

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

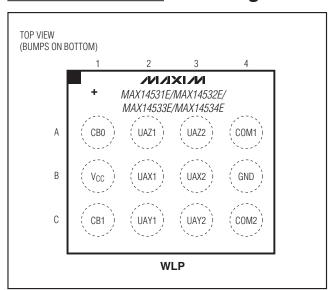
General Description

The MAX14531E-MAX14534E high ESD-protected DP3T switches multiplex Hi-Speed (480 Mbps) USB signals, low/full-speed USB signals, and analog signals such as AC-coupled audio or video through any of three channels. These devices combine the low oncapacitance (CON) and low on-resistance (RON) necessary for high-performance switching applications in portable electronics, and include an internal negative supply to pass AC-coupled audio signals that swing below ground (down to -2.0V). The MAX14531E-MAX14534E operate from a +2.7V to +5.5V supply.

The MAX14531E-MAX14534E have a shutdown function to reduce supply current and set all channels to high impedance. The MAX14531E-MAX14534E feature a VBUS detection function through the CB0 input to automatically switch to the default USB signal path upon detection of a valid VBUS signal. The MAX14532E/MAX14534E feature internal shunt resistors on audio channels to reduce clicks and pops heard at the output.

The MAX14531E-MAX14534E are available in a spacesaving, 12-bump, 1.5mm x 2.0mm WLP package and operate over the -40°C to +85°C temperature range.

Applications


Cell Phones MP3 Players **PDAs**

Notebook Computers

Features

- ♦ Single +2.7V to +5.5V Supply Voltage
- ♦ Low 10µA (typ) Supply Current
- ◆ -3dB Bandwidth: 800MHz (typ)
- ♦ Low 2Ω (typ) On-Resistance
- ♦ 0.05% THD+N
- ♦ Internal Shunt Resistor for Click-and-Pop Reduction (MAX14532E/MAX14534E)
- **♦ VBUS Detection for Automatic Switch Path** Selection
 - +28V Maximum Rated VBUS Detection Input
- ♦ Space-Saving, 12-Bump, 1.5mm x 2.0mm WLP **Package**

Pin Configuration

Ordering Information/Selector Guide

PART	PIN-PACKAGE	SHUNT RESISTORS	CB0 PULLDOWN RESISTOR	TOP MARK
MAX14531EEWC+	12 WLP	NONE	No	AAT
MAX14532EEWC+	12 WLP	UAZ_	Yes	AAU
MAX14533EEWC+*	12 WLP	NONE	Yes	AAV
MAX14534EEWC+*	12 WLP	UAY /UAZ	Yes	AAW

Note: All devices are specified over the -40°C to +85°C operating temperature range.

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

^{*}Future product—contact factory for availability.

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)	
V _{CC} , CB1	0.3V to +6.0V
CB0	0.3V to +28.0V
COM_ (CB0 or CB1 > V _{IH})	2.3V to +3.6V
COM_ (CB0 and CB1 < V _{IL})	0.3V to +6.0V
UAX_, UAY_, UAZ_ (CB0 or CB1 > VIH)	2.3V to +3.6V
UAX_, UAY_, UAZ_ (CB0 and CB1 < V _{IL})	
Continuous Current into Any Terminal	±150mA

50% Duty Cycle Current into Any Terminal	±250mA
Continuous Power Dissipation ($T_A = +70$ °C) (Note 1)	
12-Bump WLP (derate 8.5mW/°C above +70°C)	678mW
Operating Temperature Range40°C	to +85°C
Junction Temperature Range40°C t	o +150°C
Storage Temperature Range65°C t	
Lead Temperature (soldering, 10s)	+300°C

