imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

General Description

The MAX14616/MAX14616A are a complete solution for interfacing to a micro-USB connector and include an advanced charger detection block, a linear battery charger, and a switch block capable of multiplexing USB, UART, audio, and composite video signals. The devices include an LED driver for battery charge status and battery present detection.

The MAX14616/MAX14616A support multiplexing USB 2.0 Hi-Speed, UART, and stereo audio signals with a single micro-USB connector. The USB channel features low 3Ω (typ) on-resistance and 7pF (typ) on capacitance to minimize USB signal degradation. The audio inputs feature negative rail signal operation down to -2V and 0.1Ω on-resistance flatness for low THD.

The MAX14616/MAX14616A charger detection block supports USB Battery Charger Detection Revision 1.1 requirements and also detects many common non-USBdefined power adapters. The SFOUT LDO provides a voltage-limited USB VBUS output for powering devices such as USB transceivers that cannot withstand high voltage. The MAX14616/MAX14616A include a composite video cable unplug detector capable of detecting the removal of a video termination resistor.

The MAX14616/MAX14616A battery charger adds a battery present detector to automatically disable the battery charger in case the battery is removed. They also include an open-drain LED driver to indicate the battery charger operation status.

The MAX14616/MAX14616A are available in a 25-bump (2mm x 2mm, 0.4mm pitch) WLP package and operates over the -40°C to +85°C extended temperature range.

Applications

- Media Players
- eReaders
- Cell Phones
- Tablets
- **Digital Cameras**

Benefits and Features

- High Level of Integration
 - Complete Solution for Micro-USB Connector Multiplexing
 - USB 2.0 Hi-Speed Switch with 3Ω (typ) **On-Resistance** Negative-Rail Audio Inputs with Low THD Detection Logic for Accessory Identification Composite Video Load Removal Detection
- Internal Li+ Battery Charger with +28V (max) Input
- **USB Battery Charger Detection** •
 - · Supports USB BC1.1 with Advanced Features from USB BC1.2
 - Data Contact Detection (DCD) Support
 - USB DCP, SDP, and CDP Detection
 - Non-USB Defined Charger Detection Capability
- High-Voltage Protected LDO for USB Transceiver
- Charger Status LED Output Driver •
- Battery Presence Monitor
- High-ESD Protection on COMN1, COMP2, and UID ±15kV for Human Body Model ±10kV for IEC 61000-4-2 Air Gap Discharge ±7kV for IEC 61000-4-2 Contact Discharge
- Saves Power in Portable Application · Low Supply Current
- Saves Space
 - · 25-Bump, 2mm x 2mm, WLP Package

Ordering Information appears at end of data sheet.

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Absolute Maximum Ratings

(All voltages referenced to GND.)	
BAT, JIG, V _{IO} , INT, THM	0.3V to +6V
LED	0.3V to +6V
VB (Charger Mode)	0.3V to +30V
VB (Microphone Mode) (Note 1)	0.3V to (V _{SWPOS} + 0.3V)
SFOUT-VB	+0.3V
CAP	-0.3V to +4V
SDA, SCL	0.3V to (V _{BAT} + 0.3V)
SWITCH ENABLED or CPEn = 1 (Note 1)
SL1, SR2, COMN1, COMP2, UI	D, MIC,
IDB, DN1, DP2	2.1V to (V _{SWPOS} + 0.3V)
UT1, UR2	0.3V to (V _{SWPOS} + 0.3V)

SWITCH DISABLED and CPEn = 0 (Note 2) SL1, SR2, MIC, IDB, DN1, DP2,

UT1, UR2	-0.3V to (V _{CCINT} + 0.3V)
COMN1, COMP2, UID	-0.3V to +6V
Continuous Current into COMN1, COI	MP2±200mA
Continuous Current into BAT, VB	±1300mA
Continuous Current into All Other Bun	1ps±100mA
Continuous Power Dissipation (T _A = +	-70°C)
WLP (derate 19.2mW/°C above +70	D°C)1536mW
Operating Temperature Range	40°C to +85°C
Maximum Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Soldering Temperature (reflow) (Note	3)+260°C

Note 1: $V_{SWPOS} = min(V_{CCINT}, +3.3V)$

Note 2: $V_{CCINT} = max(V_{BAT}, min(V_{VB}, +4V))$

Note 3: The WLP package is constructed using a unique set of package techniques that impose a limit on the thermal profile that the device can be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry-standard specification JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow. Preheating is required. Hand or wave soldering is not allowed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 4)

WLP

Junction-to-Ambient Thermal Resistance (0_{JA})52°C/W

Note 4: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
	V _{BAT}			2.8		5.5	
Supply Voltage	V_{VB}			3.5		28	V
	V _{IO}			1.6		5.5	
Allowed VB Input-Voltage Range	V _{VB}			0		28	V
BAT Undervoltage Lockout Threshold	V _{UVLO}			0.4	2.0	2.65	V
BAT Supply Current		V _{BAT} = 3.6V, V _{VB} = 0V, no	Low-power mode, LowPwr = 1, CPEn =0, ADCEn = 0		3	6	
	IBAT ac	accessory attached	LowPwr = 0, CPEn = 0		28	50	μΑ
			LowPwr = 0, CPEn = 1		45	65	

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Electrical Characteristics (continued)

