

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

USB Host Adapter Emulators

General Description

The MAX14640–MAX14644/MAX14651 are next-generation USB 2.0 host charger adapter emulators that combine USB Hi-Speed analog switches with a USB adapter emulator circuit.

The MAX14640/MAX14651 feature an I²C interface to fully configure the charging behavior with different address options. The MAX14641–MAX14644 are controlled by two GPIO inputs (CB1/CB0) and support USB data and automatic charger mode. In charging downstream port (CDP) pass-through mode, the devices emulate the CDP function while supporting normal USB traffic. The MAX14641/MAX14642/MAX14643 have a CEN output for an active-high CLS enable input, and the MAX14644 has a $\overline{\text{CEN}}$ output for an active-low CLS enable input to restart the peripheral connected to the USB host.

The MAX14640–MAX14644/MAX14651 feature 2A high-current autodetect mode. The MAX14641 features 1A high-current forced mode instead of regular DCP mode. The MAX14640/MAX14651 can be configured through I²C to support various dedicated charger modes such as DCP, Apple[®] 1A/2A forced, or Apple 1A/2A automatic mode.

All the devices support CDP and standard downstream port (SDP) charging while in the active state (S0) and support the dedicated charging port (DCP) charging while in the standby state (S3/S4/S5). All devices support low-speed remote wake-up by monitoring DM, and the MAX14642 also supports remote wake-up in sleep mode (S3).

The MAX14640–MAX14644/MAX14651 are available in an 8-pin (2mm x 2mm) TDFN-EP package and are specified over the -40°C to +85°C extended temperature range.

Benefits and Features

- Improved Charger Interoperability
 - USB (CDP) Emulation
 - Smart CDP
 - Foolproof CDP
 - Meets New USB Battery Charging (BC) Revision 1.2 Specification
 - Backward-Compatible with Previous USB BC Revisions
 - Meets China YD/T1591-2009 Charging Specification
 - Supports Standby-Mode Charging for Apple BC Revision 1.2 Compatible Devices
- Provide Greater Application Flexibility
 - I²C Controls Multiple Modes (MAX14640/MAX14651)
 - CB0 and CB1 Pins Control Multiple Automatic and Manual Charger States
- Enhance Performance with High Level of Integrated Features
 - · Supports Remote Wakeup
 - Low-Capacitance USB 2.0 Hi-Speed Switch to Change Charging Modes
 - Automatic Current-Limit Switch Control
 - ±15kV ESD Protection on DP/DM
- Minimize PCB Area
 - 2mm x 2mm, 8-Pin TDFN Package

Applications

- Laptop/Desktop Computers
- USB Hubs
- Universal Chargers Including iPod®/iPhone®/iPad®

<u>Ordering Information</u> and <u>Typical Operating Circuit</u> appear at end of data sheet.

Selector Guide

PART	I/O MODE	CEN POLARITY	REMOTE WAKE-UP IN AM	FORCED CHARGER MODE	BIAS IN FM
MAX14640	I ² C (0x35)	N/A	Optional	Yes	DP/DM short
MAX14641	GPIO	CEN	No	No	Apple 1A
MAX14642	GPIO	CEN	Yes	Yes	DP/DM short
MAX14643	GPIO	CEN	No	Yes	DP/DM short
MAX14644	GPIO	CEN	No	Yes	DP/DM short
MAX14651	I ² C (0x15)	N/A	Optional	Yes	DP/DM short

Apple, iPad, iPod, and iPhone are registered trademarks of Apple, Inc.

USB Host Adapter Emulators

Absolute Maximum Ratings

(All voltages referenced to GND.)	
V _{CC} , TDP, TDM, DP, DM, SDA, SCL,	
CB0, CB1, CEN, CEN, INT	0.3V to +6V
Continuous Current into Any Terminal	±30mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
TDFN (derate 11.9mW/°C above +70°C)	953.5mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

TDFN

Junction-to-Ambient Thermal Resistance (θ_{JA})......83.9°C/W Junction-to-Case Thermal Resistance (θ_{JC})......37°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

 $(V_{CC} = 3.0V \text{ to } 5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = 5.0V \text{ and } T_A = +25^{\circ}\text{C.})$ (Note 2)

PARAMETER	SYMBOL		MIN	TYP	MAX	UNITS		
POWER SUPPLY								
V Cumply Voltage	\/	CB0 = high		3.0		5.5	V	
V _{CC} Supply Voltage	V _{CC}	CB0 = low (No	te 3)	4.75		5.25	V	
			CB1 = CB0 = low (AM2 mode)			200		
		MAX14641- MAX14644	CB1 = CB0 = high (CM mode)			100		
V Cupply Current			CB1 = low, CB0 = high (PM mode)			20	1	
V _{CC} Supply Current	lcc		MODE_SEL[2:0] = 000 (AM2 mode)			200	μΑ	
		MAX14640/ MAX14651	MODE_SEL[2:0] = 011 (CM mode)			100		
			MODE_SEL[2:0] = 001 (PM mode)			20		
POR Delay	tpor				50		ms	
ANALOG SWITCHES (DP, DM, 1	TDP, TDM)							
Analog Signal Range	V _{DP} , V _{DM}	(Note 4)		0		V _{CC}	V	
TDP/TDM On Resistance	R _{ON}	$V_{IN} = 0V \text{ to } V_{C}$	C, I _{IN} = 10mA		3.5	6.5	Ω	
TDP/TDM On-Resistance Matching Between Channels	ΔR _{ON}	V _{CC} = 5.0V, I _{IN} = 10mA, V _{IN} = 0.4V			0.1		Ω	
TDP/TDM On-Resistance Flatness	R _{FLAT}	$V_{CC} = 5.0V$, $I_{IN} = 10$ mA, $V_{IN} = 0$ V to V_{CC}			0.1		Ω	
DP/DM Short On-Resistance	R _{SHORT}	V _{DP} = 1V, R _L =	= 20kΩ on DM		70	128	Ω	

Electrical Characteristics (continued)

