VB}}\right. \\ & =5.0 \mathrm{~V} \text { to } 0 \mathrm{~V}) \text { or }(\mathrm{VVB}= \\ & \left.5.0 \mathrm{~V}, \mathrm{~V}_{\text {AOR }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}\right) \end{aligned}$		14	60	$\mu \mathrm{s}$
		$\begin{aligned} & \text { UNC_ to } \mathrm{COM}_{-}, \\ & \mathrm{V}_{C C}=3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{UNC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\right. \\ & 50 \Omega, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{CB}}= \\ & \left.\mathrm{V}_{\mathrm{CC}} \text { to } 0 \mathrm{~V}\right) \text { or }\left(\mathrm{V}_{\mathrm{AOR}}=\right. \\ & \left.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{VB}}=0 \mathrm{~V} \text { to } 5.0 \mathrm{~V}\right) \end{aligned}$		14	60	

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL		ONDITIONS	MIN	TYP	MAX	UNITS
Turn-Off Time (Figure 2)	toFF	ANO_ from COM_, $V_{C C}=3.0 \mathrm{~V}$	$\begin{aligned} & \left(V_{A N O}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega,\right. \\ & \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{CB}}=\mathrm{V}_{\mathrm{CC}} \text { to } \\ & 0 \mathrm{~V}) \text { or }\left(\mathrm{V}_{\mathrm{AOR}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{VB}}=\right. \\ & 0 \mathrm{~V} \text { to } 5.0 \mathrm{~V}) \text { or }\left(\mathrm{V}_{\mathrm{VB}}=5.0 \mathrm{~V},\right. \\ & \left.\mathrm{V}_{\mathrm{AOR}}=\mathrm{V}_{\mathrm{CC}} \text { to } 0 \mathrm{~V}\right) \end{aligned}$		1.4	5	$\mu \mathrm{s}$
		UNC_ from COM_, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	$\left(V_{U N C_{-}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega\right.$, $V_{E N}=V_{C C}, V_{C B}=0 V$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$ or $\left(\mathrm{V}_{\mathrm{AOR}}=\mathrm{OV}, \mathrm{V}_{\mathrm{VB}}=\right.$ 5.0 V to 0 V or $\mathrm{VVB}=5.0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{AOR}}=0 \mathrm{~V}$ to V_{CC})		0.7	5	
Break-Before-Make Time Delay	tD	$R \mathrm{~L}=50 \Omega$			13.5		$\mu \mathrm{s}$
Output Skew Same Switch	tSK(P)	Figure 3 (Note 5)			40		ps
Output Skew Between Switches	tsk(0)	Figure 3 (Note 5)			40		ps
ANO_ Off-Capacitance	CANO_(OFF)	$\mathrm{V}_{\text {COM_ }}=0.5 \mathrm{~V}_{\text {P-P }, ~} \mathrm{DC} \text { bias }=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ (Note 5)			8		pF
UNC_ Off-Capacitance	Cunc_(OFF)	$\begin{aligned} & \mathrm{V}_{\text {COM }}=0.5 \\ & (\text { Note } 5) \end{aligned}$	$\text { DC bias }=0 \mathrm{~V}, \mathrm{f}=240 \mathrm{MHz}$		3.3		pF
On-Capacitance (Note 5)	CCOm(ON)	UNC_ to COM_, VCOM_ $=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$, DC bias $=0 \mathrm{~V}, \mathrm{f}=240 \mathrm{MHz}$			8		pF
		$\begin{aligned} & A N O-^{A N O} \mathrm{COM}_{-}, \mathrm{V}_{\mathrm{COM}}^{-}= \\ & \mathrm{DC} \text { bias }=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{f}=1 \mathrm{MHz} \end{aligned}$			8		pF

