imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Power-Management Solution

General Description

The MAX14720/MAX14750 are compact power-management solutions for space-constrained, battery-powered applications where size and efficiency are critical. Both devices integrate a power switch, a linear regulator, a buck regulator, and a buck-boost regulator.

The MAX14720 is designed to be the primary powermanagement device and is ideal for either non-rechargeable battery (coin-cell, dual alkaline) applications or for rechargeable solutions where the battery is removable and charged separately. The device includes a button monitor and sequencer.

The MAX14750 works well as a companion to a charger or PMIC in rechargeable applications. It provides direct pin control of each function and allows greater flexibility for controlling sequencing.

The devices include two programmable micro- I_Q , highefficiency switching converters: a buck-boost regulator and a synchronous buck regulator. These regulators feature a burst mode for increased efficiency during lightload operation.

The low-dropout linear regulator has a programmable output. It can also operate as a power switch that can disconnect the quiescent load of system peripherals.

The devices also include a power switch with batterymonitoring capability. The switch can isolate the battery from all system loads to maximize battery life when not operating. It is also used to isolate the battery-impedance measurements. This switch can operate as a generalpurpose load switch as well.

The MAX14720 includes a programmable power controller that allows the device to be configured either for use in applications that require a true off state or for always-on applications. This controller provides a delayed reset signal, voltage sequencing, and customized button timing for on/off control and recovery hard reset.

Both devices also include a multiplexer for monitoring the power inputs and outputs of each function.

These devices are available in a 25-bump, 0.4mm pitch, 2.26mm x 2.14mm wafer-level package (WLP) and operate over the -40° C to $+85^{\circ}$ C extended temperature range.

Benefits and Features

- Extended System Battery Use Time
 - Micro-I_Q 250mW Buck-Boost Regulator
 - Input Voltage from 1.8V to 5.5V
 - Output Voltage Programmable from 2.5V to 5V
 - 1.1µA Quiescent Current
 - Programmable Current Limit
 - Micro-I_Q 200mA Buck Regulator
 - Input Voltage from 1.8V to 5.5V
 - Output Voltage Programmable from 1.0V to 2.0V
 - 0.9µA Quiescent Current
 - Micro-I_Q 100mA LDO
 - Input Voltage From 1.71V to 5.5V
 - Output Programmable From 0.9V to 4.0V
 - 0. 9µA Quiescent Current
 - Configurable as Load Switch
- Extend Product Shelf-Life
 - Battery Seal Mode (MAX14720)
 - 120nA Battery Current
 - Power Switch On-Resistance
 - 250mΩ (max) at 2.7V
 - 500mΩ (max) at 1.8V
 - · Battery Impedance Detector
- Easy-to-Implement System Control
 - Configurable Power Mode and Reset Behavior (MAX14720)
 - Push-Button Monitoring to Enable Ultra-Low Power Shipping Mode
 - Disconnects All Loads From Battery and Reduces Leakage to Less than 1µA
 - Power-On Reset (POR) Delay and Voltage Sequencing
 - Individual Enable Pins (MAX14750)
 - · Voltage Monitor Multiplexer
 - I²C Control Interface

Applications

- Wearable Medical Devices
- Wearable Fitness Devices
- Portable Medical Devices

Ordering Information appears at end of data sheet.

Power-Management Solution

Absolute Maximum Ratings

(Voltages Referenced to GND.)	
BIN, LIN, SDA, SCL, SWIN, BEN, S	WOUT, SWEN,
LEN, HVEN, HVIN, HVOUT, MON	I, CAP, V _{CC} ,
MPC, KIN, RST, KOUT	-0.3V to +6.0V
HVILX	0.3V to V _{HVIN} + 0.3V
HVOLX	0.3V to V _{HVOUT} + 0.3V
BLX, BOUT	0.3V to (V _{BIN} + 0.3V)
LOUT	0.3V to (V _{I IN} + 0.3V)
GND	0.3V to +0.3V

Continuous-Current into HVIN, BIN, SWIN	±1000mA
Continuous-Current into Any Other Terminal .	±100mA
Continuous Power Dissipation (multilayer boa	rd at +70°C):
5x5 Array 25-Ball 2.26mm x 2.14mm 0.4mn	n Pitch WLP
(derate 19.07mW/°C)	1.525W
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Package Thermal Characteristics (Note 1) WLP