PARAMETER	SYMBOL		CONI	DITIONS	MIN	TYP	MAX	UNITS
VR Supply Current	h	V _{BAT} = 0V, I _{OUT} = 0mA,	V _{VB} MB0 is of	; = 5V, CPEn = 0, CHOSTEN = 0, SFOUT ff, UID = open		350	500	
VB Supply Current	IVΒ	charger forced off	V _{VB} MB0 is or	, = 5V, CPEn = 0, CHOSTEN= 0, SFOUT n, UID = open		470	3000	μA
VIO Supply Current	l _{IO}	LED = unconne	cted			0.1	1	μA
Internal VB Regulator Voltage	V _{PVB}				3.3	4	5.5	V
Internal Positive Regulator Voltage for Switches	V _{SWPOS}				3.3	3.4	3.5	V
Internal Negative Regulator Voltage for Switches	V _{SWNEG}				-2	-1.9	-1.8	V
CHARGER DETECTION	-	-						
VB-Detect-Threshold Voltage Rising	V _{VBDET}				3.2	3.4	3.6	V
VB-Detect-Threshold Voltage Hysteresis	VVBDET_HYST					0.5		V
DP_SRC and DM_SRC Voltage	V _{DP_SRC} , V _{DM_SRC}	0μΑ ≤ Ι _{LOAD} ≤ 200μΑ		0.5	0.6	0.7	V	
DAT_REF Voltage	V _{DAT_REF}				0.25	0.3	0.35	V
LGC Voltage	V _{LGC}				1.15	1.24	1.3	V
DP and DM Sink Current	I _{DP_SINK} , I _{DM_SINK}	0.15V ≤ V _{DP} = V	V _{DM} :	≤ 3.6V	55	80	105	μA
DP Source Current	IDP_SRC	$0V \le V_{DP} \le 2.5^{\circ}$	V		5.5	8	10	μA
DP and DM Pulldown Resistance	R _{DP_DWN} , R _{DM_DWN}				17	20	23.3	kΩ
DP/DM Pulldown Current	I _{DP_PD} , I _{DM_PD}	V _{DM} = 0.15V or	⁻ 3.6V	,	0.01	0.15	0.5	μA
	V _{BUS25}				22.5	25	27.5	
COMN1 to VB Voltage Ratio	V _{BUS47}	V _{VB} = 5V			42.3	47	51.7	%
	V _{BUS75}				70	75	80	
VIO Reset Falling Threshold	VIO_RST_TH				0.5	0.8	1.1	V
Battery Present Detect	V	% of Varaut		V _{THM} rising	18.0	18.5	19.0	0/2
Threshold	Y THM	78 OF VSFOUT		V _{THM} falling		18.3		70
ACCESSORY DETECTION								
UID Low-Power Pullup Voltage	V _{UID_PU}	V _{BAT} = 3.6V, V _V	_{VB} = 0	0V, LowPwr = 1		1.6		V
UID Low-Power Threshold Voltage	V _{UID_LP}	V _{BAT} = 3.6V, V _V	_{VB} = (0V, LowPwr = 1	0.4	0.7	1	V
UID Low-Power Pullup Resistance	R _{UID_LP}				2	3.4		MΩ
ADC Low Threshold	R _{ADCLow}				32	40	49	Ω

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		V _{UID} = 2.55V and 0.9V	2.19	2.28	2.37	
		V _{UID} = 2.50V and 0.76V	5.756	6	6.24	
		V _{UID} = 2.35V and 0.70V	16.032	16.7	17.368	μA
ADC ID Pullup Current	IPUP	V _{UID} = 2.20V and 0.57V	45.214	47	48.786	
		V _{UID} = 2.12V and 0.05V	146.88	153	159.12	
		V _{UID} = 2.04V and 0.05V	2.235	2.5	2.735	mA
		GND	0		0.032	
		R _{VID}	0.049	0.075	0.472	
		1kΩ resistor	0.531	1	1.433	
		R1	1.722	2	2.112	
		R2	2.465	2.604	2.684	
		R3	3.091	3.208	3.35	
		R4	3.826	4.014	4.11	
		R5	4.67	4.82	5.05	
		R6	5.73	6.03	6.54	
		R7	7.39	8.03	8.43	
		R8	9.5	10.03	10.31	
		R9	11.6	12.03	12.69	10
		R10	14.03	14.46	14.77	
		R11	16.76	17.26	17.61	
		R12	19.92	20.5	20.79	
		R13	23.49	24.07	24.63	
ADC Detection Resistors	Pupe	R14	27.8	28.7	29.3	
ADC Delection Resistors	INADC	R15	33	34	34.7	K12
		R16	39	40.2	43	
		R17	49.6	49.9	53.4	
		R18	60.4	64.9	67.6	
		R19	76.3	80.07	84.9	
		R20	95.6	102	104	
		R21	117	121	129	
		R22	143	150	153	
		R23	173	200	212	
		R24	239	255	260	
		R25	293	301	312	
		R26	350	365	384	
		R27	425	442	450	
		R28	508	523	533	
		R29	601	619	655	
		R30	737	1000	1032	
		Open	1158			