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.7 \text{V to } +5.5 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0 \text{V}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ (Note 2)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
Power-Supply Range	Vcc			2.7		5.5	V
		V _{CC} = +3.3V	V _{CB0} = V _{CB1} = 0 (shutdown)			1	
			V _{CB0} = V _{CC} or V _{CB1} = V _{CC}			20	
Supply Current	loo		$V_{CB0} = +5.0V$			20	μA
Зарріу Сапені	Icc		V _{CB0} = V _{CB1} = 0 (shutdown)			1	μΑ
		$V_{CC} = +5.0V$	V _{CB0} = V _{CC} or V _{CB1} = V _{CC}			25	
			$V_{CB0} = +5.5V$			25	
Supply Current Increase	Δ I $_{CC}$	$V_{CB0} = V_{CB1}$	= V _{IH} or V _{IL}			2	μΑ
VBUS Detect Threshold	VVBDET	V _{CB0} rising		V _{CC} + 0.2		V _{CC} + 0.6	V
VBOS Detect Tilleshold	VARDEI	V _{CB0} falling, hysteresis			0.2		V
Applied Cignel Dance	V _{UAX_} , V _{UAY_} ,	V _{CB0} < V _{IL} ar	nd V _{CB1} < V _{IL} (shutdown)	0		Vcc	V
Analog Signal Range	V _{UAZ} , V _{COM} _	V _{CB0} > V _{IH} or V _{CB1} > V _{IH}		-2.0		Min (V _{CC} , 3.3V)	v
ANALOG SWITCH							
UAX_, UAY_, UAZ_ On-Resistance	RON(UAXYZ)	$V_{CC} = +3.0V,$ $I_{COM} = 10m/$	$V_{UAX} = V_{UAY} = V_{UAZ} = 0,$		2	3	Ω
UAX_, UAY_, UAZ_ On-Resistance Match Between Channels	ΔR _{ON}	V _{CC} = +3.0V, V _{UAX} = V _{UAY} = V _{UAZ} = 0, I _{COM} = 10mA (Note 3)				0.2	Ω
UAX_, UAY_, UAZ_ On-Resistance Flatness (Notes 4, 5)	RFLAT(UAXYZ)	V _{CC} = +3.0V, V _{UAX} = V _{UAY} = V _{UAZ} = -2.0V or +3.0V, I _{COM} = 10mA			0.02	0.1	Ω