 $(V_{CC} = 3.0 \text{V to } 5.5 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = 5.0 \text{V}$ and $T_A = +25 ^{\circ}\text{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Off Leakage Current	I _{COM(OFF)}	$V_{CC} = 3.6V$, $V_{DP} = V_{DM} = 0.3V$ to 3.3V, $V_{TDP} = V_{TDM} = 3.3V$ to 0.3V	-1	1.5nA	+1	μA
On Leakage Current	I _{COM(ON)}	$V_{CC} = 3.6V$, $V_{DP} = V_{DM} = 0.3V$ to 3.3V	-1	90nA	+1	μΑ
DYNAMIC PERFORMANCE	·					
Turn-On Time	t _{ON}	V_{TDP} or V_{TDM} = 1.5V, R_L = 300 Ω , C_L = 35pF, Figure 1 (Note 4)		20		μs
Turn-Off Time	tOFF	V_{TDP} or $V_{TDM} = 1.5V$, $R_L = 300\Omega$, $C_L = 35pF$, Figure 1 (Note 4)		1		μs
TDP/TDM Propagation Delay	t _{PHL} , t _{PLH}	$R_L = R_S = 50\Omega$, DP and DM connected to TDP and TDM, Figure 2		60		ps
DP/DM Output Skew	^t SKEW	$R_L = R_S = 50\Omega$, DP and DM connected to TDP and TDM, Figure 2		40		ps
DP/DM On-Capacitance (Connected to TDP, TDM)	C _{OFF}	$f = 240MHz$, $V_{BIAS} = 0V$, $V_{IN} = 500mV_{P-P}$		5		pF
Bandwidth	BW	$R_L = R_S = 50\Omega$, Figure 3	1000			MHz
Off-Isolation	V _{ISO}	$V_{IN} = 0 dBm, R_L = R_S = 50 \Omega, f = 250 MHz,$ Figure 3	-20		dB	
Crosstalk	sstalk V_{CT} $V_{IN} = 0 dBm, R_L = Figure 3$		-25		dB	
DCP INTERNAL RESISTORS	·					
DP/DM Short Pulldown	R _{PD}		320	500	700	kΩ
RP1/RP2 Ratio	RT _{RP}		1.485	1.5	1.515	
RP1 + RP2 Resistance	R _{RP}		92	125	158.5	kΩ
RM1/RM2 Ratio	RT _{RM}		0.844	0.85	0.864	
RM1 + RM2 Resistance	R _{RM}		68	93	118	kΩ
RSS1/RSS2 Ratio	RT _{RSS}		2.9	3	3.1	
RSS1 + RSS2 Resistance	R _{RSS}		30	40	60	kΩ
CDP INTERNAL RESISTORS	·					
DP Pulldown Resistor	R _{DP_CDP}	CDP mode	14.25	19.53	24.80	kΩ
DM Pulldown Resistor	R _{DM_CDP}	CDP mode	14.25	19.53	24.8	kΩ
CDP HIGH-SPEED COMPARA	· ·					
Threshold Voltage	V _{TH_CDP}		100	161	205	mV
CDP LOW-SPEED COMPARA						
V _{DM SRC} Voltage	V _{DM_SRC}	I _{LOAD} = 0 to 200μA	0.5		0.7	V

Electrical Characteristics (continued)

 $(V_{CC} = 3.0V \text{ to } 5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = 5.0V \text{ and } T_A = +25^{\circ}\text{C.}$) (Note 2)

PARAMETER	SYMBOL	COND	CONDITIONS			MAX	UNITS
V _{DP_REF} Voltage	V _{DP_REF}					0.4	V
V _{LGC} Voltage	V _{LGC}					2.0	V
I _{DP_SINK} Current	I _{DP_SINK}	$V_{DP} = 0.15V \text{ to } 3.6V$		50		150	μΑ
LOGIC INPUTS (CB0, CB1, SDA,	SCL)						
Input Logic High Voltage	V _{IH}			1.4			V
Input Logic Low Voltage	V _{IL}					0.4	V
Input Leakage Current	I _{IN}	$0V \le V_{IN} \le V_{IL} \text{ or } V_{IH}$ $V_{CC} = 5.5V$	$\leq V_{IN} \leq V_{CC}$,	-1		+1	μΑ
CB0/CB1 Debounce Time	t _{DEB_CB_}				250		μs
OPEN-DRAIN LOGIC OUTPUTS	(SDA, INT, C	EN, CEN)					
INT, SDA, CEN Output Low Voltage	V _{OL}	Output asserted, I _{SIN}	K = 4mA			0.4	V
INT, SDA, CEN Output Leakage Current	I _{OH}	Output not asserted,	V _{CC} = V _{OUT} = 5.5V			1	μΑ
CEN, INT, Output High Voltage	V _{OH}	Output asserted, I _{SOI}	JRCE = 4mA	V _{CC} - 0.4			V
CEN, INT, Output Leakage Current	I _{OL}	Output not asserted, V	$V_{CC} = 5.5V, V_{\overline{CEN}} = 0V$			1	μΑ
V _{BUS} Toggle Time Accuracy	t _{VBT}				±10		%
I ² C TIMING CHARACTERISTICS	(SEE FIGUR	E 4)					
I ² C Maximum Clock Frequency	f _{SCL}					400	kHz
Bus Free Time Between STOP and START Conditions	t _{BUF}			1.3			μs
START Condition Setup Time	t _{SU:STA}			0.6			μs
Repeated START Condition Setup Time	tsu:sta	70% of SCL to 70% o	f SDA	0.6			μs
START Condition Hold Time	t _{HD:STA}	30% of SDA to 70% o	of SCL	0.6			μs
STOP Condition Setup Time	t _{SU:STO}	70% of SCL to 30% o	f SDA	0.6			μs
Clock Low Period	t _{LOW}	30% to 30%		1.3			μs
Clock High Period	tHIGH	70% to 70%		0.6			μs
Data Valid to SCL Rise Time	t _{SU:DAT}	Write setup time		100			ns
Data Hold Time to SCL Fall t _{HD:DAT}		Write hold time			100		ns
PROTECTION SPECIFICATIONS							
ESD Protection	\/===	Human Body Model	DP and DM pins ±15			kV	
LOD I TOTACTION	V _{ESD}	Tidinan body wodel	All other pins	±2			r. v

Note 2: All units are production tested at $T_A = +25$ °C. Specifications over temperature are guaranteed by design.

Note 3: The MAX1464_ is operational from 3.0V to 5.5V. However, in order for the valid Apple resistor-divider network to function, V_{CC} must stay within the 4.75V to 5.25V range.