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
USB ANALOG SWITCH (DN1, I	OP2)	· · · · · · · · · · · · · · · · · · ·				
Analog Signal Danga		RUID = open, LowPwr = 1 and CPEn = 0 (Note 2)	0		V _{CCINT}	M
Analog Signal Range	VDN1, VDP2	$(RUID < 1050k\Omega \text{ or LowPwr} = 0) \text{ and CPEn} = 1 (Note 1)$	0		V _{SWPOS}	v
On-Resistance	R _{ONUSB}	$ (RUID < 1050 k\Omega \text{ or LowPwr} = 0) \text{ and CPEn} \\ = 1, V_{BAT} = 3.0V, I_{COMN1}, I_{COMP2} = 10mA, \\ 0V \leq V_{COMN1}, V_{COMP2} \leq 3.0V $		3	6	Ω
On-Resistance Match Between Channels	∆R _{ONUSB}	$\begin{array}{l} (\text{RUID} < 1050 \text{k}\Omega \text{ or LowPwr} = 0) \text{ and CPEn} \\ = 1, \ \text{V}_{\text{BAT}} = 3.0 \text{V}, \ \text{I}_{\text{COMN1}}, \ \text{I}_{\text{COMP2}} = 10 \text{mA}, \\ \text{V}_{\text{COMN1}}, \ \text{V}_{\text{COMP2}} = 400 \text{mV} \end{array}$			0.5	Ω
On-Resistance Flatness	R _{FLATUSB}	$ (RUID < 1050 k\Omega \text{ or LowPwr} = 0) \text{ and CPEn} \\ = 1, V_{BAT} = 3.0V, I_{COMN1}, I_{COMP2} = 10mA, \\ 0V \le V_{COMN1}, V_{COMP2} \le 3.3V $		0.1	0.3	Ω
Off-Leakage Current	ILUSB (OFF)	$ ({\sf RUID} < 1050 k\Omega \text{ or } {\sf LowPwr} = 0) \text{ and } {\sf CPEn} \\ = 1, {\sf V}_{\sf BAT} = 4.2 {\sf V}, {\sf switch open}, {\sf V}_{\sf DN1}, {\sf V}_{\sf DP2} \\ = 0.3 {\sf V} \text{ or } 2.5 {\sf V} \text{ and } {\sf V}_{\sf COMN1}, {\sf V}_{\sf COMP2} = \\ 2.5 {\sf V} \text{ or } 0.3 {\sf V} \\ $	-360		+360	nA
On-Leakage Current	I _{USB(ON)}	(RUID < 1050k Ω or LowPwr = 0) and CPEn = 1, V _{BAT} = 4.2V, switch closed, V _{DN1} , V _{DP2} = 0.3V or 2.5V	-360		+360	nA
UART ANALOG SWITCHES (U	T1, UR2)					
Analog Signal Range		RUID = open, LowPwr = 1 and CPEn = 0 (Note 2)	0		V _{CCINT}	V
	VUI1, VUR2	(RUID < 1050kΩ or LowPwr = 0) and CPEn = 1 (Note 1)	0		V _{SWPOS}	v
On-Resistance	R _{ONUART}	$ (RUID < 1050 k\Omega \text{ or LowPwr} = 0) \text{ and CPEn} \\ = 1, V_{BAT} = 3.0V, I_{COMN1}, I_{COMP2} = 10mA, \\ 0V \leq V_{COMN1}, V_{COMP2} \leq 3.0V $		3	6	Ω
On-Resistance Match Between Channels	∆Ronuart	(RUID < 1050k Ω or LowPwr = 0) and CPEn = 1, V _{BAT} = 3.0V, I _{COMN1} , I _{COMP2} = 10mA, V _{COMN1} , V _{COMP2} = 1.5V			0.5	Ω
On-Resistance Flatness	R _{FLATUART}	$ (RUID < 1050 k\Omega \text{ or LowPwr} = 0) \text{ and CPEn} \\ = 1, V_{BAT} = 3.0V, I_{COMN1}, I_{COMP2} = 10mA, \\ 0V \leq V_{COMN1}, V_{COMP2} \leq 3.0V $		0.1	0.3	Ω
Off-Leakage Current	I _{LUART} (OFF)	$ (\text{RUID} < 1050 \text{k}\Omega \text{ or LowPwr} = 0) \text{ and CPEn} \\ = 1, V_{BAT} = 4.2 \text{V}, \text{ switch open}, V_{UT1}, V_{UR2} \\ = 0.3 \text{V or } 2.5 \text{V and } V_{COMN1}, V_{COMP2} = \\ 2.5 \text{V or } 0.3 \text{V} \\ $	-360		+360	nA

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
On-Leakage Current	ILUART(ON)	(RUID < 1050kΩ or LowPwr = 0) and CPEn = 1, V_{BAT} = 4.2V, switch closed, V_{UT1} , V_{UR2} = 0.3V or 2.5V	-360		+360	nA
AUDIO ANALOG SWITCHES (SL1, SR2)						
		RUID = open, LowPwr = 1 and CPEn = 0 (Note 2)	0		V _{CCINT}	
Analog Signal Range	VAUDIO	(RUID < $1050k\Omega$ or LowPwr=0) and CPEn = 1 (Note 1)	V _{SWNEG}		V _{SWPOS}	V
On-Resistance	R _{ONA}	$ (RUID < 1050 k\Omega \text{ or LowPwr} = 0) \text{ and CPEn} \\ = 1, V_{BAT} = 3.0V, I_{COMN1}, I_{COMP2} = 10 mA, \\ 0V \le V_{COMN1}, V_{COMP2} \le 3.0V $		3	6	Ω
On-Resistance Match Between Channels	ΔRona	$(\text{RUID} < 1050 \text{k}\Omega \text{ or LowPwr} = 0) \text{ and CPEn} \\ = 1, V_{\text{BAT}} = 3.0\text{V}, I_{\text{COMN1}}, I_{\text{COMP2}} = 10\text{mA}, \\ V_{\text{COMN1}}, V_{\text{COMP2}} = 1.5\text{V}$			0.5	Ω
On-Resistance Flatness	R _{FLATA}	$ (RUID < 1050 k\Omega \text{ or LowPwr} = 0) \text{ and CPEn} \\ = 1, V_{BAT} = 3.0V, I_{COMN1}, I_{COMP2} = 10 mA, \\ 0V \le V_{COMN1}, V_{COMP2} \le 3.0V $		0.1	0.3	Ω
Audio Off-Leakage Current	I _{LA(OFF)}	$ (RUID < 1050 k\Omega \text{ or LowPwr} = 0) \text{ and CPEn} \\ = 1, V_{BAT} = 4.2 V, \text{ switch open, } V_{SL1}, \\ V_{SR2} = 0.3 V \text{ or } 2.5 V, V_{COMN1}, \\ V_{COMP2} = 2.5 V \text{ or } 0.3 V $	-360		+360	nA
Audio On-Leakage Current	ILA(ON)	$(\text{RUID} < 1050 \text{k}\Omega \text{ or LowPwr} = 0) \text{ and CPEn}$ = 1, V _{BAT} = 4.2V, switch closed, V _{SL1} , V _{SR2} = 0.3V or 2.5V	-360		+360	nA
Shunt Resistor	R _{SHUNT}	I _{SHUNT} = 10mA	30	100	170	Ω
MIC ANALOG SWITCHES (MIC)					
Analog Signal Danga	Mana	RUID = open, LowPwr = 1 and CPEn = 0 (Note 2)	0		V _{CCINT}	V
Analog Signal Range	MIC	$(RUID < 1050k\Omega \text{ or LowPwr} = 0) \text{ and CPEn} = 1$	0		2.5	v
On-Resistance	Ronmic	(RUID < 1050k Ω or LowPwr = 0) and CPEn = 1, V _{BAT} = 3.0V, I _{MIC} = 10mA, 0V \leq V _{MIC} \leq 3.0V		30	50	Ω
On-Resistance Flatness	R _{FLATMIC}	(RUID < 1050k Ω or LowPwr = 0) and CPEn = 1, V _{BAT} = 3.0V, I _{MIC} = 10mA, 0V \leq V _{MIC} \leq 3.0V		3	10	Ω
MIC Off-Leakage Current	ILMIC(OFF)	$(\text{RUID} < 1050 \text{k}\Omega \text{ or LowPwr} = 0) \text{ and CPEn}$ = 1, V _{BAT} = 4.2V, switch open, V _{MIC} = 0.3V or 2.5V, V _{VB} = 2.5V or 0.3V	-360		+360	nA