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.}$ (Note 2)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
Shunt Switch Resistance	R _{SH}	I_{UAZ} = 10mA I_{UAZ} = 10mA	(MAX14532E) or I _{UAY} _ = (MAX14534E)		100	200	Ω
UAX_ Off-Leakage Current	I _{UAX(OFF)}	V _{CC} = 3.0V, <cb1,cb0> = 10 (UAX_ open), V_{UAX_} = +2.5V or 0, V_{COM_} = -1.5V or +2.5V</cb1,cb0>		-10		+10	nA
UAY_ Off-Leakage Current	I _{UAY(OFF)}	(MAX14531E-MAX14533E) V _{CC} = 3.0V, CB1 = GND, CB0 = V _{CC} (UAY_ open), V _{UAY_} = +2.5V or 0, V _{COM_} = -1.5V or +2.5V		-10		+10	nA
UAZ_ Off-Leakage Current	luaz(OFF)	<cb1,cb0> =</cb1,cb0>	MAX14533E) V _{CC} = 3.0V, 01 (UAZ_open), or 0, V _{COM} _ = -1.5V or +2.5V	-10		+10	nA
		V	<cb1,cb0> = 01, V_{UAY} = V_{UAZ} = 0, +2.5V, or unconnected</cb1,cb0>	-100		+100	
COM_ On-Leakage Current	I _{COM(ON)}	V _{CC} = +3.0V, V _{COM} = -1.5V or +2.5V	<cb1,cb0> = 10, V_{UAX} = V_{UAZ} = 0, +2.5V, or unconnected</cb1,cb0>	-100		+100	nA
			<cb1,cb0> = 11, V_{UAX} = V_{UAY} = 0, +2.5V, or unconnected</cb1,cb0>	-100		+100	
COM_ Off-Leakage Current	ICOM(OFF)	V _{CC} = +3.0V, <cb1,cb0> = 00, V_{UAX}_</cb1,cb0>	V _{COM} _= +3.6V	-0.01		+2	μΑ
COM_ On-Leakage Current		= 00, VUAX_ = VUAY_ = VUAZ_ = 0	V _{COM} _= 0	-10		+10	nA
Enable Turn-On Time	ton	From shutdown to UAX_, UAY_, or UAZ_ connected to COM_, $V_{CC} = +3.0V$, $V_{UA} = +3.0V$, $R_L = 50\Omega$, $C_L = 10pF$ (Figure 1)				250	μs
Enable Turn-Off Time	toff	From UAX_, UAY_, or UAZ_ connected to COM_ to shutdown, $V_{CC} = +3.0V$, $V_{UA} = +3.0V$, $R_L = 50\Omega$, $C_L = 10pF$ (Figure 1)				6	μs
Address Transition Time	t _{TRANS}	Switching from one active channel to another, $V_{CC} = +3.0V$, $V_{UA} = +3.0V$, $R_L = 50\Omega$, $C_L = 10pF$				250	μs
Transient to Shutdown Valid Time	t _{T00}	From UAX_, UAY_, or UAZ_ connected to COM_ to shutdown, V _{CC} = +3.0V		20		100	μs
VBUS Detection Time	t _{VBDET}	$V_{CC} = +3.0V$, $V_{UAXY} = +3.0V$, $R_L = 50\Omega$, $C_L = 10$ pF, $V_{CB1} = +3.0V$, $V_{CB0} = 0$ to $+5.0V$		15		200	μs
Break-Before-Make Time Delay	t _{BBM}	Time delay between one side of the switch opening and the other side closing, $R_L = 50\Omega$, $C_L = 10pF$ (Note 5)		1			μs
Output Skew Same Switch	tsk(P)	tinrise, tinfall, < 5ns, toutrise, toutfall < 5ns, Figure 2 (Note 5)			40		ps

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7 \text{V to } +5.5 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.0 \text{V}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
Output Skew Between Channels	tsk(O)	tinrise, tinfall < 5ns, toutrise, toutfall = < 5ns, Figure 2 (Note 5)	40		ps	
UAX_, UAY_, UAZ_ Off-Capacitance	CCOM_(OFF)	$f = 240MHz, V_{COM} = 0.5V_{P-P}, DC bias = 0$ (Note 5)		5		pF
COM_ On-Capacitance	C _{COM_(ON)}	$f = 240MHz, V_{COM} = 0.5V_{P-P}, DC bias = 0$ (Note 5)		8		pF
AC PERFORMANCE						
-3dB Bandwidth	BW _{NO}	$V_{COM_} = 0 dBm, R_L = 50\Omega, R_S = 50\Omega$ (Figure 3)		800		MHz
Off-Isolation	V _{ISO}	$ f = 100 \text{kHz}, \text{V}_{COM_} = 1 \text{V}_{RMS}, \text{R}_{L} = 50 \Omega, \\ \text{R}_{S} = 50 \Omega \text{ (Figure 3)} $	-65			dB
Crosstalk	VCT	$ f = 100 \text{kHz}, \text{V}_{\text{COM}} = 1 \text{V}_{\text{RMS}}, \text{R}_{\text{L}} = 50 \Omega, \\ \text{R}_{\text{S}} = 50 \Omega \text{ (Figure 3)} $	-70			dB
Power-Supply Rejection Ratio	PSRR	$f = 10kHz, V_{CC} = +3.0V \pm 0.3V, R_{COM} = 50\Omega$	60		dB	
Total Harmonic Distortion Plus Noise	THD+N	f = 20Hz to 20kHz, V_{COM} = 0.5 V_{P-P} , DC bias = 0, R_L = 32 Ω	0.05		%	
LOGIC INPUT						
Input Logic-High	VIH		1.4			V
Input Logic-Low	VIL				0.4	V
Input Logic Hysteresis	VHYST	(Note 5)		100		mV
		V _{CB0} = V _{CC} = +3.3V (MAX14531E) (Note 5)		4		μΑ
Input Leakage Current	I _{IN}	$V_{CB0} = 0, V_{CC} = +5.5V$	-250		+250	nA
		V _{CB1} = 0 or +5.5V	-250		+250	IIA
CB0 Pulldown Resistor	R _{CB0}	MAX14532E/MAX14533E/MAX14534E	500	1000	1500	kΩ
ESD PROTECTION						
All Pins		Human Body Model		±2		kV
COM1, COM2	11, COM2 Human Body Model ±15			kV		