Note 4: Guaranteed by design, not production tested.

Note 5: Guaranteed by design.

Test Circuits/Timing Diagrams

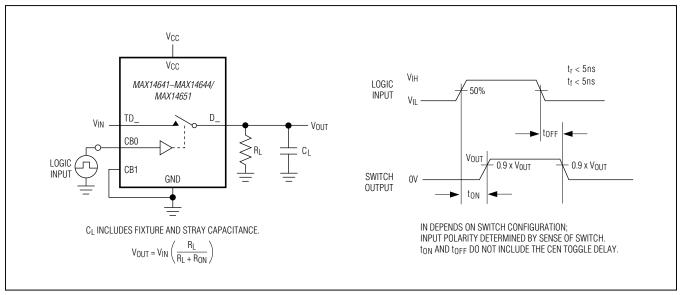


Figure 1. Switching Time

Test Circuits/Timing Diagrams (continued)

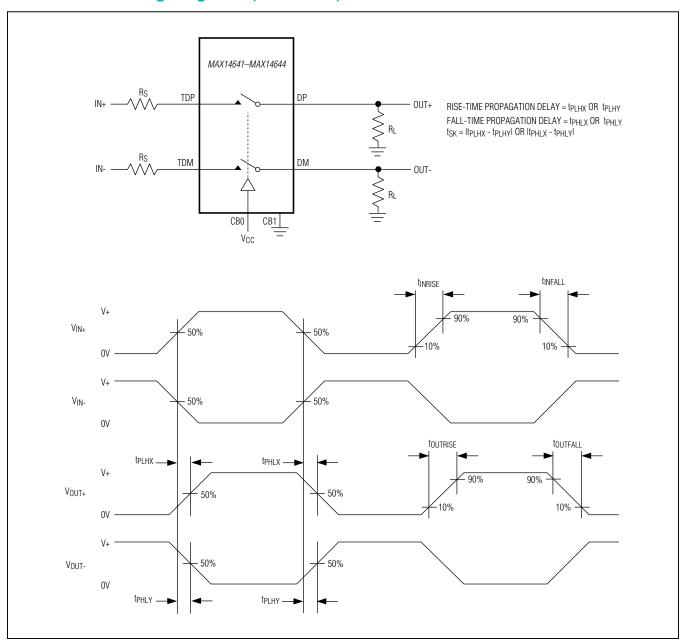


Figure 2. Propagation Delay and Output Skew

Test Circuits/Timing Diagrams (continued)

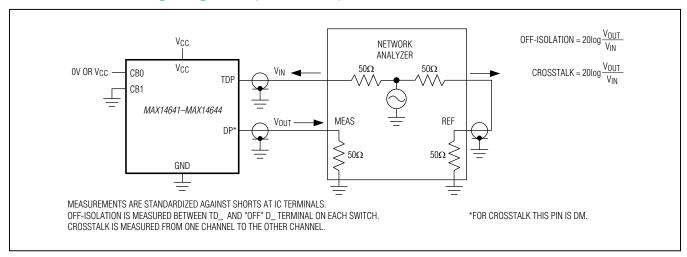
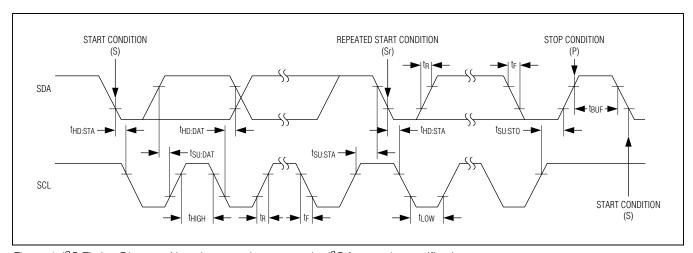
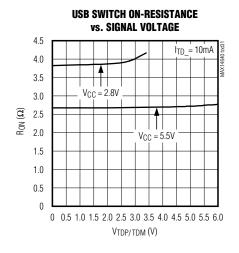
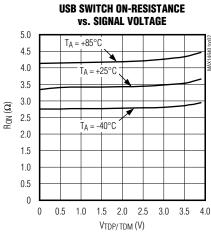
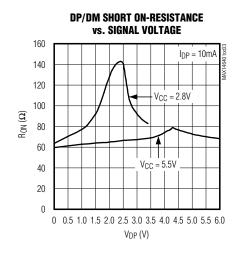
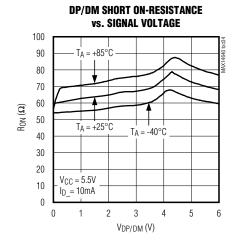
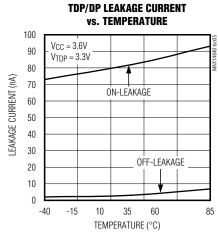


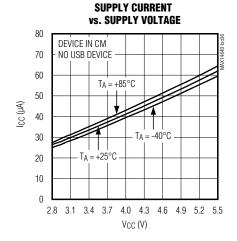
Figure 3. Bandwidth, Off-Isolation, and Crosstalk

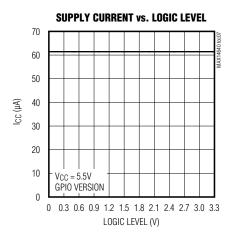




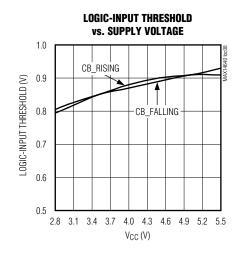

Figure 4. I^2C Timing Diagram. Note that t_R and t_F are per the I^2C fast-mode specification.

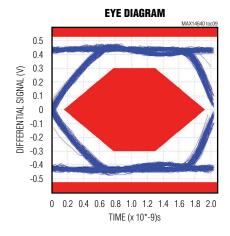

Typical Operating Characteristics

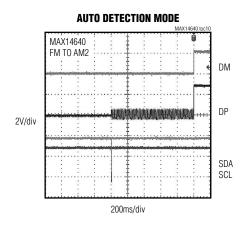

($V_{CC} = +5V$, $T_A = +25$ °C, unless otherwise noted.)