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
MIC On-Leakage Current	ILMIC(ON)	(RUID < 1050kΩ or LowPwr = 0) and CPEn = 1, V_{BAT} = 4.2V, switch closed, V_{MIC} = 0.3V or 2.5V		32	60	μA	
ID BYPASS ANALOG SWITCH	ID BYPASS ANALOG SWITCH (IDB)						
Angles Signal Dance	N	RUID = open, LowPwr = 1 and CPEn = 0 (Note 2)	0		V _{CCINT}	M	
Analog Signal Range	VIDB	(RUID < $1050k\Omega$ or LowPwr = 0) and CPEn =1	V _{SWNEG}		V _{SWPOS}	V	
On-Resistance	Ronidb	(RUID < 1050kΩ or LowPwr = 0) and CPEn = 1, V_{BAT} = 3.0V, I_{IDB} = 10mA, 0V ≤ V_{IDB} ≤ 2.5V		3	6	Ω	
On-Resistance Flatness	R _{FLATIDB}	(RUID < 1050k Ω or LowPwr = 0) and CPEn = 1, V _{BAT} = 3.0V, I _{IDB} = 10mA, 0V \leq V _{IDB} \leq 2.5V		0.1	0.3	Ω	
IDB Off-Leakage Current	I _{LIDB} (OFF)	(RUID < 1050kΩ or LowPwr = 0) and CPEn = 1, V_{BAT} = 4.2V, switch open, V_{IDB} = 0.3V or 2.5V and V_{UID} = 2.5V or 0.3V	-360		+360	nA	
IDB On-Leakage Current	I _{LIDB} (ON)	(RUID < 1050k Ω or LowPwr = 0) and CPEn = 1, V _{BAT} = 4.2V, switch closed, V _{IDB} = 0.3V or 2.5V	-360		+360	nA	
DIGITAL SIGNALS (INT, SCL,	SDA, JIG, BOO	T, LED)					
Input Logic-High	VIH		1.4			V	
Input Logic-Low	VIL				0.4	V	
Input Leakage Current	IINLEAK		-250		+250	nA	
Open-Drain Output-Voltage Low	V _{INTL} , V _{JIGL,} V _{LEDL}	I _{SINK} = 3mA			0.4	V	
DYNAMIC PERFORMANCE							
Analog Switch Turn-On Time	t _{ON}	I ² C STOP to switch on, $R_L = 50\Omega$		0.2	0.5	ms	
Analog Switch Turn-Off Time	tOFF	I ² C STOP to switch off, $R_L = 50\Omega$		0.1	0.5	ms	
Break-Before-Make Delay Time	t _{BBM}	$R_{L} = 50\Omega, T_{A} = +25^{\circ}C$ (Note 6)	0			μs	
MUIC Clock Period	tск			14.64		μs	
USB Charger Detect Time	tDPSRC_ON		40	46	60	ms	
JIG Assertion Time		Resistor attached to ID until JIG assert (Note 7)		0.5		ms	
Charger Detect Current Delay	tVDPSRC_HICRNT		46		60	ms	
VBUS Debounce Time	t _{MDEB}		20	30	40	ms	
DCD Debounce Time			36	40	44	ms	

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CON	DITIONS		MIN	TYP	MAX	UNITS	
		DCDCpl = 0			1.8	2	2.2	sec	
		DCDCpl = 1					900	ms	
Charger Detection Delay Timeout		CDDelay = 1				500		ms	
COMN1, COMP2 On Capacitance	CONCOM	Applied voltage is 0. f = 240MHz, COMN DN1/DP2	.5V _{PP} , D0 1/COMP2	C bias = 0V, connected to		7		pF	
UID On Capacitance	C _{ONUID}	Applied voltage is 0. f = 1MHz, UID conn	Applied voltage is 0.5V _{PP} , DC bias = 0V, f = 1MHz, UID connected to MIC			7		pF	
				UT1, UR2		3			
Off Consoitance	C	Applied voltage is 0.	.5V _{PP} ,	DN1, DP2		3			
	COFF	f = 1MHz		MIC		3		pF	
				IDB		3			
Off-Isolation		$ \begin{array}{l} R_{L} = 50\Omega, f = 20 kHz, \\ V_{COMN1}, V_{COMP2} = 0.5 V_{PP} \end{array} UT1, UR2 \end{array} $				-60		dB	
MIC Isolation		BAT to MIC, MIC to UID switch enabled, $R_L = 600\Omega$, 100Hz $\leq f \leq 6$ kHz, $V_{BAT} = 3.6V \pm 0.5V$				80		dB	
BAT Supply PSRR		Noise from BAT to COMN1, COMP2 or MIC, R _L = 50Ω , f = 10 kHz, V _{BAT} = $3.6V \pm 0.2V$				90		dB	
Crosstalk		Any switch to any sw f = 20kHz, V _{COMN1} ,	witch, R _L : , V _{COMP2}	= 50Ω, = 1V _{RMS}		100		dB	
MIC Total Harmonic Distortion	THD	MIC channel, 20Hz = $V_{COMP2} = 0.5V_{PP}$, T _A = +25°C	≤ f ≤ 20k⊦ R _L = 50Ω	łz, V _{COMN1} , , DC bias = 0V,		0.05		%	
BATTERY CHARGER (V _{VB} = 5 ^v	V, V _{BAT} = 4V, T	A = -40°C to +85°C,	unless ot	herwise specifi	ed)				
VBUS Charger Operating Range	VBUSOP				4.0		V _{OVLO}	V	
		$V_{VB} - V_{BAT}$, rising			150	250	350		
VBUSOK Trip Point	V _{BTP}	$V_{VB} - V_{BAT}$, falling			20	45	100	mV	
		V _{VB} – V _{BAT} , hystere	esis			205			
Input-Undervoltage Threshold	V _{BUVLO}	VB rising			3.8	3.9	4.0	V	
Input-Undervoltage Threshold Hysteresis						600		mV	
			OTPCG	HCVS = 00	7.1	7.5	7.8		
Input-Overvoltage Protection	Verne	VB rising	OTPCG	HCVS = 01		6.0		V	
Threshold	VOVLO		OTPCG	HCVS = 10		6.5			
			OTPCG	HCVS = 11		7.0			

