: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX14714 compact 6A smart power path selector features a low, $11 \mathrm{~m} \Omega$ (typ) RON internal FET and provides the system power from two separate power sources. The device has two switches in SPDT configuration, with bidirectional current-blocking capability when the switch is off.

The MAX14714 features two individual enable inputs to control each power path. Each enable input controls the corresponding path as an independent switch. However, when both paths are enabled, the internal comparator controls the path based on the voltage at input nodes. The device also features an ultra-low supply current in the operating or off states for longer battery-life.
The device is available in a 15 -bump ($1.2 \mathrm{~mm} \times 2.0 \mathrm{~mm}$) wafer-level package (WLP) and operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications

- Smartphones
- Tablet PCs
- e-Readers
- Wearables

Features and Benefits

- Provides Robust Bidirectional Power Path
- Wide Operating Input Voltage: +1.6 V to +5.5 V
- 6A Continuous Current Capability
- Integrated Two $11 \mathrm{~m} \Omega$ (typ) MOSFET Switches
- Enables Simple Power Switch Design
- Individual Path Control
- Automatic Power Path Control
- Automatic Soft-Start
- Powered by IN1, IN2, or OUT
- Significantly Extends Battery Life
- Ultra-Low Quiescent Supply Current 2.5 A A (typ)
- Fast Switchover
- Optimum Soft-Start Feature
- Compact Package Saves Board Space
- 15-Bump 1.2mm x 2.0mm WLP

Ordering Information appears at end of data sheet.

Typical Application Circuit

Absolute Maximum Ratings

All voltages referenced to GND	
IN1, IN2	-0.3V to +6V
OUT.	-0.3V to +6V
EN1, EN2	-0.3V to +6V
Current into IN1, IN2	
DC Operating (Note 1).	6A
Pulse Rating (10ms).	9A

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
WLP (derate $16.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	. 1312 mW
Operating Temperature Range......................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature	.. $+150^{\circ} \mathrm{C}$
Storage Temperature Range	to $+150^{\circ} \mathrm{C}$
Soldering Tempe	$+260^{\circ} \mathrm{C}$

Note 1: DC current is limited by thermal design of the system.

Package Thermal Characteristics (Note 2)

WLP
Junction-to-Ambient Thermal Resistance (θ_{JA}) $52^{\circ} \mathrm{C} / \mathrm{W}$

Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\mathrm{IN} 2}=1.6 \mathrm{~V}\right.$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\mathrm{IN} 2}=4.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY OPERATION						
Operating Voltage	$V_{\text {IN1 }}$ $V_{\text {IN2 }}$		1.6		5.5	V
Shutdown Current	ISHDN	$\overline{\mathrm{EN} 1}=$ high and $\overline{\mathrm{EN} 2}=$ high			5.75	$\mu \mathrm{A}$
Quiescent Current	$\mathrm{I}_{\mathrm{IN} 1} \mathrm{l}_{\mathrm{IN} 2}$	$\overline{\mathrm{EN} 1}$ or $\overline{\mathrm{EN} 2}=$ low, $\mathrm{I}_{\text {LOAD }}=0 \mathrm{~mA}$		2.5	7.5	$\mu \mathrm{A}$
INTERNAL FET						
R ${ }_{\text {ON }}$ (IN1 or IN2 to OUT)	RON	$\mathrm{V}_{\mathrm{IN}}=4.3 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		11	15	$\mathrm{m} \Omega$
Soft-Start Trigger Voltage	V_{IN} - Voutl			0.95		V
Soft-Start Time	tss		1	5	10	ms
Soft-Start Output dV/dt Limit	ILIM_SS	$\mathrm{C}_{\text {LOAD }}=100 \mu \mathrm{~F}$		60		$\mathrm{mV} / \mathrm{\mu s}$
IN1 - IN2 Comparator Rising Threshold	$\mathrm{V}_{\text {THR_IN }}$	$\mathrm{V}_{\mathrm{IN} 1}=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=4.0 \mathrm{~V}$, OUT is initially connected to IN1, $\mathrm{V}_{\mathrm{IN} 2}$ rises until OUT connects to IN2		500		mV
IN1 - IN2 Comparator Falling Threshold	$\mathrm{V}_{\text {VTHF_IN }}$	$\mathrm{V}_{\mathrm{IN} 1}=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=4.6 \mathrm{~V}$, OUT is initially connected to $\operatorname{IN} 2, \mathrm{~V}_{\text {IN } 2}$ falls until OUT connects to IN1		-500		mV
LOGIC INPUT ($\overline{\text { EN1, }}$, EN2)						
EN1, EN2 Input Logic High	V_{IH}		1.4			V
EN1, EN2 Input Logic Low	V_{IL}				0.4	V
EN1, EN2 Input Leakage Current	l LEAK	$\mathrm{V}_{\overline{E N}}{ }_{-}=0 \mathrm{~V}, 5.5 \mathrm{~V}$	-1		1	$\mu \mathrm{A}$

