

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

High-Speed, Open-Drain Capable Logic-Level Translator

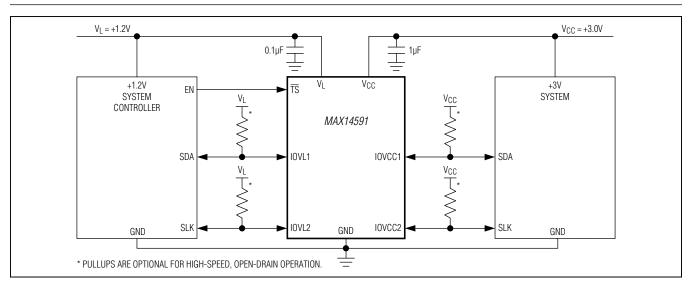
General Description

The MAX14591 is a dual-channel, bidirectional logic-level translator with the level shifting necessary to allow data transfer in a multivoltage system. Externally applied voltages, V_{CC} and V_{L} , set the logic levels on either side of the device. A logic signal present on the V_{L} side of the device appears as the same logic signal on the V_{CC} side of the device, and vice-versa.

The device is optimized for the I^2C bus as well as the management data input/output (MDIO) bus where often high-speed, open-drain operation is required. When \overline{IS} is high, the device allows the pullup to be connected to the I/O port that has the power. This allows continuous I^2C operation on the powered side without any disruption while the level translation function is off.

The part is specified over the extended -40°C to +85°C temperature range, and is available in 8-bump WLP and 8-pin TDFN packages.

Applications


Devices with I²C Communication Devices with MDIO Communication General Logic-Level Translation

Benefits and Features

- ♦ Meets Industry Standards
 - I²C Requirements for Standard, Fast, and High* Speeds
 - ♦ MDIO Open Drain Above 4MHz*
- ◆ Allows Greater Design Flexibility
 - ♦ Down to 0.9V Operation on V_L Side
 - ♦ Supports Above 8MHz Push-Pull Operation
- **♦ Offers Low Power Consumption**
 - ♦ 23µA (typ) V_{CC} Supply Current
 - ♦ 0.5µA (typ) V_L Supply Current
- ◆ Provides High Level of Integration
 - Pullup Resistor Enabled with One Side Power Supply when TS Is High
 - → 12kΩ (max) Internal Pullup
 - \diamond Low Transmission Gate R_{ON}: 17Ω (max)
- **♦ Saves Space**
 - 8-Bump, 0.4mm pitch, 0.8mm x 1.6mm WLP Package
 - ♦ 8-Pin, 2mm x 2mm TDFN Package

Ordering Information appears at end of data sheet.

Typical Operating Circuit

^{*}Requires external pullups.

High-Speed, Open-Drain Capable Logic-Level Translator

ABSOLUTE MAXIMUM RATINGS

Voltages referenced to GND.		TS Maximum Continuo
V _{CC} , V _L , TS	0.5V to +6V	Continuous Power Dis
IOVCC1, IOVCC2	0.5V to $+(V_{CC} + 0.5V)$	TDFN (derate 6.2m\
IOVL1, IOVL2	0.5V to $+(V_1 + 0.5V)$	WLP (derate 11.8m)
Short-Circuit Duration IOVCC	1, IOVCC2,	Operating Temperatur
IOVL1, IOVL2 to GND	Continuous	Storage Temperature I
V _{CC} , IOVCC_ Maximum Conti	nuous Current at +110°C100mA	Lead Temperature (TD
V _L , IOVL_ Maximum Continuo	ous Current at +110°C40mA	Soldering Temperature

IS Maximum Continuous Current at +110°C70m	4
Continuous Power Dissipation ($T_A = +70$ °C)	
TDFN (derate 6.2mW/°C above +70°C)496mV	V
WLP (derate 11.8mW/°C above +70°C)944mV	V
Operating Temperature Range40°C to +85°C	\mathcal{L}
Storage Temperature Range65°C to +150°C	\mathcal{L}
Lead Temperature (TDFN only, soldering, 10s)+300°C	\mathcal{L}
Soldering Temperature (reflow)+260°C	\mathcal{L}

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TDFN	WLP
Junction-to-Ambient Thermal Resistance (θ _{JA}) 162°C/W	Junction-to-Ambient Thermal Resistance (θ _{JA}) 85°C/W
Junction-to-Case Thermal Resistance (θ _{JC})	