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CON	IDITIONS	MIN	TYP	MAX	UNITS	
Input-Overvoltage Threshold Hysteresis	Vovlo_hys				200		mV	
		V _{VB} = 6.0V, I _{SFOUT}	= 0mA	5.0	5.25	5.5	V	
SFOUT LDO vollage	VSFOUT	V _{VB} = 5.0V, I _{SFOUT} = 15mA			4.9			
VB to BAT Input Resistance		V _{VB} = 4.1V, V _{BAT} =	4.0V		0.5		Ω	
BAT Battery Degulation Voltage		I _{BAT} = 5mA,	T _A = +25°C	4.179	4.2	4.221	V	
BAT Battery Negulation voltage		MBCCVWRC = 000	0 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.158	4.2	4.242	v	
BAT Regulation Programmable	VEATEC	I _{BAT} = 5mA	MBCCVWRC = 0001		4.0		v	
Range	VDAIREG	(Note 8)	MBCCVWRC = 1111		4.35			
BAT Restart Fast-Charge Threshold	VBATRS	From BAT regulation when AUTOSTOP is	rom BAT regulation voltage, active only /hen AUTOSTOP is enabled				mV	
BAT Restart Fast-Charge Debounce					62		ms	
		V _{BAT} = 3.5V	MBCICHWRCL = 0		90		-	
			MBCICHWRCH = 0000		200			
			MBCICHWRCH = 0001		250			
			MBCICHWRCH = 0010		300			
			MBCICHWRCH = 0011		350			
			MBCICHWRCH = 0100		400			
			MBCICHWRCH = 0101	414	450	486]	
			MBCICHWRCH = 0110		500			
Battery Fast-Charge Current	IBAT	V _{BAT} = 3.5V,	MBCICHWRCH = 0111		550		mA	
		MBCICHWRCL = 1	MBCICHWRCH = 1000		600			
			MBCICHWRCH = 1001		650			
			MBCICHWRCH = 1010		700			
			MBCICHWRCH = 1011		750			
			MBCICHWRCH = 1100		800		1	
			MBCICHWRCH = 1101		850		1	
			MBCICHWRCH = 1110		900		1	
			MBCICHWRCH = 1111		950		1	

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
			EOCS = 0000		50		
			EOCS = 0001		60		
			EOCS = 0010		70		
			EOCS = 0011		80		
			EOCS = 0100		90		
			EOCS = 0101		100		
			EOCS = 0110		110		
Battery End-of-Charge Threshold		IBAT falling, battery	EOCS = 0111		120		
	IBAT_STOP	is charged	EOCS = 1000		130		- MA
			EOCS = 1001		140		
			EOCS = 1010		150		
			EOCS = 1011		160		
			EOCS = 1100		170		
			EOCS = 1101		180		
			EOCS = 1110		190		
			EOCS = 1111		200		
VB Prequalification Charge Current	IPRECHG	V _{BAT} = 2V, V _{VB} = 5	V		93		mA
Battery Charger Soft-Start Time		Ramp time from 93n	nA to fast-charge current		1.2		ms
Precharge Threshold	VPRECHG				2.5		V
Precharge Threshold Hysteresis					170		mV
Precharge Watchdog Timeout					30		min
		TCHW = 000,001, 0	10, 101, or 110		5		
Fast-Charge Timer	TCHW = 011				6		Hour
		TCHW = 100		7		1	
Top-Off Timer					30		min
Die Temperature Thermal Limit	TJ	Die temperature risi	ng (Note 9)		+105		°C

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Electrical Characteristics (continued)

(V_{BAT} = 2.8V to 5.5V, V_{VB} = 3.5V to 5.5V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{BAT} = 3.6V, V_{VB} = 5.0V, T_A = +25°C.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I ² C TIMING SPECIFICATIONS	(Figure 1)	·				
I ² C Maximum Clock Frequency	fI2CCLK			400		kHz
Bus Free Time Between STOP and START Conditions	^t BUF		1.3			μs
Repeated Start (SR) Condition Setup Time	^t SU:STA	90% to 90%	0.6			μs
START Condition Hold Time	^t HD:STA	10% of SDA to 90% of SCL	0.6			μs
STOP Condition Setup Time	tsu:sto	90% of SCL to 10% of SDA	0.6			μs
Clock Low Period	tLOW	10% to 10%	1.3			μs
Clock High Period	thigh	90% to 90%	0.6			μs
Data Valid to SCL Rise Time	^t SU:DAT	Data setup time	100			ns
Data Setup Time to SCL Fall	thd:dat	Data hold time	0			ns
ESD PROTECTION						
		Human Body Model		±15		
COMN1, COMP2, UID, BC		IEC61000-4-2 Air Gap		±10		kV
		IEC61000-4-2 Contact		±7		
All Other Pins		Human Body Model		±2		kV

Note 5: All devices are 100% production tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range are guaranteed by design.

Note 6: Not production tested. Guaranteed by design.

Note 7: The JIG assertion time is a function of the ADC debounce time. Set the ADCDbSet bits in the CONTROL3 register to adjust this delay.

Note 8: Set the MBCCVWRC bits in the CHGCTRL3 register to adjust the battery regulation voltage, VBATREG.

Note 9: The battery charge current is reduced when the die temperature reaches this limit.