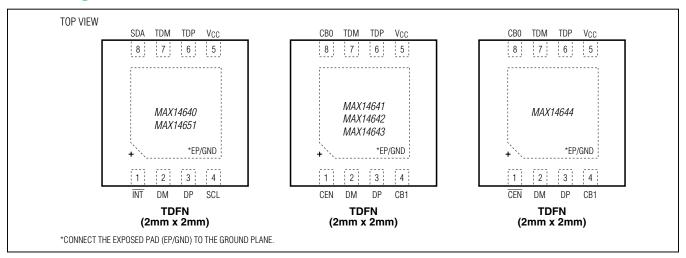


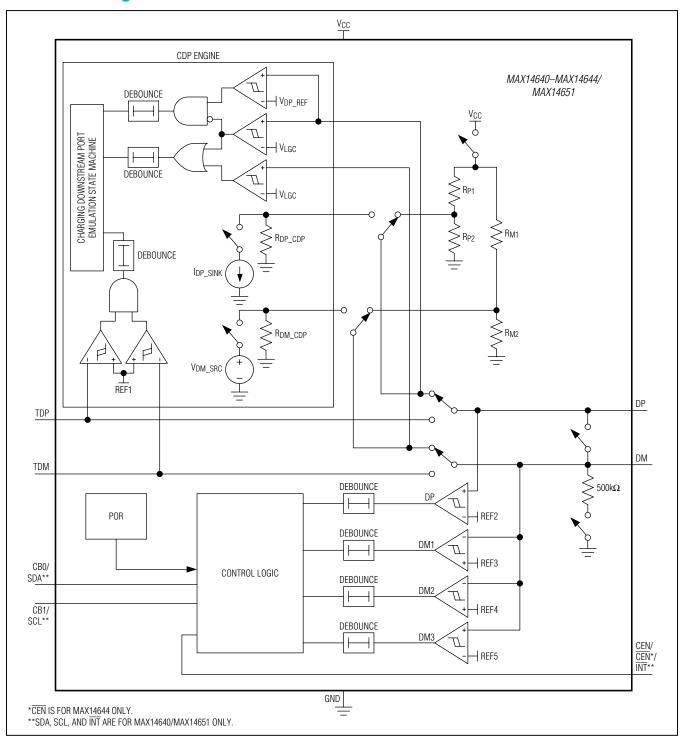





Typical Operating Characteristics

($V_{CC} = +5V$, $T_A = +25$ °C, unless otherwise noted.)




Pin Configurations

Pin Description

	PIN			
MAX14640/ MAX14651	MAX14641/ MAX14642/ MAX14643	MAX14644	NAME	FUNCTION
1	-	_	ĪNT	Open-Drain Interrupt Output. INT asserts low when interrupt occurs.
_	1	_	CEN	nMOS Open-Drain Output. Pull up CEN to V_{CC} by $10k\Omega$. CEN high enables the current-limit switch and V_{BUS} ON, and nMOS ON makes CEN low and the current-limit switch OFF. When CB_ transitions from low to high or high to low, CEN is low for 1s (typ).
_		1	CEN	pMOS Open-Drain Output. Pull down $\overline{\text{CEN}}$ to GND by $10\text{k}\Omega$. $\overline{\text{CEN}}$ low enables the current-limit switch and V_{BUS} ON, and pMOS ON makes $\overline{\text{CEN}}$ high and the current-limit switch OFF. When CB_ transitions from low to high or high to low, $\overline{\text{CEN}}$ is high for 1s (typ).
2	2	2	DM	USB Connector D- Connection
3	3	3	DP	USB Connector D+ Connection
4	_	_	SCL	I ² C Serial-Clock Input
_	4	4	CB1	Switch Control Input Bit 1. See the Switch Control Input Truth tables (Tables 2, 3, and 4).
5	5	5	V _{CC}	Power-Supply Input. Bypass V_{CC} to GND with a 0.1 μ F ceramic capacitor as close as possible to the device.
6	6	6	TDP	Host USB Transceiver D+ Connection
7	7	7	TDM	Host USB Transceiver D- Connection
8		_	SDA	I ² C Serial-Data Input/Output
	8	8	CB0	Switch Control Input Bit 0. See the Switch Control Input Truth tables (Tables 2, 3, and 4).
_	_	_	EP/ GND	Exposed Pad and Ground. The exposed pad is the ground connection for the device. Connect EP/GND to the ground plane.

Functional Diagram

Detailed Description

The MAX14640–MAX14644/MAX14651 adapter emulator devices have high-speed USB analog switches that support USB hosts by identifying the USB port as a charger when the USB host is in a low-power mode and cannot enumerate USB devices. The devices feature low 4pF (typ) on-capacitance and low 4 Ω (typ) on-resistance when the USB switches are connected. DP and DM are capable of handling signals between 0V and 5.5V over the entire 3.0V–5.5V supply range.

The MAX14640/MAX14651 are controlled by an I²C interface, while the MAX14641-MAX14644 are controlled by the CB0 and CB1 logic inputs. The I²C interface allows further customization over which mode the MAX14640/MAX14651 operate in and can be used to read back connection information.

Improvements over the MAX14600 USB detector family include support for some smartphones that do not connect after applying 0.6V in charging downstream port (CDP) mode. The devices also support high-current charging of Apple devices while in sleep mode.

Resistor-Dividers

The MAX14640–MAX14644/MAX14651 feature internal resistor-divider networks on the data lines to provide support for Apple devices. The resistor-divider is disconnected while not in use to minimize the supply current. The resistor-dividers are not connected in pass-through mode. Table 1 summarizes the resistor values connected to DP/DM in different charging modes.

Switch Control

Digital Controls

The MAX14641–MAX14644 feature two digital select inputs, CB0 and CB1, for mode selection. <u>Table 2</u>, <u>Table 3</u>, and <u>Table 4</u> show how the CB1/CB0 inputs can be used to enter autodetection charger mode (AM_), pass-through mode (PM), forced charger mode (FM and AP_), and pass-through mode with CDP emulation (CM).

In CDP emulation mode, the peripheral device with CDP detection capability draws charging current up to 1.5A immediately without USB enumeration.