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +1.65 \text{V to } +5.5 \text{V}, V_L = +0.9 \text{V to min}(V_{CC} + 0.3 \text{V}, +3.6 \text{V}), T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$, unless otherwise noted. Typical values are at $V_{CC} = +3 \text{V}, V_L = +1.2 \text{V}$, and $T_A = +25 ^{\circ}\text{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
POWER SUPPLY						
Dower Cupply Dongs	VL	V_{L}			5.5	V
Power Supply Range	V _{CC}		1.65		5.5	\ \ \
V _{CC} Supply Current	Icc	$IOVCC_{-} = V_{CC}$, $IOVL_{-} = V_{L}$, $\overline{TS} = V_{CC}$		23	47	μΑ
V _L Supply Current	ΙL	$IOVCC_{-} = V_{CC}$, $IOVL_{-} = V_{L}$, $\overline{TS} = V_{CC}$		0.5	6	μΑ
V Chutdown Cupply Current	1	TS = GND		1	2.2	
V _{CC} Shutdown Supply Current	ICC-SHDN	$\overline{\overline{TS}} = V_{CC}, V_L = GND, IOVCC_ = unconnected$		1	2.2	μA
V Chutdaya Cyanh Cymant	I _{L-SHDN}	TS = GND		0.1	1	
V _L Shutdown Supply Current		TS = V _L , V _{CC} = GND, IOVL_ = unconnected	0.1 1		1	Η μΑ
IOVCC_, IOVL_ Three-State Leakage Current	ILEAK	$T_A = +25^{\circ}C, \overline{TS} = GND$		0.1	1	μΑ
TS Input Leakage Current	I _{LEAK_TS}	T _A = +25°C			1	μΑ
V _{CC} Shutdown Threshold	V _{TH_VCC}	$\overline{TS} = V_L, V_{CC}$ falling, $V_L = 0.9V$		0.8	1.35	V
V _L Shutdown Threshold	V _{TH_VL}	$\overline{TS} = V_{CC}, V_L \text{ falling}$	0.15	0.3	0.8	V
V _L Above V _{CC} Shutdown Threshold	V _{TH_VL-VCC}	V _L rising above V _{CC} , V _{CC} = +1.65V	0.4	0.73	1.1	V
IOVL_Pullup Resistor	R _{VL_PU}	Inferred from V _{OHL} Measurements		7.6	12	kΩ
IOVCC_ Pullup Resistor	R _{VCC_PU}	Inferred from V _{OHC} Measurements	3	7.6	12	kΩ
IOVL_ to IOVCC_ DC Resistance	R _{IOVL-IOVCC}	Inferred from V _{OHx} Measurements		6	17	Ω

High-Speed, Open-Drain Capable Logic-Level Translator

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +1.65 \text{V to } +5.5 \text{V}, V_L = +0.9 \text{V to min}(V_{CC} + 0.3 \text{V}, +3.6 \text{V}), T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$, unless otherwise noted. Typical values are at $V_{CC} = +3 \text{V}, V_L = +1.2 \text{V}$, and $T_A = +25 ^{\circ}\text{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC LEVELS						
IOVL_ Input-Voltage High	V _{IHL}	$IOVL_$ rising, $V_L = +0.9V$, $V_{CC} = +1.65V$ (Note 4)	V _L - 0.2		V	
IOVL_ Input-Voltage Low	V _{ILL}	IOVL_ falling, V _L = +0.9V, V _{CC} = +1.65V (Note 4)			0.15	V
IOVCC_ Input-Voltage High	V _{IHC}	IOVCC_ rising, $V_L = +0.9V$, $V_{CC} = +1.65V$ (Note 4)	V _{CC} - 0.4			V
IOVCC_ Input-Voltage Low	V _{ILC}	IOVCC_ falling, $V_L = +0.9V$, $V_{CC} = +1.65V$ (Note 4)			0.2	V
TS Input-Voltage High	V _{IH}	$\overline{\text{TS}}$ rising, $V_L = +0.9V$ or $+3.6V$, $V_{CC} > V_L$	V _L - 0.15			V
TS Input-Voltage Low	V _{IL}	$\overline{\text{TS}}$ falling, $V_L = +0.9V$ or $+3.6V$, $V_{CC} > V_L$			0.2	V
IOVL_ Output-Voltage High	V _{OHL}	IOVL_ source current 20 μ A, V_{IOVCC} = V_L to V_{CC} ($V_{CC} \ge V_L$)	0.7 × V _L			V
IOVL_ Output-Voltage Low	V _{OLL}	IOVL_ sink current 5mA, V _{IOVCC} _ ≤ 0.05V	0.2		0.2	V
IOVCC_ Output-Voltage High	V _{OHC}	IOVCC_ source current 20μA, V _{IOVL} _ = V _L	0.7 x V _{CC}		V	
IOVCC_ Output-Voltage Low	V _{OLC}	IOVCC_ sink current 5mA, V _{IOVL} _ ≤ 0.05V			0.25	V
RISE/FALL TIME ACCELERAT	OR STAGE					
Accelerator Pulse Duration		$V_L = +0.9V, V_{CC} = +1.65V$	9	22	48	ns
IOVL_ Output Accelerator		$V_L = +0.9V$, $IOVL_ = GND$, $V_{CC} = +1.65V$		26		
Source Impedance		V _L = +3.3V, IOVL_ = GND, V _{CC} = +5V		6.8		Ω
IOVCC_ Output Accelerator		V _{CC} = +1.65V, IOVCC_ = GND	26			
Source Impedance		V _{CC} = +5V, IOVCC_ = GND	6.5		Ω	
THERMAL PROTECTION						
Thermal Shutdown T _{SHDN}				+150		°C
Thermal Hysteresis	T _{HYST}		10		°C	
ESD PROTECTION						
All Pins		НВМ		±2		kV