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\mathrm{IN} 2}=1.6 \mathrm{~V}\right.$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\mathrm{IN} 2}=4.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :--- | :---: | :---: | :---: | UNITS

Note 3: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over the operating temperature range are guaranteed by design.
Note 4: All timing is measured using 20% and 80% levels unless otherwise specified.
Timing Diagrams

EN1 \qquad
EN2 \qquad

Figure 1. Automatic Switch Operation: IN2 Rise

Timing Diagrams (continued)

Figure 2. Automatic Switch Operation: $\overline{E N 2}$ On (Time scale is exaggerated for easy recognition in the waveform)

Figure 3: Automatic Switch Operation: IN2 Sag (Time scale is exaggerated for easy recognition in the waveform)

Typical Operating Characteristics

$\left(C_{\text {IN1,IN2 }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=100 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(\mathrm{C}_{\text {IN } 1, \mathrm{IN} 2}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=100 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(C_{\text {IN1,IN2 }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=100 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Bump Configuration

Bump Description

BUMP	NAME	FUNCTION
A1	$\overline{\text { EN1 }}$	Active-Low Enable Input for IN1, Switch 1.
A2, A3, A4, B3	OUT	Common Switch Output.
A5	$\overline{\text { EN2 }}$	Active-Low Enable Input for IN2, Switch 2.
B1, B2, C1, C2	IN1	Power Input 1.
B4, B5, C4, C5	IN2	Power Input 2.
C3	GND	Ground.

Detailed Description

The MAX14714 compact 6A smart power path selector device features a low, $11 \mathrm{~m} \Omega$ (typ) Ron internal FET and provides the system power from two separate power sources. The device has two switches in SPDT configuration, with a bidirectional current-blocking capability when the switch is turned off.
The MAX14714 features two individual enable inputs to control each power path. Each enable input controls the corresponding path as an independent switch. However, when both paths are enabled, the internal comparator controls the path based on voltage at input nodes to autoselect the higher voltage input.

Enable Inputs

$\overline{\mathrm{EN} 1}$ and EN2 active-low enable inputs control the two switches position. (Table 1)

Soft-Start

When a switch is enabled, and if the voltage difference between $\mathbb{N}_{\text {_ }}$ and OUT is greater than 0.95 V (typ), the device performs soft-start for 5 ms (typ) to prevent high inrush current. During soft-start, the output $\mathrm{dV} / \mathrm{dt}$ is limited to $60 \mathrm{mV} / \mu \mathrm{s}$ (typ). The soft-start feature is bidirectional for either IN_{C} or OUT supply.

Auto-Selection

When both $\overline{\mathrm{EN} 1}$ and $\overline{\mathrm{EN} 2}$ are low, the device is in autoselection mode and the switch with higher voltage on input is turned on. A difference of $\mathrm{V}_{\text {THR_I }} \mathrm{IN}(500 \mathrm{mV}$, typ)

Table 1. Enable Control

$\overline{\text { EN1 }}$	$\overline{\text { EN2 }}$	SWITCH STATUS
0	0	Auto Selection: switch 1 or switch 2 on*
1	0	Switch 2 on, switch 1 off
0	1	Switch 1 on, switch 2 off
1	1	Switch 1 and switch 2 both off

*When voltages on IN1 and IN2 are about the same, the device selects IN2 as the supply source. Please refer to AutoSelection for details.
between IN1 and IN2 is required in order to switch to the higher supply voltage.
Once the device selects the switch, the switch is on as long as the other input is not higher by $\mathrm{V}_{\text {THR_IN }}$. If frequent jittering is expected from the power source, manual selection is recommended once the power source is stabilized. If auto-selection latchoff is preferred, please contact the factory for a latchoff option.
In case voltages on IN1 and IN2 are about the same, and EN1 and EN2 both go from high to low, the device selects IN2 as the supply source. After this initial choice, normal auto-selection resumes.

Bidirectional Current-Blocking

The bidirectional FET switch prevents current flowing from either side when the switch is off.

Ordering Information

PART	ENABLE POLARITY	TEMP RANGE	BUMP-PACKAGE
MAX14714EWL+	ACTIVE-LOW	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	15 WLP

+Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information
PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
15 WLP	W151E2+1	$\underline{21-1031 ~}$	Refer to $\frac{\text { Application }}{}$

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$9 / 14$	Initial release	-