Junction-to-Ambient Thermal Resistance (001A)52.43°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
SUPPLY CURRENT						-
Seal Input Current	ISEAL	Seal mode, all functions disabled		0.12	1	μA
Off Input Current	IOFF	No blocks enabled, no battery measurement active		1.2	2.8	μA
MON Input Current	I _{MON}	No blocks enabled, no battery measurement active, MON enabled, MONCtr[2:0] = 000.		4	7.2	μΑ
Switch Input Current	I _{SW}	Switch enabled, I _{SWOUT} = 0A		1.2	2.8	μA
		LDO enabled, I _{LOUT} = 0A		2.1	4.4	
LDO Input Current	ILDO	LDO enabled, LIN UVLO enabled, I _{LOUT} = 0A		2.4	4.8	μA
		LDO enabled, switch mode, I _{LOUT} = 0A		1.5	3.2	
		Buck enabled, I _{BOUT} = 0A		2	4.1	
Buck Input Current	IBUCK	Buck enabled, BIN UVLO enabled, I _{BOUT} = 0A		2.2	4.5	μΑ
Buck-Boost Input Current	ost Input IBCKBST	Buck-Boost enabled, I _{HVOUT} = 0A, V _{HVOUT} = 4V		2	4.7	
		Buck-Boost enabled, BIN UVLO enabled, $I_{HVOUT} = 0A$, $V_{HVOUT} = 4V$		2.3	5	μA

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
On Input Current	I _{ON}	LDO, buck, and buck-boost enabled; BIN UVLO and LIN UVLO enabled; $I_{SWOUT} = I_{LOUT} = I_{BOUT}$ = $I_{HVOUT} = 0A$		4.4	8.3	μA
POWER SEQUENCE	·					<u>^</u>
Boot Time	+	MAX14720	9.9	11	12.1	ms
BOOL TIME	^t воот	MAX14750	21.6	24	26.4	ms
Reset Time	t _{RST}	MAX14720	72	80	88	ms
POWER SWITCH						
Input Voltage Range	V _{SWIN}	V _{SWIN} ≤ V _{CC}	1.8		5.5	V
Quiescent Supply Current	I _{Q_SW}	I _{SWOUT} = 0A		0.05	0.09	μA
	5	I _{SWOUT} = 200mA		0.16	0.25	
Switch On-Resistance	R _{ON_SW}	V _{SWIN} = 1.8V, I _{SWOUT} = 200mA		0.27	0.5	Ω
Maximum Output Current	ISWOUT_MAX		200			mA
Turn-On Time		$I_{SWOUT} = 0mA, C_{SWOUT} = 100\mu F,$ time from 10% to 90% of V _{SWIN} , SWSoftStart = 0		0.65		ms
	ton_sw	I_{SWOUT} = 0mA, C_{SWOUT} = 100µF, time from 10% to 90% of V _{SWIN} , SWSoftStart = 1		13.8		ms
Short-Circuit Current Limit	I _{SHRT_SW}	V _{SWOUT} = GND, SWSoftStart = 0	200	460	700	mA
Soft-Start Current Limit	I _{SSTR_SW}	V _{SWOUT} = GND, SWSoftStart = 1	9	25	54	mA
Thermal-Shutdown Threshold	T _{SHDN_SW}	T _J rising		150		°C
Thermal-Shutdown Hysteresis	TSHDN_HYST_SW			20		°C
BUCK BOOST CONVER	TER (C _{OUT} = 10MF, L	= 4.7MF, unless otherwise noted.)				·
Input Voltage Range	V _{HVIN}		1.8		5.5	V
Quiescent Supply Current		V _{HVOUT} = 4V, I _{HVOUT} = 0A, BIN UVLO disabled		1.1	2.6	μA
	IQ_BOOST	V _{HVOUT} = 4V, I _{HVOUT} = 0A, BIN UVLO enabled		1.3	3	μA
Minimum Input Voltage Startup	V _{HVIN_STUP}	I _{LOAD} = 1mA, minimum input voltage for correct startup of the buck-boost	1.9			v

