imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX14562 protects valuable consumer circuits

against voltage faults of up to +36V. This robust protec-

tion is implemented in a three-step scheme for a superior

result. If the input is below the preset regulated output-

voltage (VPROV) threshold, the output tracks the input

minus the voltage drop (RON x ILOAD) across the pass FET. If the input exceeds VPROV, the output is regulated

to VPROV. If the input rises further and exceeds the over-

voltage lockout cutoff threshold (VOVLO), the output is

A low resistance $160m\Omega$ (typ) FET is integrated in the MAX14562, effectively reducing the component count and application footprint. The MAX14562 also features

thermal shutdown protection against a short-circuit

The MAX14562 is specified over the extended -40°C to +85°C temperature range and is available in 8-pin TDFN

disconnected from the input.

(2mm x 2mm) package.

Mobile Phones

Smartphones

PDAs

Portable Media Player

event.

Features

- Input Voltage Protection Up to +36V
- Preset Regulated Output Voltage (+5.15V typ)
- Integrated 160mΩ (typ) N-Channel MOSFET Switch
- Soft-Start to Minimize In-Rush Current
- Overvoltage Cutoff Protection +8V (typ)
- Thermal Shutdown Protection
- -40°C to +85°C Operating Temperature Range

Ordering Information

Typical Operating Circuit

PART	TEMP	PIN-	TOP
	RANGE	PACKAGE	MARK
MAX14562ETA+T	-40°C to +85°C	8 TDFN-EP*	ADI

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

*EP = Exposed pad.

CHARGER CHARGER SYSTEM LOAD INPUT OUTPUT VBUS OUT IN TRAVEL PMIC 1μF IN OUT ADAPTER INPUT /VI/IXI/VI MAX14562 VBUS VIO GND APIC WITH $10k\Omega$ HS USB ACOK ĒΝ GND 1 *ONLY TDFN.

Maxim Integrated Products 1

MAX14562

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Applications

Digital Cameras

F-Book

Bluetooth Headset

Mobile Internet Device

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)

INI	$0.21/t_{0.1}$
IIN	
OUT	0.3V to +6V
EN, ACOK	0.3V to +6V
Continuous Current Through IN/OUT	
8-Pin TDFN	±1.6A
10ms Current Through IN/OUT	
8-Pin TDFN	±2A

Continuous Power Dissipation (TA = $+70^{\circ}$ C):

8-Pin TDFN (derate 11.9mW/°C above +70°C)	953mW
Operating Temperature Range40°C	C to +85°C
Storage Temperature Range65°C	to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TDFN

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to <u>www.maxim-ic.com/thermal-tutorial</u>.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = +2.2V \text{ to } +36V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{IN} = +5.0V \text{ and } T_A = +25^{\circ}\text{C}.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
Input Voltage	VIN			2.2		36	V
		IOUT = 0mA, VIN = 6.5V		4.85	5.15	5.45	
Preset Regulated Output Voltage	Vprov	I _{OUT} = 200mA,	$V_{IN} = 6.5V$	4.75	5.15	5.45	V
		IOUT = 800mA,	VIN = 6V (Note 3)	4.75	5.15	5.45	
	Vour		VIN > VPROV		Vprov		V
Output voltage	VOUT	00 = 0	VIN < VPROV (Note 4)		VIN		V
Overvoltage Lockout Cutoff Threshold Rising	Vovlo	IN rising		7.44	8	8.56	V
Overvoltage Lockout Hysteresis		% of typ V _{OVLO}			1		%
	l _{IN}	$\overline{\text{EN}}$ = low, VIN = 4.5V, IOUT = 0mA			120	260	
Input Supply Current		$\overline{\text{EN}}$ = low, V _{IN} = 7V, I _{OUT} = 0mA			300	550	μΑ
Input Shutdown Current	lin_q	$\overline{\text{EN}}$ = high, V _{IN} = 3V			2.5	5	μA
OUT Shutdown Current		$V_{IN} = 5V, V_{OUT} = 4V, \overline{EN} = high$		-1		+1	μA
On-Resistance	Ron	V _{IN} = 4.75V, I _{OUT} = 100mA				280	mΩ
LDO Load Capacitance		IOUT up to 0.8A			10		μF
DIGITAL SIGNALS (EN, ACOK)							
EN Input High Voltage	VIH			1.4			V
EN Input Low Voltage	VIL					0.4	V
EN Input Leakage Current	ILEAK	$V_{\overline{EN}} = 0V \text{ or } 5.5V$		-150		+150	nA
ACOK Output Low Voltage	Vol	V _{IO} = 3.3V, I _{SINK} = 1mA (see <i>Typical Operating Circuit</i>)				0.4	V
ACOK Leakage Current		$V_{IO} = 3.3V, \overline{ACOK}$ deasserted (see <i>Typical Operating Circuit</i>)		-200		+200	nA

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = +2.2V \text{ to } +36V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{IN} = +5.0V \text{ and } T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER SYMBOL CONDITIONS		MIN	TYP	MAX	UNITS		
TIMING CHARACTERISTICS (Note 4)							
Input Debounce Time	^t DEB	VIN_MIN < VIN < VOVLO until charge pump turns on, see Figure 1	10	20	35	ms	
ACOK Time	t acok	VIN_MIN < VIN < VOVLO to ACOK low until charge pump turns on, see Figure 1	20	40	70	ms	
Turn-on Time During Soft-Start	ton	$R_{LOAD} = 100\Omega$, $C_{LOAD} = 1\mu$ F, $V_{OUT} = 20\%$ of V _{IN} to 80% of V _{IN} , see Figure 1		48		μs	
Overvoltage Turn-Off Time	toff	$V_{IN} > V_{OVLO}$ to $V_{OUT} = 80\%$ of V_{PROV} , $R_{LOAD} = 100\Omega$, see Figure 1		1		μs	
THERMAL PROTECTION							
Thermal Shutdown	TSHDN			150		°C	
Thermal Hysteresis	THYST			20		°C	

Note 2: All devices are 100% production tested at $T_A = +25^{\circ}$ C. Limits over the operating temperature range are guaranteed by design and not production tested.