Note 2: All devices are 100% production tested at $T_A = +25$ °C. All temperature limits are guaranteed by design.

Note 3: $\Delta R_{ON} = ABS(R_{ON(CH1)} - R_{ON(CH2)})$

Note 4: Flatiness is defined as the difference between the maximum and minimum value of on-resistance, as measured over specified analog signal ranges.

Note 5: Guaranteed by design.

Test Circuits/Timing Diagrams

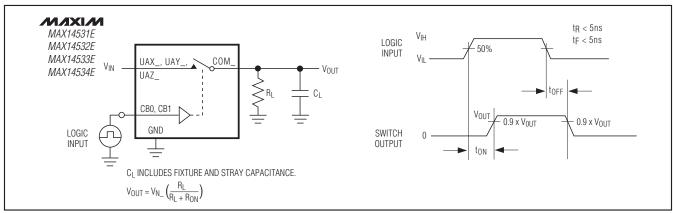


Figure 1. Switching Time

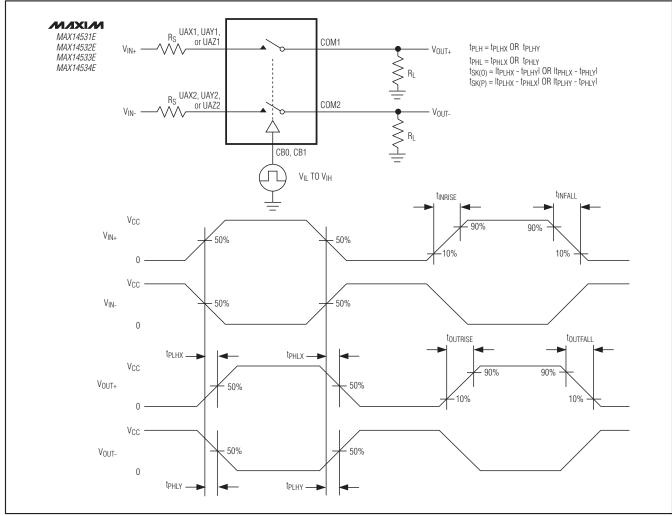


Figure 2. Output Skew

Test Circuits/Timing Diagrams (continued)