High-Speed, Open-Drain Capable Logic-Level Translator

TIMING CHARACTERISTICS

 $(V_{CC} = +1.65 \text{V to } +5.5 \text{V}, V_L = +0.9 \text{V to } +3.6 \text{V}, V_{CC} \ge V_L, \overline{TS} = V_L, C_{VCC} = 1 \mu \text{F}, C_{VL} = 0.1 \mu \text{F}, C_{IOVL} \le 100 \text{pF}, C_{IOVCC} \le 100 \text{pF}, T_A = -40 ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$, unless otherwise noted. Typical values are at $V_{CC} = +3 \text{V}, V_L = +1.2 \text{V}$ and $T_A = +25 ^{\circ}\text{C}$. All timing is 10% to 90% for rise time and 90% to 10% for fall time.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
Turn-On Time for Q1	t _{ON}	$V_{\overline{TS}} = 0V$ to V_L (see the	Block Diagram)		80	200	μs	
LOVOG DI T	t	Push-pull driving, $V_L = +1.2V$, $V_{CC} = +3V$ (Figure 1)			3.7	10	200	
IOVCC_ Rise Time	^t RCC	Open-drain driving, V _L = (Figure 2)	= +1.2V, V _{CC} = +3V		7.9		ns	
JOVCC Fall Time		Push-pull driving, V _L = +1.2V, V _{CC} = +3V (Figure 1)			5.1	15		
IOVCC_ Fall Time	t _{FCC}	Open-drain driving, V _L = (Figure 2)	= +1.2V, V _{CC} = +3V		6.1		ns	
1011 5: 7:	+	Push-pull driving, $V_L = +1.2V$, $V_{CC} = +3V$ (Figure 3)			2.7	8	no	
IOVL_ Rise Time	t _{RL}	Open-drain driving, $V_L = +1.2V$, $V_{CC} = +3V$ (Figure 4)			13		ns	
10)4 5 117	+	Push-pull driving, $V_L = +1.2V$, $V_{CC} = +3V$ (Figure 3)			2.8	12	no	
IOVL_ Fall Time	t _{FL}	Open-drain driving, $V_L = +1.2V$, $V_{CC} = +3V$ (Figure 4)			3.3		ns	
Propagation Delay		Push-pull driving,	Rising		3.4	7		
(Driving IOVL_)	t _{PD_LCC}	$V_L = +1.2V, V_{CC} = +3V$ (Figure 1)	Falling		3	8	ns	
Propagation Delay (Driving IOVCC_)		Push-pull driving,	Rising		1.9	3		
	tPD_CCL	$V_L = +1.2V, V_{CC} = +3V$ (Figure 3)	Falling		1.5	7	ns	
Channel-to-Channel Skew	tskew	Input rise time/fall time < 6ns				1.3	ns	
Maximum Data Rate		Push-pull operation		8			N/LI-7	
iviaxiiiiuiii Dala nale		Open-drain operation (Note 6)		4			H MHz	

- Note 2: All devices are 100% production tested at $T_A = +25$ °C. Limits over the operating temperature range are guaranteed by design and not production tested.
- Note 3: V_L must be less than or equal to V_{CC} during normal operation. However, V_L can be greater than V_{CC} during startup and shutdown conditions.
- Note 4: V_{IHL} , V_{ILL} , V_{IHC} , and V_{ILC} are intended to define the range where the accelerator triggers.
- Note 5: Guaranteed by design.
- Note 6: External pullup resistors are required.