Table 1. DP/DM Resistor-Dividers

CHARGING MODE	DP PULLUP (kΩ)	DP PULLDOWN ($k\Omega$)	DM PULLUP ($k\Omega$)	DM PULLDOWN ($k\Omega$)
AM1	75	49.9	43.2	49.9
AM2	43.2	49.9	75	49.9

Table 2. Digital Input State Table for the MAX14641

CB1	СВ0	CHARGER/USB	MODE	STATUS
0	0	CHARGER	AM2	2A Autodetection Charger Mode for Apple Devices. Resistor-dividers are connected to DP/DM.
1	0	CHARGER	AP1	Forced 1A Charger Mode for Apple Devices. Resistor-dividers are connected to DP/DM.
0	1	USB	PM	USB Pass-Through Mode. DP/DM are connected to TDP/TDM.
1	1	USB	СМ	USB Pass-Through Mode with CDP Emulation. Auto connects DP/DM to TDM/TDM depending on CDP detection status.

Table 3. Digital Input State Table for the MAX14642

CB1	СВО	CHARGER/USB	MODE	STATUS
X	0	CHARGER	AM2	2A Autodetection Charger Mode for Apple Devices. Resistor-dividers are connected to DP/DM.
0	1	USB	PM	USB Pass-Through Mode. DP/DM are connected to TDP/TDM.
1	1	USB	СМ	USB Pass-Through Mode with CDP Emulation. Auto connects DP/DM to TDM/TDM depending on CDP detection status.

X = Don't care.

Table 4. Digital Input State Table for the MAX14643/MAX14644

CB1	СВО	CHARGER/USB	MODE	STATUS
0	0	CHARGER	AM2	2A Autodetection Charger Mode for Apple Devices. Resistor-dividers are connected to DP/DM.
1	0	CHARGER	FM	Forced Dedicated Charger Mode. DP and DM are shorted.
0	1	USB	PM	USB Pass-Through Mode. DP/DM are connected to TDP/TDM.
1	1	USB	СМ	USB Pass-Through Mode with CDP Emulation. Auto connects DP/DM to TDM/TDM depending on CDP detection status.

Table 5. Digital Input State Table for the MAX14640/MAX14651

МО	DE_S	SEL	0114505571105	MODE	OTATUO
[2]	[1]	[0]	CHARGER/USB	MODE	STATUS
0	0	0	CHARGER	AM2	2A Autodetection Charger Mode for Apple Devices. Resistor-dividers are connected to DP/DM.
0	0	1	USB	PM	USB Pass-Through Mode. DP/DM are connected to TDP/TDM.
0	1	0	CHARGER	FM	Forced Dedicated Charger Mode. DP and DM are shorted.
0	1	1	USB	СМ	USB Pass-Through Mode with CDP Emulation. Auto connects DP/DM to TDM/TDM depending on CDP detection status.
1	0	0	CHARGER	AM1	1A Autodetection Charger Mode for Apple Devices. Resistor-dividers are connected to DP/DM.
1	0	1	CHARGER	AP1	Forced 1A Charger Mode for Apple Devices. Resistor-dividers are connected to DP/DM.
1	1	0	CHARGER	AP2	Forced 2A Charger Mode for Apple Devices. Resistor-dividers are connected to DP/DM.
1	1	1	CHARGER	SS	Forced 2A Charger Mode for Samsung Galaxy Tablet

I²C Controls

The MAX14640/MAX14651 mode is controlled by the MODE_SEL[2:0] bits. <u>Table 5</u> shows how these bits control the device. In addition to being configurable in all modes that the MAX14641–MAX14644 can enter, the MAX14640/MAX14651 can be configured to be compatible with the Apple and Samsung[®] Galaxy (SS mode) devices.

Legacy D+/D- Detect

The MAX14640–MAX14644/MAX14651 support charging devices that use a D+/D- short to indicate it is ready for charging. This is done by monitoring the voltage at both the DP and DM terminals and triggering when they are both higher than their comparator thresholds.

Samsung is a registered trademark of Samsung Electronics, Co., Ltd.

Auto Peripheral Reset

The MAX14641–MAX14644 feature an auto current-limit switch control output. This feature resets the peripheral connected to V_{BUS} in the event the USB host switches to or from standby mode. \overline{CEN} or CEN are pulsed for 1s* (typ) on the rising or falling edge of CB0 or CB1 (Figure 5 and Figure 6).

*Note: 2s (typ) for the MAX14644ETA+TCNE.

Pass-Through Modes

If the MAX14640–MAX14644/MAX14651 are configured in pass-through mode (PM), then TDP/TDM are always connected to DP/DM and no resistor-dividers or power sources are applied to DP/DM.

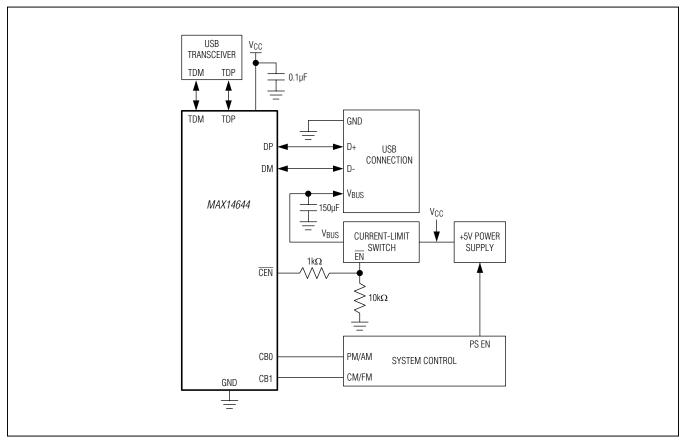


Figure 5. MAX14644 Peripheral Reset Applications Diagram

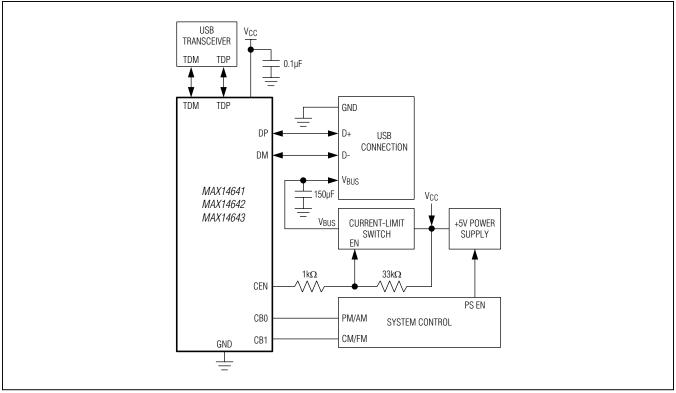


Figure 6. MAX14641/MAX14642/MAX14643 Peripheral Reset Applications

Table 6. Forced Charging Modes

CHARGING MODE	DP PULLUP (kΩ)	DP PULLDOWN (kΩ)	DM PULLUP (kΩ)	DM PULLDOWN (kΩ)
FM	N/A	N/A	N/A	N/A
SS	30	10	30	10
AP1	75	49.9	43.2	49.9
AP2	43.2	49.9	75	49.9

Forced Charger Modes

The MAX14640–MAX14644/MAX14651 can be configured in different forced dedicated charging port (DCP) modes; V_{BUS} is enabled and DP and DM are either shorted (FM) or connected to resistor-dividers (all other modes). <u>Table 6</u> summarizes the resistor-divider values in each forced mode.