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Figure 1. I²C Timing Diagram

Typical Operating Characteristics

 $(V_{BAT} = 4.0V, V_{VB} = 0V, T_A = +25^{\circ}C, unless otherwise noted.)$

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Typical Operating Characteristics (continued)

(V_{BAT} = 4.0V, V_{VB} = 0V, T_A = +25°C, unless otherwise noted.)

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Typical Operating Characteristics (continued)

(V_{BAT} = 4.0V, V_{VB} = 0V, T_A = +25°C, unless otherwise noted.)

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Typical Operating Characteristics (continued)

(V_{BAT} = 4.0V, V_{VB} = 0V, T_A = +25°C, unless otherwise noted.)

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Typical Operating Characteristics (continued)

(V_{BAT} = 4.0V, V_{VB} = 0V, T_A = +25°C, unless otherwise noted.)

20ms/div

DCP INSERT (CDDelay = 1)

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

TOP VIEW MAX14616 (BUMPS ON BOTTOM) MAX14616A 2 3 4 5 1 INT DN1 DP2 UID А V_{IO} В MIC LED JIG CAP (COMP2) С UR2 UT1 IDB SDA (COMN1) D BAT (SFOUT) SCL THM SR2 Е GND) SL1 BAT VB VB WLP

Bump Configuration

Bump Description

BUMP	NAME	FUNCTION
A1	V _{IO}	I ² C Reset Input. A falling edge on V _{IO} causes the I ² C registers to reset.
A2	ĪNT	Active-Low Open-Drain Interrupt Output. Connect INT to an external pullup resistor.
A3	DN1	USB D- Input/Output
A4	DP2	USB D+ Input/Output
A5	UID	USB ID Input. Connect UID to ID on micro-USB connector. Maximum capacitance allowed from UID to ground is 1nF.
B1	MIC	Microphone Output
B2	LED	Open-Drain LED Driver. LED is controlled by the battery charger status (Table 4) or the BTLDSet bits in the CONTROL3 register.
В3	JIG	Factory-Mode Open-Drain Output. JIG is controlled by the internal state machine or manually controlled by the JIGSet register bits.
B4	CAP	Internal LDO Bypass Output. Bypass CAP to GND with a $0.1\mu F$ (typ) ceramic capacitor for proper operation. Do not use CAP to drive an external load.
B5	COMP2	Common Input/Output 2. Connect COMP2 to D+ on the micro-USB connector.

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Bump Description (continued)

BUMP	NAME	FUNCTION
C1	UR2	UART Receiver Input/Output
C2	UT1	UART Transmitter Input/Output
C3	IDB	USB ID Bypass. IDB is used to sense ID of the micro-USB connector for USB OTG transceivers and the pass composite video.
C4	SDA	I ² C Serial Data Input/Output. Connect SDA to external pullup resistor.
C5	COMN1	Common Input/Output 1. Connect COMN1 to D- on the micro-USB connector.
D1, E1	BAT	Battery Charger Output and Chip-Power Input. Bypass BAT to GND with a 2.2 μ F (min) ceramic capacitor.
D2	SFOUT	Overvoltage-Protected LDO Output. Internal LDO is powered from VB. Bypass SFOUT to GND with a 1μ F (min) ceramic capacitor.
D3	SCL	I ² C Serial Clock Input. Connect SCL to an external pullup resistor.
D4	THM	Battery Presence Detection
D5	SR2	Stereo Audio Input/Output 2
E2, E3	VB	USB VBUS Input. VB provides power for internal circuitry when V _{BAT} is less than V _{VB} . VB is also the input source for the battery charger. Bypass VB to GND with a 1 μ F (min) ceramic capacitor.
E4	GND	Ground
E5	SL1	Stereo Audio Input/Output 1

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Functional Diagram/Typical Application Circuit

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Register Map

ADDRESS	NAME	b7	b6	b5	b4	b3	b2	b1	b0
0x00	DEVICEID			ChipIE)			DeviceID	
0x01	INT1	0	0	0	0	ADC1KI	ADCErrorl	ADCLowl	ADCI
0x02	INT2	0	0	VidRmI	VBVoltI	DXOVPI	DCDTmrl	ChgDetRunI	ChgTypl
0x03	INT3	0	0	BatDetl	ChgEnbldl	MBCCHGERRI	OVPI	CGMBCI	EOCI
0x04	STATUS1	ADC1K	ADCError	ADCLow		·	ADC		
0x05	STATUS2	VidRm	VBVolt	DXOVP	DCDTmr	ChgDetRun		ChgTyp	
0x06	STATUS3	0	Bat	Det	ChgEnbld	MBCCHGERR	OVP	CGMBC	EOC
0x07	INTMASK1	0	0	0	0	ADC1KM	ADCErrorM	ADCLowM	ADCM
0x08	INTMASK2	0	0	VidRmM	VBVoltM	DXOVPM	DCDTmrM	ChgDetRunM	ChgTypM
0x09	INTMASK3	0	0	BatDetM	ChgEnbldM	MBCCHGERRM	OVPM	CGMBCM	EOCM
0x0A	CDETCTRL1	CDPDet	0	DCDCpl	CDDelay	DCD2sCt	DCDEn	ChgTypMan	ChgDetEn
0x0B	CDETCTRL2	0	0	0	0	DxOVPEn	JtaBatEn	VidRmEn	FrcChg
0x0C	CONTROL1	IDBEn	MicEn		COMP2Sv	V	COMN1Sw		
0x0D	CONTROL2	RCPS	USBCpInt	AccDet	SFOutOrd	SFOutAsrt	CPEn	ADCEn	LowPwr
0x0E	CONTROL3	0	0	ADC	DbSet	BTLDSet		JIGSet	
0x0F	CHGCTRL1	0		TCHW		0	1	0	0
0x10	CHGCTRL2	VCHGR_RC	MBCHOSTEN	0	1	0	1	0	0
0x11	CHGCTRL3	1	0	1	0		MBCCV	MBCCVWRC	
0x12	CHGCTRL4	0	0	0	MBCICHWRCL		MBCICH	NRCH	
0x13	CHGCTRL5	0	0	1	0		EOCS		
0x14	CHGCTRL6	0	1	AUTOSTOP	1	0	0	0	1
0x15	CHGCTRL7	0	0	0	0	0	0	OTPCG	HCVS

Detailed Register Map

FIELD NAME	READ/WRITE	BITS	DEFAULT	DESCRIPTION		
DEVICEID (0x00)						
ChipID (MAX14616)	Read Only	[7:3]	01110	Chip Version		
ChipID (MAX14616A)	Read Only	[7:3]	10010	Chip Version		
DeviceID	Read Only	[2:0]	101	Device Identification		

INT1 (0x01) (All bits are cleared after a read)

Bits in this register are set when associated bits in the STATUS1 register change. INT is asserted when any bit in the INT1 register is set, unless masked in the INTMASK1 register.