High-Speed, Open-Drain Capable Logic-Level Translator

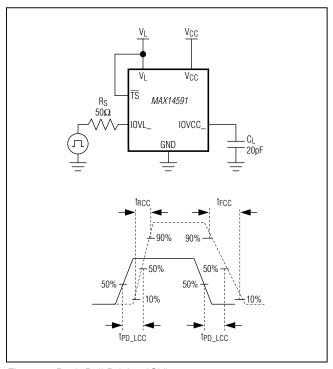


Figure 1. Push-Pull Driving IOVL_

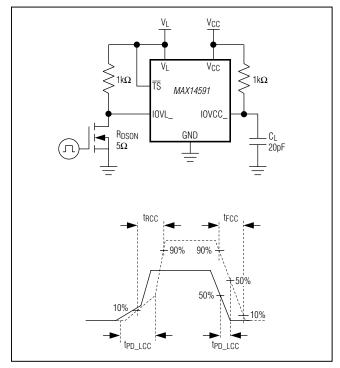


Figure 2. Open-Drain Driving IOVL_

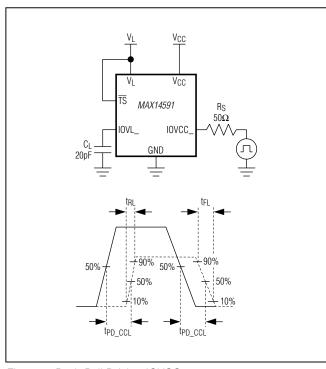
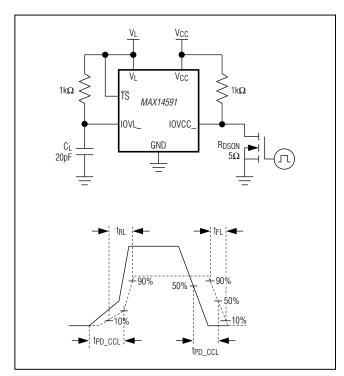
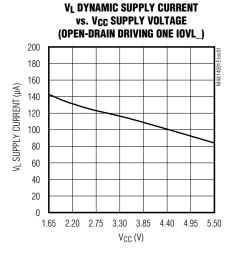
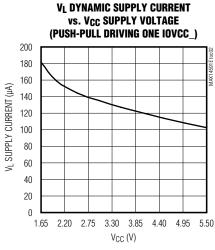
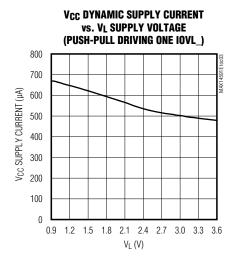
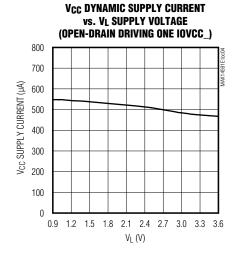