Automatic Detection with Remote Wake-Up Support

The MAX14640–MAX14644/MAX14651 feature automatic detection charger mode (AM1/AM2) for dedicated

chargers and USB masters. In automatic detection charger mode, the device monitors the voltages on DM and DP with resistor-dividers connected to determine the type of device attached.

If a USB-compliant device is connected, DP and DM are shorted together to commence charging. Once the charging device is removed, the short between DP and DM is disconnected and the resistor-divider is applied. A pulldown resistor on the shorted DP/DM node ensures that a disconnect is detected.

USB Host Adapter Emulators

USB Pass-Through Mode with CDP Emulation

The MAX14640–MAX14644/MAX14651 feature a passthrough mode with CDP emulation (CM). This is to support the higher charging current capability during the passthrough mode in normal USB operation (S0 state). The peripheral device equipped with CDP detection capability can draw a charging current as defined in USB battery charger specification 1.2 when the charging host supports the CDP mode. This is a useful feature since most host USB transceivers do not have the CDP function. Table 7 summarizes the USB host power states.

Table 7. USB Host Power States

STATE	DESCRIPTION
S0	System On
S1	Power to the CPU(s) and RAM is Maintained. Devices that do not indicate that they must remain on, may be powered down.
S2	CPU is Powered Off
S3	Standby (Suspend to Ram)—System Memory Context is Maintained. All other system context is lost.
S4	Hibernate—Platform Context is Maintained
S5	Soft Off

Register Map/Register Descriptions

REGISTER	ADDR	TYPE	POR	BIT7	ВІТ6	BIT5	BIT4	ВІТ3	BIT2	BIT1	BIT0
DeviceID	0x00	R	0x10*	CHIPID[3:0]			CHIPREV[3:0]				
Control1	0x01	R/W	0x87	FUO	FUO	FUO	FUO	FUO	FUO	FUO	FUO
Control2	0x02	R/W	0x50	LOW_PWR	FUO	FUO	FUO	FUO	FUO	DIS_CDP	FUO
Control3	0x03	R/W	0xE9	CEN_	_CNT[1:0]		CEN_DEL[2:0	0]	MODE_SEL[2:0]		
Control4	0x04	R/W	0x00	RFU	RFU	RFU	RFU	RFU	RFU	RFU	RFU
Control5	0x05	R/W	0x7B	INT_EN	USB_SW	[1:0]	CEN_OUT	CEN_POL	FUO	RWU_DFT	RWU_LS
INT	0x06	R	0x00	CDP_DEVi	BYPASS_CDPi	CDP_CNi	RFU	USB_XFRi	RWUi	CEN_TOG_STi	CEN_TOG_SPi
STATUS	0x07	R	0x00	CDP_DEVs	BYPASS_CDPs	CDP_CNs	RFU	USB_XFRs	RWUs	RFU	CEN_TOG_SPs
MASK	0x08	R/W	0x00	CDP_DEVm	BYPASS_CDPm	CDP_CNm	RFU	USB_XFRm	RWUm	CEN_TOG_STm	CEN_TOG_SPm

FUO = Factory Use Only. Do not change from POR values.

RFU = Reserved for Future Use. Do not change from POR values.

^{*}Applies to the MAX14640; the MAX14651 POR is 0x20.

DeviceID Register

ADDRESS:		0x00						
MODE:		Read Only						
BIT	7	6	5	4	3	2	1	0
NAME		CHIPID[3:0] CHIPREV[3:0]						
RESET	0	0	0	1	0	0	0	0
CHIPID[3:0]	The CHIPID[3	3:0] bits show in	nformation abo	out the version	of the MAX146	640/MAX14651		
CHIPREV[3:0]	The CHIPREV	[3:0] bits show	/ information al	bout the revision	on of the MAX1	4640/MAX146	51 silicon.	

Control1 Register

ADDRESS:		0x01						
MODE:		Read/Write						
BIT	7	6	5	4	3	2	1	0
NAME	FUO	FUO	FUO	FUO	FUO	FUO	FUO	FUO
RESET	1	0	0	0	0	1	1	1
FUO	Factory Use C	Only. Do not mo	odify from reset	t values.				

Control2 Register

ADDRESS:		0x02								
MODE:		Read/Write								
BIT	7	6	5	4	3	2	1	0		
NAME	LOW_PWR	LOW_PWR FUO FUO FUO FUO DIS_CDP FUO								
RESET	0	1	0	1	0	0	0	0		
LOW_PWR		0/MAX14651 is			uitry other than	the I ² C interfa	ce is disabled.			
DIS_CDP	0 = CDP signa	Disable CDP Signal. 0 = CDP signaling enabled 1 = CDP signaling disabled								
FUO	Factory Use C	Only. Do not mo	odify from reset	t values.						

Control3 Register

ADDRESS:		0x03		,							
MODE:		Read/Write									
BIT	7	6	5	4	3	2	1	0			
NAME	CEN_C	N_CNT[1:0] CEN_DEL[2:0] MODE_SEL[2:0]									
RESET	1	1 1 1 0 1 0 0 1									
CEN_CNT[1:0]	00 = CEN de 01 = CEN cyc 10 = CEN ass	EN State Control. Directly controls the CEN output independent of automatic cycling. D = CEN deasserted and CEN cycling disabled I = CEN cycling disabled between CB_ transitions during CDP modes and in AM mode D = CEN asserted I = CEN controlled by CDP/DCP/AM modes									
CEN_DEL[2:0]	CEN Pulse Delay. Controls how long V _{BUS} toggles last outside of AM mode. 000 = 125ms 001 = 250ms 010 = 350ms 011 = 500ms 100 = 750ms 101 = 1.0s 110 = 1.5s 111 = 2s										
MODE_SEL[2:0]	Operating Mo 000 = AM2 001 = PM 010 = FM 011 = CM 100 = AM1 101 = AP1 110 = AP2 111 = SS	ode Control.									