AC PERFORMANCE

ANO_-3dB Bandwidth	BWANO_	$\mathrm{R}_{S}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\text {ANO_ }}=0 \mathrm{dBm}$, Figure 4		950	MHz
UNC_-3dB Bandwidth	BWANC_	$\mathrm{RS}_{S}=\mathrm{RL}_{\mathrm{L}}=50 \Omega$, VUNC_ $=0 \mathrm{dBm}$, Figure 4		950	MHz
Off-Isolation	VISO	$f=100 \mathrm{kHz}, V_{C O M}=1 V_{R M S}, R_{S}=R_{L}=50 \Omega,$ Figure 4		-65	dB
Crosstalk	$V_{\text {CT }}$	$\begin{aligned} & f=100 \mathrm{kHz}, V_{C O M}=1 V_{R M S}, R_{S}=R_{L}=50 \Omega, \\ & \text { Figure } 4 \text { (Note 8) } \end{aligned}$		-70	dB
Total Harmonic Distortion Plus Noise	THD+N	ANO_ to COM_, $\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz , $\mathrm{V}_{\text {COM }}=0.5 \mathrm{~V}_{\text {P-P, }} \mathrm{DC}$ bias $=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$		0.05	\%
LOGIC INPUT					
Input Logic-High	V_{IH}		1.6		V
Input Logic-Low	V_{IL}				V
Input Leakage Current	IIN	MAX14508E/MAX14509E/MAX14509AE, $V_{C B}=0 \mathrm{~V}$ or V_{CC}	-1		$\mu \mathrm{A}$

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to $+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ESD PROTECTION						
All Pins		Human Body Model		± 2		kV
COM1, COM2		Human Body Model		± 15		kV

Note 3: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 4: The switch turns off for voltages above $V_{F P}$, protecting downstream circuits in case of a fault condition.
Note 5: Guaranteed by design.
Note 6: $\Delta \operatorname{RON}(\mathrm{MAX})=\operatorname{ABS}(\mathrm{RON}(\mathrm{CH} 1)-\mathrm{RON}(\mathrm{CH} 2))$
Note 7: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over specified analog signal ranges
Note 8: Between two switches.

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

Figure 1. Fault Protection

Figure 2. Switching Time

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

Test Circuits/Timing Diagrams (continued)

Figure 3. Output Skew

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

Test Circuits/Timing Diagrams (continued)

OFF-ISOLATION $=20100 \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
$O N-L O S S=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
CROSSTALK $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$

OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" ANO_ OR UNC_ TERMINAL ON EACH SWITCH.
*FOR CROSSTALK THIS PIN IS ANO2.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" ANO_OR UN̄C_ TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL. UNC2 AND COM2 ARE OPEN

Figure 4. On-Loss, Off-Isolation, and Crosstalk

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin Description

PIN		NAME	FUNCTION
MAX14508E/ MAX14509E/ MAX14509AE	MAX14510E/ MAX14511E		
1	1	UNC1	USB Input 1. Normally closed terminal for switch 1.
2	2	ANO2	Audio Input 2. Normally open terminal for switch 2.
3	3	ANO1	Audio Input 1. Normally open terminal for switch 1.
4	4	GND	Ground
5	5	VCC	Positive Supply-Voltage Input. Bypass V_{CC} to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close to the device as possible.
6	6	COM1	Common Terminal for Switch 1
7	7	COM2	Common Terminal for Switch 2
8	-	CB	Digital Control Input. Drive CB low to connect COM_ to UNC_. Drive CB high to connect COM_ to ANO_.
9	-	EN	Active-High Enable Input. Drive EN high for normal operation. Drive EN low to put switches in high impedance. Do not connect negative signals to ANO_ or COM_ when EN is low.
10	10	UNC2	USB Input 2. Normally closed terminal for switch 2.
-	8	AOR	Audio Override Input. Drive AOR low to have VB control the switch. Drive AOR high to connect COM_ to ANO_. AOR has an internal pulldown resistor to GND.
-	9	VB	VBUS Detection Input. If $\mathrm{V} V B^{2} \geq \mathrm{V}_{\mathrm{VBDET}}, \mathrm{COM}$ _ connects to UNC_. Otherwise, COM_{-} connects to ANO_.

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

MAX14508E/MAX14509E/MAX14509AE Functional Diagrams/Truth Table

MAX14508E/MAX14509E/MAX14509AE					MAX14508E
EN	CB	UNC_	ANO_	COM_	ANO_ SHUNT
1	0	On	Off	-	On
1	1	Off	On	-	Off
0	0	Off	Off	Hi-Z	On
0	1	Off	Off	Hi-Z	Off

MAX14510E/MAX14511E Functional Diagrams/Truth Table

MAX14510E/MAX14511E				MAX14510E
VB	AOR	UNC_ $_{-}$	ANO_	ANO_ SHUNT
$>$ V VBDET	0	On	Off	On
$<V_{\text {VBDET }}$	0	Off	On	Off
X	1	Off	On	Off

$X=$ Don't Care

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

Abstract

Detailed Description The MAX14508E-MAX14511E/MAX14509AE are high-ESD-protected single DPDT switches that operate from $\mathrm{a}+2.7 \mathrm{~V}$ to +5.0 V supply and are designed to multiplex USB 2.0 Hi-Speed signals and AC-coupled analog signals. These switches combine the low on-capacitance (CON) and low on-resistance (RON) necessary for highperformance switching applications. These devices meet the requirements for USB low-speed and fullspeed signaling. The negative signal capability of the analog channel allows signals below ground to pass through without distortion.