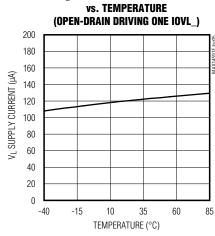
Figure 3. Push-Pull Driving IOVCC_

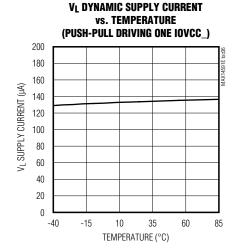



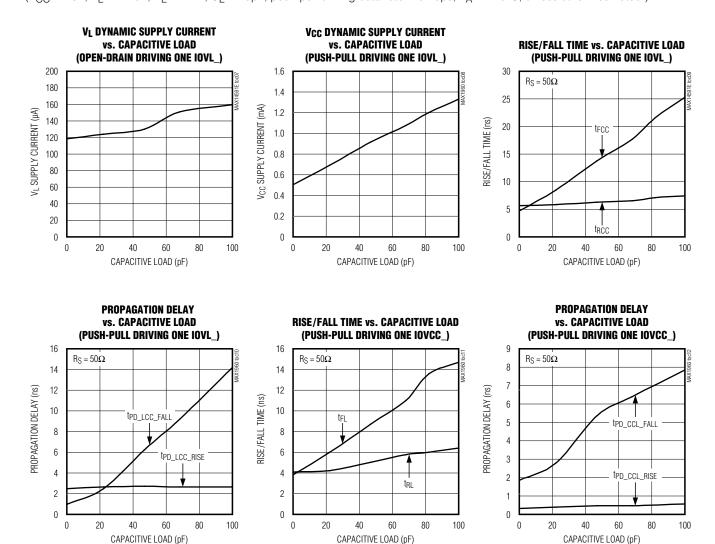

Figure 4. Open-Drain Driving IOVCC_


High-Speed, Open-Drain Capable Logic-Level Translator


Typical Operating Characteristics

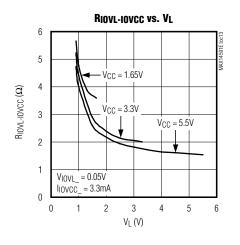

 $(V_{CC} = +3V, V_L = +1.5V, R_L = 1M\Omega, C_L = 15pF$, push-pull driving data rate = 8Mbps, $T_A = +25$ °C, unless otherwise noted.)

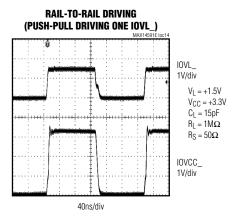


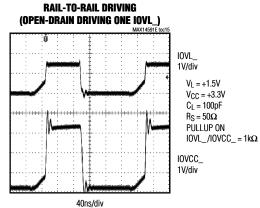

VI DYNAMIC SUPPLY CURRENT

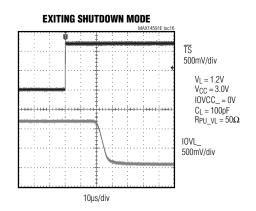
High-Speed, Open-Drain Capable Logic-Level Translator

Typical Operating Characteristics (continued)

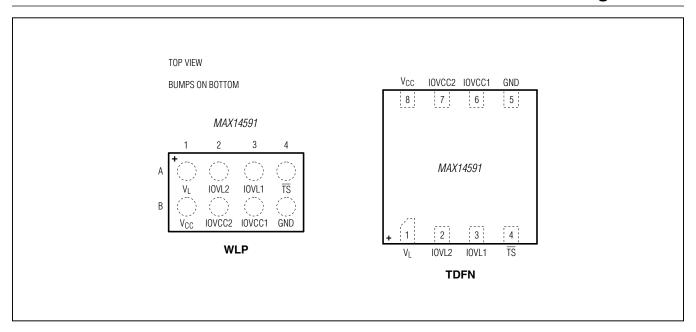

 $(V_{CC} = +3V, V_L = +1.5V, R_L = 1M\Omega, C_L = 15pF$, push-pull driving data rate = 8Mbps, $T_A = +25^{\circ}C$, unless otherwise noted.)




High-Speed, Open-Drain Capable Logic-Level Translator

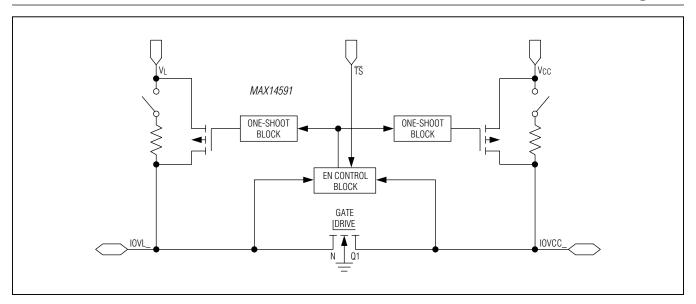

Typical Operating Characteristics (continued)

 $(V_{CC} = +3V, V_L = +1.5V, R_L = 1M\Omega, C_L = 15pF, push-pull driving data rate = 8Mbps, T_A = +25°C, unless otherwise noted.)$