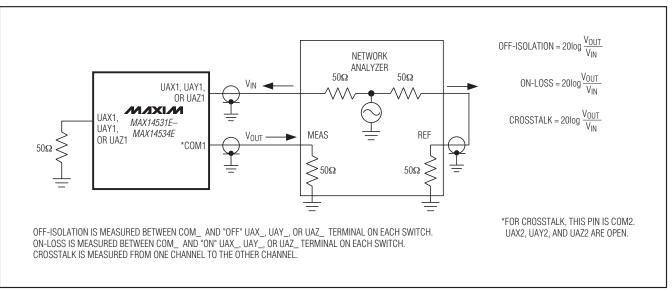
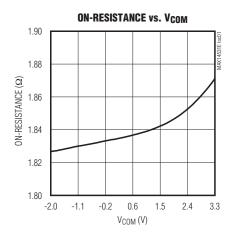
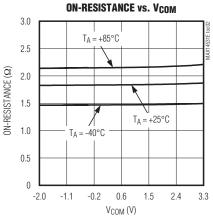
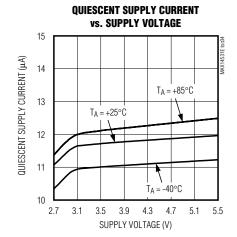
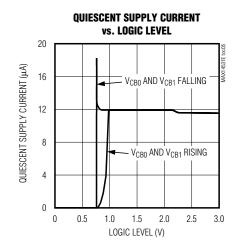
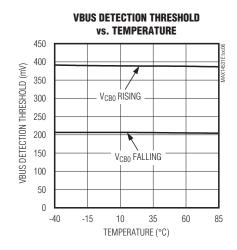
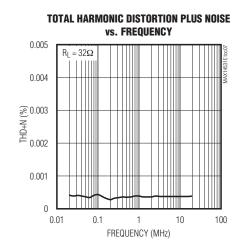




Figure 3. On-Loss, Off-Isolation, and Crosstalk


Typical Operating Characteristics

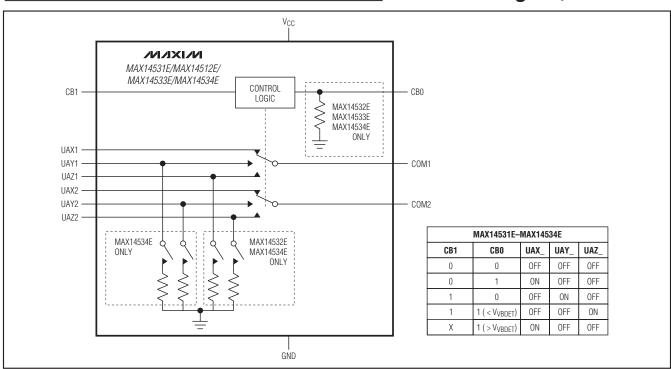

 $(V_{CC} = +3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$

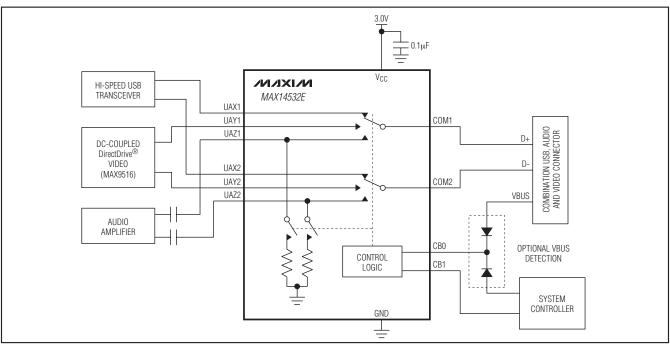




Typical Operating Characteristics (continued)

 $(V_{CC} = +3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$




Pin Description

PIN	NAME	FUNCTION			
A1	CB0	Control Input 0			
A2	UAZ1	USB/Audio Input Z1			
A3	UAZ2	USB/Audio Input Z2			
A4	COM1	Common Terminal 1			
B1	Vcc	Positive Supply Voltage Input. Bypass V _{CC} to GND with a 0.1µF ceramic capacitor as close as possible to the device.			
B2	UAX1	USB/Audio Input X1			
В3	UAX2	USB/Audio Input X2			
B4	GND	Ground			
C1	CB1	Control Input 1			
C2	UAY1	USB/Audio Input Y1			
C3	UAY2	USB/Audio Input Y2			
C4	COM2	Common Terminal 2			

Functional Diagram/Truth Table

Typical Application Circuit

DirectDrive is a trademark of Maxim Integrated Products, Inc.