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Detailed Register Map (continued)

FIELD NAME	READ/WRITE	BITS	DEFAULT	DESCRIPTION			
RFU	Read Only	[7:4]	0000	Reserved			
ADC1KI	Read Only	[3]	(Note 10)	ADC 1K Detected or Removed Interrupt 0 = No change 1 = ADC1K bit has changed			
ADCErrorl	Read Only	[2]	(Note 10)	ADC Error Interrupt 0 = No change 1 = ADCError bit has changed			
ADCLowl	Read Only	[1]	(Note 10)	ADC Low-Bit Change Interrupt 0 = No change 1 = ADCLow bit has changed			
ADCI	Read Only	[0]	(Note 10)	ADC Change Interrupt 0 = No change 1 = ADC bits have changed			
INT2 (0x02) (All bits are cleared after a read)							

INT2 (0x02) (All bits are cleared after a read) Bits in this register are set when associated bits in the STATUS2 register change. INT is asserted when any bit in the INT2 register is set unless masked in the INTMASK2 register.

RFU	Read Only	[7:6]	00	Reserved		
VidRml	Read Only	[5]	(Note 10)	Video Cable Removal Interrupt 0 = No change 1 = VidRm bit has changed		
VBVoltl	Read Only	[4]	(Note 10)	VB Voltage Interrupt 0 = No change 1 = VBVolt bit has changed		
DXOVPI	Read Only	[3]	(Note 10)	D+/D- OVP Interrupt 0 = No change 1 = DXOVP bit has changed		
DCDTmrl	Read Only	[2]	(Note 10)	DCD Timer Interrupt 0 = No change 1 = DCDTmr bit has changed		
ChgDetRunI	Read Only	[1]	(Note 10)	Charger Detection Running Status Interrupt 0 = No change 1 = ChgDetRun bit has changed		
ChgTypl	Read Only	[0]	(Note 10)	Charger Type Interrupt 0 = No change 1 = ChgTyp bits have changed		

INT3 (0x03) (All bits are cleared after a read)

Bits in this register are set when associated bits in the STATUS3 register change. INT is asserted when any bit in the INT3 register is set, unless masked in the INTMASK3 register.

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Detailed Register Map (continued)

FIELD NAME	READ/WRITE	BITS	DEFAULT	DESCRIPTION		
RFU	Read Only	[7:6]	00	Reserved		
BatDetl	Read Only	[5]	(Note 10)	Battery Presence Detect 0 = No change 1 = BatDet bits have changed		
ChgEnbldl	Read Only	[4]	(Note 10)	Battery Charger Enable Interrupt 0 = No change 1 = ChgEnbld bit has changed		
MBCCHGERRI	Read Only	[3]	(Note 10)	Battery Fast-Charge Timer Expire Interrupt 0 = No change 1 = MBCCHGERR has changed		
OVPI	Read Only	[2]	(Note 10)	VB Overvoltage Protection Interrupt 0 = No change 1 = OVP bit has changed		
CGMBCI	Read Only	[1]	(Note 10)	Charger Voltage OK Interrupt 0 = No change 1 = CGMBC bit has changed		
EOCI	Read Only	[0]	(Note 10)	End-of-Charge Interrupt 0 = No change 1 = EOC bit has changed		
STATUS1 (0x04) Changes in bits in this	register generate	an interrup	t in the INT1 re	gister.		
ADC1K	Read Only	[7]	(Note 10)	ADC 1KΩ Resistor Detection . This bit is set when a 1k Ω or larger resistor to ground is detected on UID. 0 = No 1k Ω on UID 1 = 1k Ω detected on UID		
ADCError	Read Only	[6]	(Note 10)	 ADC Error Detection. This bit is set when the ADC cannot converge on a value due to noise or other interference. 0 = ADC Detection Error has not occurred 1 = ADC Detection Error has occurred 		
ADCLow	Read Only	[5]	(Note 10)	ADCLow Bit . This bit is cleared when UID is connected to GND. ADCLow is used to detect a 75Ω video cable; a video cable is present when ADCLow = 1 and ADC = 00000. See the <i>Accessory Detection</i> section for more information. 0 = UID resistance < 30Ω 1 = UID resistance ≥ 30Ω		
ADC	Read Only	[4:0]	(Note 10)	ADC Output . Any change in the ADC bits triggers an interrupt in the INT1 register. See Table 4 in the <i>Accessory Detection</i> section.		
STATUS2 (0x05)						

Changes in bits in this register generate an interrupt in the INT2 register.