High-Speed, Open-Drain Capable Logic-Level Translator

Pin Configurations



Pin Description

BUM	BUMP/PIN		FUNCTION		
WLP	TDFN	NAME	FUNCTION		
A1	1	VL	Logic Supply Voltage, +0.9V to min(V_{CC} + 0.3V, +3.6V). Bypass V_L to GND with a 0.1 μ F ceramic capacitor as close as possible to the device.		
A2	2	IOVL2	Input/Output 2. Reference to V _L .		
А3	3	IOVL1	Input/Output 1. Reference to V _L .		
A4	4	TS	Active-Low Three-State Input. Drive $\overline{\text{TS}}$ low to place the device in shutdown mode with high-impedance output and internal pullup resistors disconnected. Drive $\overline{\text{TS}}$ high for normal operation.		
B1	8	V _{CC}	Power Supply Voltage, $+1.65V$ to $+5.5V$. Bypass V_{CC} to GND with a $1\mu F$ ceramic capacitor as close to the device as possible.		
B2	7	IOVCC2	Input/Output 2. Reference to V _{CC} .		
В3	6	IOVCC1	Input/Output 1. Reference to V _{CC} .		
B4	5	GND	Ground		

High-Speed, Open-Drain Capable Logic-Level Translator

Block Diagram

Detailed Description

The MAX14591 is a dual-channel, bidirectional level translator. The device translates low voltage down to +0.9V on the V_L side to high voltage on the V_{CC} side and vice-versa. The device is optimized for open-drain and high-speed operation, such as I²C bus and MDIO bus.

The device has low on-resistance (17 Ω max), which is important for high-speed, open-drain operation. The device also features internal pullup resistors that are active when the corresponding power is on and $\overline{\text{TS}}$ is high.

Level Translation

For proper operation, ensure that +1.65V \leq V_{CC} \leq +5.5V, and +0.9V \leq V_L \leq V_{CC}. When power is supplied to V_L while V_{CC} is less than V_L, the device automatically disables logic-level translation function. Also, the device enters shutdown mode when $\overline{\text{TS}}$ = GND.

High-Speed Operation

The device meets the requirements of high-speed I²C and MDIO open-drain operation. The maximum data rate is at least 4MHz for open-drain operation with the total bus capacitance equal to or less than 100pF.

Three-State Input TS

The device features a three-state input that can put the device into high-impedance mode. When $\overline{\text{TS}}$ is low, IOVCC_ and IOVL_ are all high impedance and the internal pullup resistors are disconnected. When $\overline{\text{TS}}$ is high, the internal pullup resistors are connected when the corresponding power is in regulation, and the resistors are disconnected at the side that has no power on. In many portable applications, one supply is turned off but the other side is still operating and requires the pullup resistors to be present. This feature eliminates the need for external pullup resistors. The level translation function is off until both power supplies are in range.

Thermal-Shutdown Protection

The device features thermal-shutdown protection to protect the part from overheating. The device enters thermal shutdown when the junction temperature exceeds +150°C (typ), and the device is back to normal operation again after the temperature drops by approximately 10°C (typ). When the device is in thermal shutdown, the level translator is disabled.

High-Speed, Open-Drain Capable Logic-Level Translator

Applications Information

Layout Recommendations

Use standard high-speed layout practices when laying out a board with the MAX14591. For example, to minimize line coupling, place all other signal lines not connected to the device at least 1x the substrate height of the PCB away from the input and output lines of the device.

Extended ESD

ESD protection structures are incorporated on all pins to protect against electrostatic discharges up to ±2kV (HBM) encountered during handling and assembly. After an ESD event, the device continues to function without latchup.

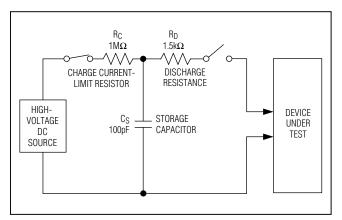


Figure 5. Human Body ESD Test Model

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 5 shows the Human Body Model. Figure 6 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a $1.5 \text{k}\Omega$ resistor.

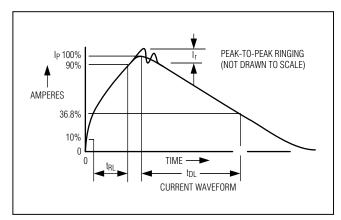


Figure 6. Human Body Current Waveform

High-Speed, Open-Drain Capable Logic-Level Translator

Ordering Information

PART TOP MARK PIN-PACKAGE MAX14591ETA+T BNS 8 TDFN MAX14591EWA+T AAD 8 WLP

Note: All devices are specified over -40°C to +85°C operating temperature range.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 TDFN	T822CN+1	21-0487	90-0349
8 WLP	W80A1+1	<u>21-0555</u>	Refer to Application Note 1891

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

High-Speed, Open-Drain Capable Logic-Level Translator

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	5/11	Initial release	
1	12/14	Updated Ordering Information and Package Information	12

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.