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Output Operating Power	PMAXHVOUT	V _{HVIN} = 3V	250			mW
Output Voltage	V _{HVOUT}	100mV step	2.5		5	V
Output Accuracy	ACC _{HVOUT}	I _{HVOUT} = 1mA, average output C _{OUT} ≥ 10μF	-3		+3	%
Line Regulation Error	V _{HVINREG_BOOST}	V _{HVIN} = 1.8V to 5.5V, I _{HVOUT} = 10uA, V _{HVOUT} = 4V, I _{SET} = 100mA	-1	0.1	+1	%/V
Lood Dogulation Error	N	V_{HVOUT} = 4V, I_{HVOUT} = 10µA to 50mA, I_{SET} = 100mA		100		mV/A
Load Regulation Error	VLOADREG_BOOST	V _{HVOUT} = 4V, I _{HVOUT} = 10µA to 100mA, I _{SET} = 100mA		310		mV/A
Line Transient	VLINETRAN_BST	V_{HVOUT} = 4V, I _{SET} = 100mA, V_{HVIN} = V_{CC} = 2.5V to 5V, 0.2µs rise time		15		mV
		I_{HVOUT} = 0mA to 10mA, 200ns rise time, V _{HVOUT} = 4V, I _{SET} = 100mA		9		mV
Load Transient	VLOADTRAN_BST	I _{HVOUT} = 0mA to 100mA, 200ns rise time, V _{HVOUT} = 4V, I _{SET} = 100mA		31		mV
Oscillator Frequency	fosc_bst		1.78	2	2.25	MHz
Passive Discharge Pulldown Resistance	R _{PDL_BST}		5	10	16	kΩ
Active Discharge Current	IACTDL_BST	V _{HVIN} = 3V	6	19	38	mA
Turn-On Time	ton_boost	Time from enable to full current capability		100		ms
UVLO on HVOUT	VHVOUT_UVLO	UVLO voltage on HVOUT rising	1.6	1.75	1.9	V
UVLO Threshold Hysteresis	V _{UVLO_HYS}			150		mV
Precharge Current	IPC_BOOST	Precharge current. V_{HVIN} = 1.8V, V_{HVOUT} = 1.65V	4	6.5	9	mA
Startup Input Current	I _{INSTUP_BST}	Input startup current. V _{HVIN} = 1.8V, V _{HVOUT} = 1.6V		11		mA
Startup Output Current	IOSTUP_BST	Output startup current. V _{HVIN} = 1.8V, V _{HVOUT} = 5V		6.5		mA
Pulse Mode Input Current Limit	I _{PLS_IN}	V_{HVOUT} = 4V, V_{HVIN} < V_{HVOUT} - 0.5V, f_{SW} = f_{OSC} /10, I_{SET} = 100mA		6.6		mA

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Pulse Mode Switching Period Ratio	T _{RATIO}	f _{OSC} /f _{SW} , 128 steps	10		138	
Short-Circuit Peak Current Limit	ISHRT_BOOST	V _{HVOUT} = GND.	0.4	1.1	1.9	A
Thermal-Shutdown Threshold	T _{SHDN_BST}	T _J rising		150		°C
Thermal-Shutdown Hysteresis	TSHDN_HYST_BST			21		°C
BUCK CONVERTER (C	_{DUT} = 10MF, L = 2.2MH	, unless otherwise noted.)				
Input Voltage Range	V _{BIN}		1.8		5.5	V
		I _{BOUT} = 0A		0.8	1.6	
Quiescent Supply Current	IQ_BUCK	I _{BOUT} = 0A, BIN UVLO enabled		1	2	- μΑ
		I _{BOUT} = 0A, BuckMd[1:0] = 01			4.8	mA
Maximum Operative Output Current	IMAXBOUT		250			mA
Output Voltage	V _{BOUT}	25mV step	1		2	V
Output Accuracy	Acc_bout	V _{BIN} = (V _{BOUT} + 0.1V) or higher, I _{BOUT} = 1mA; average output	-3		+3	%
Dropout Voltage	V _{DROP_BUCK}	I _{BOUT} = 0A		95	120	mV
Line Regulation Error	VLINEREG_BUCK	V_{BIN} = from 2V to 5V, V_{BOUT} = 1.2V		0.65		%/V
Load Regulation Error	VLOADREG_BUCK	BuckInteg = 1, I _{BOUT} = 200mA		23		mV
Line Transient	V _{LINETRAN_BUCK}	V_{BOUT} = 1.2V, V_{BIN} = V_{CC} : 2.0V to 5V, 1µs rise time		50		mV
Load Transient	VLOADTRAN_BUCK	I _{BOUT} = 0mA to 200mA, 200ns rise time		70		mV
Oscillator Frequency	fosc_вк		1.78	2	2.25	MHz
Passive Discharge Pull-Down Resistance	R _{PDL_BK}		5	10	16	kΩ
Active Discharge Current	IACTDL_BK		5.5	17	33	mA
Turn-On Time		Time from enable to full current capability; BuckFst = 0		60		ms
	ton_buck	Time from enable to full current capability; BuckFst = 1		30		ms
Startup Output Current	I _{STUP_BK}	BuckFst = 0		18		mA