Detailed Description

The MAX14531E–MAX14534E are high ESD-protected single DP3T switches that operate from a +2.7V to +5.5V supply and are designed to multiplex USB 2.0 Hi-Speed signals and AC-coupled analog signals. These switches combine the low on-capacitance (CON) and low on-resistance (RON) necessary for high-performance switching applications. These devices also meet the requirements for USB low-speed and full-speed signaling. The negative signal capability of all three channels allows signals below ground to pass through without distortion.

Analog Signal Levels

The MAX14531E–MAX14534E are bidirectional, allowing UAX_, UAY_, UAZ_, and COM_ to be configured as either inputs or outputs. Note that UAX_, UAY_, and UAZ_ are only protected against ESD up to ±2kV (Human Body Model) and may require additional ESD protection if used as outputs. These devices feature a charge pump that generates a negative supply to allow analog signals as low as -2.0V applied to UAX_, UAY_, UAZ_, or COM_. The negative charge pump is only active when the part is enabled (CB0 or CB1 = 1). Connect negative signals to UAX_, UAY_, UAZ_, or COM_ only when the device is enabled.

VBUS Detection

The MAX14531E-MAX14534E feature a VBUS detection input (CB0) that connects COM_ to UAX_ when VCB0 exceeds the VBUS detection threshold (VVBDET) (see the *Functional Diagram/Truth Table*). Note that the MAX14531E requires an external pulldown resistor when using this function.

Digital Control Inputs

The MAX14531E–MAX14534E provide control logic inputs, CB0 and CB1, to control the switch position as shown in the *Functional Diagram/Truth Table*. Drive CB_rail-to-rail to minimize power consumption.

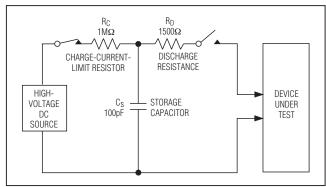


Figure 4. Human Body ESD Test Model

Shutdown Mode

The MAX14531E–MAX14534E feature a shutdown mode to reduce the supply current to less than $1\mu A$ and place the switches in high impedance. Drive both CB0 and CB1 low to place the devices in shutdown mode (see the Functional Diagram/Truth Table.)

Click-and-Pop Suppression

The switched 100Ω shunt resistors on the MAX14532E/MAX14534E automatically discharge any capacitance at the UAZ_ (MAX14532E) or UAY_ and UAZ_ (MAX14534E) inputs when they are unconnected from COM_ (see the *Functional Diagram/Truth Table*). This reduces audio click-and-pop sounds that may occur when switching to audio sources.

Applications Information

Extended ESD Protection

ESD-protection structures are incorporated on all pins to protect against electrostatic discharges up to ±2kV (Human Body Model) encountered during handling and assembly. COM1 and COM2 are further protected against ESD up to ±15kV (Human Body Model) without damage. The ESD structures withstand high ESD both in normal operation and when the device is powered down. After an ESD event, the MAX14531E–MAX14534E continue to function without latchup.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 4 shows the Human Body Model, and Figure 5 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a $1.5k\Omega$ resistor.

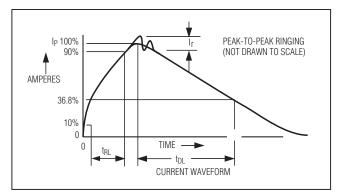


Figure 5. Human Body Current Waveform

MIXIM

Layout

USB Hi-Speed requires careful PCB layout with 45Ω single-ended/90 Ω differential controlled impedance matched traces of equal lengths. Ensure that bypass capacitors are as close as possible to the device. Use large ground planes where possible.

Power-Supply Sequencing

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all devices. Apply VCC before applying analog signals, especially if the analog signal is not current limited.

Chip Information

Package Information

For the latest package outline information and land patterns, go to $\underline{\text{www.maxim-ic.com/packages}}.$

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.	
12 WLP	W121A2-1	<u>21-0009</u>	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

PROCESS: BICMOS