Control4 Register

ADDRESS:		0x04						
MODE:		Read/Write						
BIT	7	6	5	4	3	2	1	0
NAME	RFU	RFU	RFU	RFU	RFU	RFU	RFU	RFU
RESET	0	0	0	0	0	0	0	0
RFU	Reserved for	Future Use						

Control5 Register

ADDRESS:		0x05							
MODE:		Read/Write							
BIT	7	6	5	4	3	2	1	0	
NAME	INT_EN	USB_SW[1:0] CEN_OUT CEN_POL FUO RWU_DFT RWU_LS							
RESET	0	1	1	1	1	0	1	1	
INT_EN	Interrupt Enak 0 = Interrupt (1 = Interrupt (disabled							
USB_SW[1:0]	output are dis 00 = DP/DM i 01 = DP/DM o 10 = DP/DM o	sabled. n high-Z connected to T controlled by C		sircuitry	d open (00) or	closed (01), t	he state machir	ne and CEN	
CEN_OUT	$0 = \overline{INT}$ output	ction Select. C It is used as in It is used as C	terrupt	ction of the INT	pin.				
CEN_POL	0 = CEN/INT	output is active	ntrols the pola e-low CEN/INT e-high CEN/IN		INT output.				
FUO	Factory Use (Only. Do not m	odify from rese	et value.					
RWU_DFT	Remote Wake-Up Default. 0 = Remote wake-up is off 1 = Remote wake-up is on								
RWU_LS	0 = Remote w	Remote Wake-Up for Low-Speed Only Select. 0 = Remote wake-up for both FS/HS and LS USB devices 1 = Remote wake-up for only LS devices							

Interrupt (INT) Register

ADDRESS:		0x06						
MODE:		Read Only						
BIT	7	6	5	4	3	2	1	0
NAME	CDP_DEVi	BYPASS_CDPi	CDP_CNi	RFU	USB_XFRi	RWUi	CEN_TOG_STi	CEN_TOG_SPi
RESET	0	0	0	0	0	0	0	0
CDP_DEVi		procedure in CM rupt		DEVi is set v	when a CDP d	evice is de	tected following th	ne CDP
BYPASS_CDPi	Bypass CDP 0 = No interr 1 = Interrupt	upt	Interrupt. BYP	ASS_CDPi	is set when the	e CDP hand	dshake procedure	e is bypassed.
CDP_CNi	CDP Connection 0 = No interring 1 = Interrupt	upt	:. CDP_CNi is	set whenev	ver a CDP coni	nection che	eck is in progress	
RFU	Reserved for	Future Use						
USB_XFRi	USB Session connected to 0 = No interr 1 = Interrupt	TDP/TDM. rupt	KFRi is set wh	en there is	USB data dete	ected in CM	I mode and DP/D	M are
RWUi	Remote Wak 0 = No interr 1 = Interrupt	upt	rupt. RWUi is	set whenev	ver a remote w	ake-up is p	erformed in AM r	node.
CEN_TOG_STi	CEN Toggle disabled. 0 = No interr 1 = Interrupt	upt	errupt. CEN_T	OG_STi is s	et at the start	of a V _{BUS} t	oggle, when V _{BU}	S is first
CEN_TOG_SPi	CEN Toggle disabled. 0 = No interr 1 = Interrupt	upt	errupt. CEN_T	OG_SPi is s	set at the end o	of a V _{BUS} to	oggle, when V _{BU}	s is no longer

STATUS Register

ADDRESS:		0x07									
MODE:		Read Only									
BIT	7	6	5	4	3	2	1	0			
NAME	CDP_DEVs	BYPASS_CDPs	CDP_CNs	RFU	USB_XFRs	RWUs	RFU	CEN_TOG_SPs			
RESET	0	0 0 0 0 0 0 0									
CDP_DEVs	procedure in	Detect Status. CE CM mode and cl ice not detected ice detected				tected follow	ing the CDF	^o handshake			
BYPASS_CDPs	0 = CDP sign	Running Status. Enaling used naling bypassed	BYPASS_CDP	s is set wher	n the CDP hand	dshake proce	edure is byp	passed.			
CDP_CNs	0 = No CDP	t Status. CDP_CN connection check nection check in	in progress	a CDP conn	ection attempt	is in progres	SS.				
RFU	Reserved for	Future Use									
USB_XFRs	to TDP/TDM. 0 = No USB s	Status. USB_XFF session in progress sion in progress		there is USE	3 data detected	d in CM mod	e and DP/DI	M are connected			
RWUs	0 = Not waitir	Remote Wake-Up Status. RWUs is set while a remote wake-up is in progress in AM mode. Not waiting for RWU									
CEN_TOG_SPs	$0 = V_{BUS} tog$	Status. CEN_TOG gle in progress gle not in progres		t the start of	a V _{BUS} toggle	and set at t	he end of th	e V _{BUS} toggle.			

MASK Register

ADDRESS:		0x08						
MODE:		Read/Write						
BIT	7	6	5	4	3	2	1	0
NAME	CDP_DEVm	BYPASS_CDPm	CDP_CNm	RFU	USB_XFRm	RWUm	CEN_TOG_STm	CEN_TOG_SPm
RESET	0	0	0	0	0	0	0	0
CDP_DEVm	CDP Device CDP_DEVs is 0 = Masked 1 = Not mask		rrupt Mask. P	revents	an interrupt fro	om being (generated in CDP	_DEVi when
BYPASS_CDPm		Running Status Ir S_CDPs is set to ked		. Preveni	s an interrupt	from bein	g generated in BY	PASS_CDPi
CDP_CNm	CDP Connectis set to 1. 0 = Masked 1 = Not mask	t Status Interrupt I	Mask. Preven	ts an inte	errupt from be	ing genera	ated in CDP_CNi v	vhen CDP_CNs
RFU	Reserved for	Future Use						
USB_XFRm	USB Session to 1. 0 = Masked 1 = Not mask	Interrupt Mask. P	revents an inf	errupt fr	om being gen	erated in I	USB_XFRi when U	SB_XFRs is set
RWUm	Remote Wake set to 1. 0 = Masked 1 = Not mask	e-Up Status Interri ked	upt Mask. Pre	events ar	n interrupt from	n being ge	enerated in RWUi v	when RWUs is
CEN_TOG_STm		Start Monitor Inter Ts is set to 1. ked	rupt Mask. Pr	events a	n interrupt fro	m being g	enerated in CEN_	TOG_STi when
CEN_TOG_SPm		Stop Monitor Inter Ps is set to 1. ked	rupt Mask. Pr	events a	n interrupt fro	m being g	enerated in CEN_	TOG_SPi when