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Detailed Register Map (continued)

FIELD NAME	READ/WRITE	BITS	DEFAULT	DESCRIPTION		
VidRm	Read Only	[7]	(Note 10)	Video Cable Removal Detection Output . VidRmEn must to be set to 1 and video amplifier is enabled and outputting a video signal for correct operation of VidRm function. The load removal can only be detected if the video amp is enabled and outputting a video signal. The video cable removal senses the change in the voltage drop across IDB and UID due to the presence of a video signal if a 75 Ω monitor load is connected. 0 = Video load present 1 = Video cable load not present		
VBVolt	Read Only	[6]	(Note 10)	VB Detection Comparator Output . This bit is set when the VBUS voltage rises above the VB detect threshold, V_{VBDET} . 0 = $V_{VB} < V_{VBDET}$ 1 = $V_{VB} \ge V_{VBDET}$		
DXOVP	Read Only	[5]	(Note 10)	D+/D- OVP Flag . When DXOVP = 1, the charger detection state machine is forced off and CHGTYP = 000 to avoid reverse biasing from D+/D This flag can be asserted only when $V_{VB} \ge V_{VBDET}$. 0 = V_{COMN1} and $V_{COMP2} \le V_{CCINT}$ 1 = V_{COMN1} or $V_{COMP2} > V_{CCINT}$		
DCDTmr	Read Only	[4]	(Note 10)	Data Contact Detection (DCD) Timer.0 = DCD timer is not running or is not expired1 = DCD timer has been running for longer that 2 sec (min)		
ChgDetRun	Read Only	[3]	(Note 10)	Charger Detection State Machine Status. 0 = Charger detection state machine is not running 1 = Charger detection state machine is running		
ChgTyp	Read Only	[2:0]	(Note 10)	USB Charger Detection Output. 000 = Nothing attached 001 = USB cable attached 010 = Charging downstream port. Charger current depends on USB operating speed. 011 = Dedicated charger. The maximum charge current for the port is 1.5A. 100 = Apple 500mA charger. The maximum charge current for the port is 500mA. 101 = Apple 1A or 2A charger 110 = Special charger (bias on D+/D-) 111 = Reserved		
STATUS3 (0x06) Changes in bits in this register generate an interrupt in the INT3 register.						

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Detailed Register Map (continued)

FIELD NAME	READ/WRITE	BITS	DEFAULT	DESCRIPTION
RFU	Read Only	[7]	0	Reserved
BatDet	Read Only	[6:5]	(Note 10)	Battery Presence Monitor 00 = Battery not present 01 = Reserved 10 = Battery present 11 = Reserved
ChgEnbld	Read Only	[4]	0	Battery Charger Enable Status. This bit only indicates the charger logic is enabled and does not indicate if the charger is passing current. See Tables 1 and 2. 0 = Charger is not enabled 1 = Charger is enabled
MBCCHGERR	Read Only	[3]	(Note 10)	Battery Charger Error and Fast-Charging Timer Status . Set the battery fast-charge timer in the CHGCTRL1 register (0x0F). 0 = Timer not expired 1 = Timer expired
OVP	Read Only	[2]	(Note 10)	VB Overvoltage Protection Trip Level Status . Set the VB overvoltage protection threshold in the CHGCTRL7 register (0x15). $0 = V_{VB} \le V_{OVLO}$ $1 = V_{VB} > V_{OVLO}$
CGMBC	Read Only	[1]	(Note 10)	Charger Power-OK Monitor. This bit is set when the VB voltage is greater than the VBUSOK trip point voltage. $0 = V_{VB} < V_{BTP}$ $1 = V_{VB} \ge V_{BTP}$
EOC	Read Only	[0]	(Note 10)	End-of-Charge Status . This bit is set while charging a battery. 0 = Charger is in prequalification mode, fast-charge mode, disabled, or 30-minute top-off timer has expired (AUTOSTOP = 1) 1 = Charger is in top-off mode (AUTOSTOP = 1) or $I_{BAT} < I_{EOCS}$ (AUTOSTOP = 0).
INTMASK1 (0x07) Se and INT1 registers.	et the bits in the IN	TMASK1 re	gister to mask i	interrupts at the \overline{INT} output that are generated in the STATUS1
RFU	Read Only	[7:4]	0000	Reserved
ADC1KM	Read/Write	[3]	0	ADC 1K Detection Interrupt Mask 0 = Mask 1 = Not masked
ADCErrorM	Read/Write	[2]	0	ADC Error Interrupt Mask 0 = Mask 1 = Not masked
ADCLowM	Read/Write	[1]	0	ADC Low-Bit Change Interrupt Mask 0 = Mask 1 = Not masked

ADC Change Interrupt Mask

0 = Mask 1 = Not masked

Read/Write

[0]

0

ADCM

Micro-USB Interface Circuit Plus Intelligent Li+ Battery Chargers

Detailed Register Map (continued)

FIELD NAME	READ/WRITE	BITS	DEFAULT	DESCRIPTION			
NTMASK2 (0x08) Set the bits in the INTMASK2 register to mask interrupts at the INT output that are generated in the STATUS2 and INT2 registers.							
RFU	Read Only	[7:6]	00	Reserved			
VidRmM	Read/Write	[5]	0	Video Cable Removal Interrupt Mask 0 = Mask 1 = Not masked			
VBVoltM	Read/Write	[4]	0	VB Voltage Interrupt Mask 0 = Mask 1 = Not masked			
DXOVPM	Read/Write	[3]	0	D+/D- OVPInterrupt Mask 0 = Mask 1 = Not masked			
DCDTmrM	Read/Write	[2]	0	DCD Timer Interrupt Mask 0 = Mask 1 = Not masked			
ChgDetRunM	Read/Write	[1]	0	Charger Detection Running Status Interrupt Mask 0 = Mask 1 = Not masked			
ChgTypM	Read/Write	[0]	0	Charger Type Interrupt Mask 0 = Mask 1 = Not masked			
INTMASK3 (0x09) Set the bits in the INT	MASK3 register to	mask inter	rupts at the INT	output that are generated in the STATUS3 and INT3 registers.			
RFU	Read Only	[7:6]	00	Reserved			
BatDetM	Read/Write	[5]	0	Battery Detection Interrupt Mask 0 = Mask 1 = Not masked			
ChgEnbldM	Read/Write	[4]	0	Battery Charger Enable Interrupt Mask 0 = Mask 1 = Not masked			
MBCCHGERRM	Read/Write	[3]	0	Battery Fast-Charge Timer Interrupt Mask 0 = Mask 1 = Not masked			
OVPM	Read/Write	[2]	0	VB Overvoltage Protection Interrupt Mask 0 = Mask 1 = Not masked			
CGMBCM	Read/Write	[1]	0	Charger Voltage Power-OK Interrupt Mask 0 = Mask 1 = Not masked			
EOCM	Read/Write	[0]	0	End-of-Charge Interrupt Mask 0 = Mask 1 = Not masked			