Analog Signal Levels
The MAX14508E-MAX14511E/MAX14509AE are bidirectional, allowing ANO_, UNC_, and COM_ to be configured as either inputs or outputs. Note that UNC_ and ANO_ are only protected against ESD up to $\pm 2 \mathrm{kV}$ (Human Body Model) and may require additional ESD protection if used as outputs. These devices feature a charge pump that generates a negative supply to allow analog signals as low as VCC - 5.0V to pass through ANO_. This allows AC-coupled signals that drop below ground to pass when operating from a single power supply. The negative charge pump is controlled by the enable line and the output of the COM_ fault protection circuit. The negative charge pump is active when EN is high and $\mathrm{V}_{\text {COM }}$ < VFP. Note that if the fault protection is activated by a COM_ voltage greater than VFP, there must not be a negative voltage attached to the ANO_ inputs. For the MAX14508E/MAX14509E/MAX14509AE connect negative signals to ANO_ or COM_ only when EN is driven high.

Overvoltage Fault Protection

The MAX14508E-MAX14511E feature overvoltage fault protection on COM_, allowing compliance with USB requirements for voltage levels. Fault protection is triggered if the voltage applied to COM_ rises above VFP, protecting the switch and USB transceiver from damaging voltage levels.

VBUS Detection Input The MAX14510E/MAX14511E feature a VBUS detection input (VB) that connects COM_ to UNC_ when VvB exceeds the VBUS detection threshold (VVBDET). For applications where VBUS is always present, drive the Audio Override Input (AOR) high to connect ANO_ to COM_ (see the MAX14510E/MAX14511E Functional Diagrams/Truth Table). Drive AOR low to have VB control the switch position. Drive AOR rail-to-rail to minimize power consumption.

Digital Control Input (CB)

The MAX14508E/MAX14509E/MAX14509AE provide a single-bit control logic input, CB. CB controls the switch position as shown in the MAX14508E/MAX14509E/ MAX14509AE Functional Diagrams/Truth Table. Drive CB rail-to-rail to minimize power consumption.

Enable Input (EN)

The MAX14508E/MAX14509E/MAX14509AE feature a shutdown mode that reduces the supply current to less than 10 nA and places the switches in high impedance. Drive EN low to place the devices in shutdown mode. Drive EN high for normal operation.

Click-and-Pop Suppression

The switched 100Ω shunt resistors on the MAX14508E/ MAX14510E automatically discharge any capacitance at the ANO_ terminals when they are unconnected from COM_. This reduces audio click-and-pop sounds that may occur when switching between USB and audio sources.

Applications Information

Extended ESD Protection

 ESD-protection structures are incorporated on all pins to protect against electrostatic discharges up to $\pm 2 \mathrm{kV}$ (Human Body Model) encountered during handling and assembly. COM1 and COM2 are further protected against ESD up to $\pm 15 \mathrm{kV}$ (Human Body Model) without damage. The ESD structures withstand high ESD both in normal operation and when the device is powered down. After an ESD event, the MAX14508EMAX14511E/MAX14509AE continue to function without latchup.
ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 5 shows the Human Body Model. Figure 6 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

Layout

USB Hi-Speed requires careful PCB layout with 45Ω single-ended/ 90Ω differential controlled-impedance matched traces of equal lengths. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

USB 2．0 Hi－Speed and Audio Switches with Negative Signal Capability

Figure 5．Human Body ESD Test Model

Power－Supply Sequencing Caution：Do not exceed the absolute maximum rat－ ings because stresses beyond the listed ratings may cause permanent damage to the device．

Figure 6．Human Body Current Waveform

Proper power－supply sequencing is recommended for all devices．Apply Vcc before applying analog signals， especially if the analog signal is not current limited．

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 Ultra-Thin QFN	V101A1CN-1	$\underline{\mathbf{2 1 - 0 0 2 8}}$

USB 2.0 Hi-Speed and Audio Switches with Negative Signal Capability

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$5 / 08$	Initial release	-
1	$3 / 09$	Released the MAX14510E, updated Absolute Maximum Ratings, Electrical Characteristics, Figure 4, and Layout section.	$1,2,3,5,8,12$