Applications Information

I²C Interface

The MAX14640/MAX14651 contain an I²C-compatible interface for data communication with a host controller (SCL and SDA). The interface supports a clock frequency of up to 400kHz. SCL and SDA require pullup resistors that are connected to a positive supply.

START, STOP, and Repeated START Conditions

When writing to the MAX14640/MAX14651 using I²C, the master sends a START condition (S) followed by the MAX14640/MAX14651 I²C address. After the address, the master sends the register address of the register that is to be programmed. The master then ends communication by issuing a STOP condition (P) to relinquish control of the bus, or a Repeated START condition (Sr) to communicate to another I²C slave. See Figure 7.

Slave Address

The MAX14640 and MAX14651 are the I²C versions that have different slave addresses (<u>Table 8</u>). Set the read/write bit high to configure the MAX14640/MAX14651 to read mode. Set the read/write bit low to configure the MAX14640/MAX14651 to write mode. The address is the first byte of information sent to the MAX14640/MAX14651 after the START condition.

Bit Transfer

One data bit is transferred on the rising edge of each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high and stable are considered control signals (see the *START, STOP, and Repeated START Conditions* section). Both SDA and SCL remain high when the bus is not active.

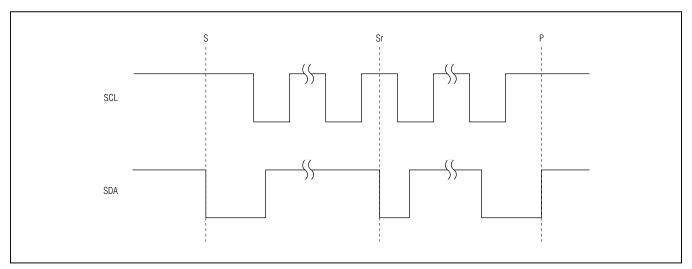


Figure 7. I²C START, STOP, and Repeated START Conditions

Table 8. I2C Slave Addresses

ADDRESS FORMAT	MAX14640		MAX14651	
	HEX	BINARY	HEX	BINARY
7-Bit Slave ID	0x35	011 0101	0x15	001 0101
Write Address	0x6A	0110 1010	0x2A	0010 1010
Read Address	0x6B	0110 1011	0x2B	0010 1011

USB Host Adapter Emulators

Single-Byte Write

In this operation, the master sends an address and two data bytes to the slave device (Figure 8). The following procedure describes the single-byte write operation:

- 1) The master sends a START condition.
- 2) The master sends the 7-bit slave address plus a write bit (low).
- 3) The addressed slave asserts an ACK on the data line.
- 4) The master sends the 8-bit register address.
- 5) The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- 6) The master sends eight data bits.
- 7) The slave asserts an ACK on the data line.
- 8) The master generates a STOP condition.

Burst Write

In this operation, the master sends an address and multiple data bytes to the slave device (Figure 9). The slave device automatically increments the register address after each data byte is sent, unless the register being accessed is 0x00, in which case the register address remains the same. The following procedure describes the burst write operation:

- 1) The master sends a START condition.
- 2) The master sends the 7-bit slave address plus a write bit (low).
- 3) The addressed slave asserts an ACK on the data line.
- 4) The master sends the 8-bit register address.
- 5) The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- 6) The master sends eight data bits.
- 7) The slave asserts an ACK on the data line.
- 8) Repeat 6 and 7 (N 1) times.
- 9) The master generates a STOP condition.

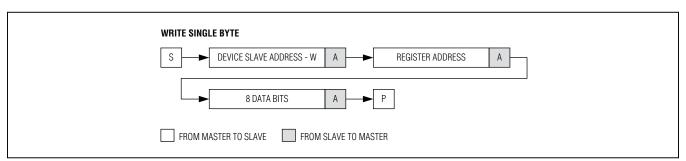


Figure 8. Write-Byte Sequence

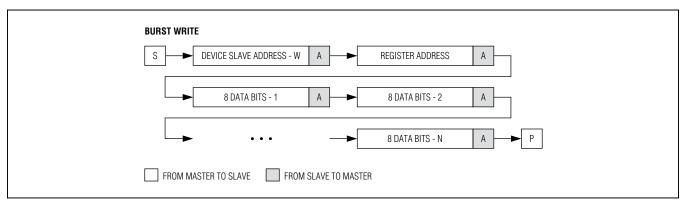


Figure 9. Burst Write Sequence

MAX14640-MAX14644/MAX14651

USB Host Adapter Emulators

Single-Byte Read

In this operation, the master sends an address plus two data bytes and receives one data byte from the slave device (Figure 10). The following procedure describes the single-byte read operation:

- 1) The master sends a START condition.
- The master sends the 7-bit slave address plus a write bit (low).
- 3) The addressed slave asserts an ACK on the data line
- 4) The master sends the 8-bit register address.

- 5) The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- 6) The master sends a Repeated START condition.
- 7) The master sends the 7-bit slave address plus a read bit (high).
- The addressed slave asserts an ACK on the data line.
- 9) The slave sends eight data bits.
- 10) The master asserts a NACK on the data line.
- 11) The master generates a STOP condition.

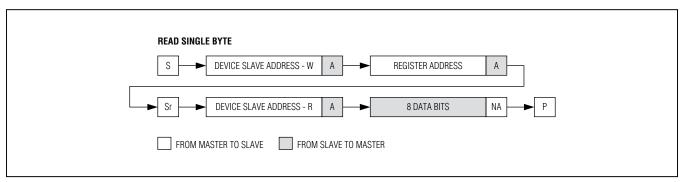


Figure 10. Read Byte Sequence