Note 3: Thermally limited, guaranteed by design, and not production tested.

Note 4: In linear mode, as IOUT increases, the OUT voltage drops due to a voltage across Q1 (see Functional Diagram).

Note 5: All timing characteristics are measured using 20% and 80% levels unless otherwise specified.

Figure 1. Enable/Select Time

 $(C_{IN} = 1\mu F, C_{OUT} = 4.7\mu F, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics

///XI//

Typical Operating Characteristics (continued)

(CIN = 1 μ F, COUT = 4.7 μ F, T_A = +25°C, unless otherwise noted.)

MAX14562

 $(C_{IN} = 1\mu F, C_{OUT} = 4.7\mu F, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1,2	IN	Overvoltage Protection Input. Bypass IN with a 1 μ F ceramic capacitor to get ±15kV HBM ESD protection. No capacitor is required for ±2kV HBM ESD protection. Externally connect both IN pins together.
3	EN	Active-Low Enable Input. Drive EN low to turn on the device. Drive EN high to turn off the device.
4	N.C.	No Connection. Not internally connected.
5	GND	Ground
6	ACOK	Open-Drain Flag Output. $\overline{\text{ACOK}}$ is driven low after input voltage is stable between minimum V _{IN} and V _{OVLO} after soft-start time (double of debounce time). Connect a pullup resistor from $\overline{\text{ACOK}}$ to the logic I/O voltage of the host system.
7,8	OUT	Overvoltage Protection Output. Bypass OUT with a 1μ F or larger ceramic capacitor (see Table 1). Externally connect both OUT pins together.
_	EP	Exposed Pad. Connect EP to GND.

MAX14562

Detailed Description

The MAX14562 features the overvoltage protection to the charger input V_{BUS} line when a travel adapter (TA) is used. In addition, the MAX14562 features a low 160m Ω (typ) on-resistance internal FET (Q1) and protects the low-voltage system against voltage faults up to +36V.

The MAX14562 features three-step overvoltage protection. When the input is below the preset regulated output-voltage (VPROV) threshold, the output follows the input minus the voltage drop across the pass FET (RON x ILOAD). When the input exceeds VPROV, the output is regulated to VPROV. If the input rises further and exceeds the overvoltage lockout cutoff (VOVLO) threshold, the output is disconnected from the input. The MAX14562 also features thermal shutdown protection against short-circuit events.

Soft-Start To minimize inrush current, the MAX14562 features a soft-start capability to slowly turn on Q1.

Soft-start function permits the device to charge the load capacitor up to 1000μ F by controlled current. The soft-start is initiated when the debounce time ends (OUT

starts charging) and ends when $\overline{\text{ACOK}}$ is asserted low, 15ms (typ).

Linear Mode

When the input voltage exceeds the minimum IN voltage but is below VPROV, OUT follows IN with a minimum voltage drop (RON \times ILOAD) across pass FET after the debounce time, tDEB, and ACOK is asserted.

The LDO mode needs a capacitor on OUT. The recommended value is $10\mu F$ for load currents up to 800mA (Table 1).

Preset Regulated Output-Voltage Mode (PROV)

When IN goes above the preset regulated output voltage (VPROV), Q1 provides a constant voltage of VPROV at OUT, and $\overline{\text{ACOK}}$ is asserted.

Table 1.	. Recommended	Load C	capacitance
----------	---------------	--------	-------------

LOAD CURRENT (mA)	LOAD CAP (µF)
10	1
50	2.2
100	4.7
800	10

Overvoltage Lockout Mode (OVLO)

When IN goes above the overvoltage lockout threshold (VoVLO), OUT is disconnected from IN and $\overline{\text{ACOK}}$ is deasserted. Power dissipation increases when the input goes higher than VPROV. The overvoltage lockout threshold is set to further the power dissipation. When IN drops below VOVLO, the debounce time starts counting. After the debounce time (2 x tDEB), OUT follows IN again and $\overline{\text{ACOK}}$ is asserted.

Thermal Shutdown

The MAX14562 features a thermal shutdown function necessary to protect the device. The device turns off and \overrightarrow{ACOK} is deasserted when the junction temperature exceeds +150°C (typ). When the temperature drops 20°C (typ) below 150°C (typ), the device turns back on and Q1 is turned on after the debounce time.

Applications Information

Power-Supply Decoupling

Bypass IN pin(s) to ground with a 1μ F or larger ceramic capacitor placed as close as possible to the device.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTPUT	LAND
TYPE	CODE	NO.	PATTERN NO.
8 TDFN-EP	T822+1	<u>21-0168</u>	<u>90-0064</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	9/10	Initial release	
1	8/11	Removed SC70 pin information from data sheet. Added additional conditions to Preset Regulated Output Voltage parameter in the <i>Electrical Characteristics</i> table	1, 2, 3, 7, 9

MAX14562

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

10

_ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2011 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.