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Startup Output Current	I _{STUP_BK}	BuckFst = 1		42		mA
Short-Circuit Peak Current Limit	ISHRT_BUCK	V _{BOUT} = GND.	0.54	0.8	2.19	A
Thermal-Shutdown Threshold	T _{SHDN_BUCK}	T _J rising		150		°C
Thermal-Shutdown Hysteresis	TSHDN_HYST_BUCK			21		°C
LDO (C _{LOUT} = 1µF, unle	ess otherwise noted. T	ypical values are with I _{LOUT} = 10mA	, V _{LOUT} = 21	/)		·
Innut Valtage Denge		LDO mode	1.71		5.5	- v
Input Voltage Range	V _{LIN}	Switch mode	1.2		5.5	
		I _{LOUT} = 0A		0.9	1.9	
Quiescent Supply Current	IQ_LDO	I _{LOUT} = 0A, LIN UVLO enabled		1.1	2.2	μA
Canon		I _{LOUT} = 0A, switch mode		0.3	0.5	1
Quiescent Supply Current in dropout	IQ_LDO_DRP	I _{LOUT} = 0A, V _{SET} = 2.8V		2.1	4.6	μA
Maximum Output	ILOUT_MAX	V _{LIN} > 1.8V	100			mA
Current		V _{LIN} = 1.8V or lower	50			mA
Output Voltage	V _{LOUT}	100mV step	0.9		4	V
Output Accuracy	ACC _{LDO}	V_{LIN} = (V_{LOUT} + 0.5V) or higher, I _{LOUT} = 1mA	-3.1		+3.1	%
Dropout Voltage	V _{DROP_LDO}	V _{LIN} = V _{SET} = 2.7V, I _{LOUT} = 100mA			100	mV
Line Regulation Error	V _{LINEREG_LDO}	V _{LIN} = (V _{LOUT} + 0.5 V) to 5.5V	-0.5		+0.5	%/V
Load Regulation Error	VLOADREG_LDO	V _{LIN} = 1.8V or higher, I _{LOUT} = 100µA to 100mA		0.001	0.005	%/mA
Line Transient		V _{LIN} = 4V to 5V, 200ns rise time		±35		mV
Line Transient	VLINETRAN_LDO	V _{LIN} = 4V to 5V,1µs rise time		±25		mV
Load Transient		I _{LOUT} = 0mA to 10mA, 200ns rise time		100		mV
	VLOADTRAN_LDO	I _{LOUT} = 0mA to 100mA, 200ns rise time		200		mV
Passive Discharge Pulldown Resistance	R _{PDL_LDO}		4	10	18	kΩ
Active Discharge Current	IACTDL_LDO		5	20	40	mA

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Switch Mode		V _{LIN} = 1.8V, I _{LOUT} = 50mA		1	0
Resistance	R _{ON_LDO}	V _{LIN} = 1.2V, I _{LOUT} = 5mA		- Ω	
		I _{LOUT} = 0mA , time from 10% to 90% of final regulation value	0.95		ms
Turn-On Time	^t on_ldo	I_{LOUT} = 0mA , time from 10% to 90% of V _{LIN} , Switch mode	1.8		ms
Short-Circuit Current	ISHRT_LDO	V _{LOUT} = GND	380		mA
Limit	0	V _{LOUT} = GND, Switch mode	370		mA
Thermal-Shutdown Threshold	^t SHDN_LDO	T _J rising	150		°C
Thermal-Shutdown Hysteresis	^t SHDN_HYST_LDO		21		°C
		10Hz to 100kHz, V_{LIN} = 5V, V_{LOUT} = 3.3V	150		
Output Naisa	OUT _{NOISE_LDO}	10Hz to 100kHz, V_{LIN} = 5V, V_{LOUT} = 2.5V	125		
Output Noise		10Hz to 100kHz, V _{LIN} = 5V, V _{LOUT} = 1.2V	90	μV _{RMS}	
		10Hz to 100kHz, V _{LIN} = 5V, V _{LOUT} = 0.9V	80		
BATTERY IMPEDANCE	MEASUREMENT				
SWOUT Allowed Supply Range	V _{SWOUT}		2	5.5	V
SWOUT UVLO	U _{VLOSWOUT}	Falling edge	1.92	2	V
SWOUT UVLO Hysteresis	U _{VLOHYST}	Hysteresis	30		mV
V _{CC} Impedance Test Current Range	IBIM_CUR	Programmable current source with step change of 2x	250	8000	μA
V _{CC} Impedance Test Current Accuracy	IBIM_ACC	V _{CC} > 1.2V	-10	10	%
V _{CC} Input Divider Resistance	R _{VCC}	V _{CC} measure enabled	1.5		MΩ
Measurable V _{CC} Voltage Range	V _{CC_FS}	Allowed V _{CC} voltages range for SAR ADC operation	1.2	3.6	V
V _{CC} Voltage Resolution LSB	V _{CC_LSB}		10.2		mV

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Worst-Case Accuracy	V _{CC_ACC}	V _{CC} = 1.2V	-72		+72	
of Single V _{CC} Measurement		V _{CC} = 3.6V	-100		+100	– mV
Worst-Case Accuracy		V _{CC1} -V _{CC2} = 100mV	-22		+22	
Of Differential V _{CC} Measurement	VCC_ACC_DIFF	$V_{CC1} - V_{CC2} = 1.0V$	-3.5		+3.5	- %
V _{CC} Voltage Wait Time Accuracy	^t WAIT_ACC	10ms, 100ms, 1s programmable ^t WAIT	-10		+10	%
SAR ADC V _{CC} Voltage Conversion Time	^t CONV	Actual full V _{CC} measurement time is $t_{WAIT} + t_{CONV}$		120		μs
MONITOR MULTIPLEXE	R	·				
SWIN To MON Switch Resistance	R _{MON_SWIN}	V _{SWIN} > 1.8V, I _{LOAD} = 2mA		80	120	Ω
SWOUT/BIN/HVIN/ HVOUT/LIN To MON Switch Resistance	R _{MON_HV}	Sensed pin voltage > 1.8V, I _{LOAD} = 500µA			400	Ω
LOUT/BOUT To MON Switch Resistance	R _{MON_LV}	Sensed pin voltage > 0.9V, I _{LOAD} = 500µA			500	Ω
BBM Time	t _{BBM}	Anytime MONCtr[2:0] changed		80		μs
Pulldown Resistance	R _{MON_PD}	MONHiZ = 0		100		kΩ
UVLO/POR						
Input Voltage Range	V _{VCC}		1.8		5.5	V
BIN UVLO Threshold Rising	V _{TH_BIN_RISE}		1.68	1.73	1.77	V
BIN UVLO Threshold Falling	VTH_BIN_FALLING		1.66	1.71	1.75	V
LIN UVLO Threshold Rising	VTH_LIN_RISE		1.64	1.68	1.72	V
LIN UVLO Threshold Falling	VTH_LIN_FALLING		1.62	1.66	1.7	V
POR Falling		Seal mode	0.76	1.21		V
POR Falling	VTH_POR_FALLING	No seal mode	1.55	1.66	1.77	V
		Seal mode		1.27	1.71	V
POR Rising	VTH_POR_RISING	No seal mode	1.58	1.69	1.8	V

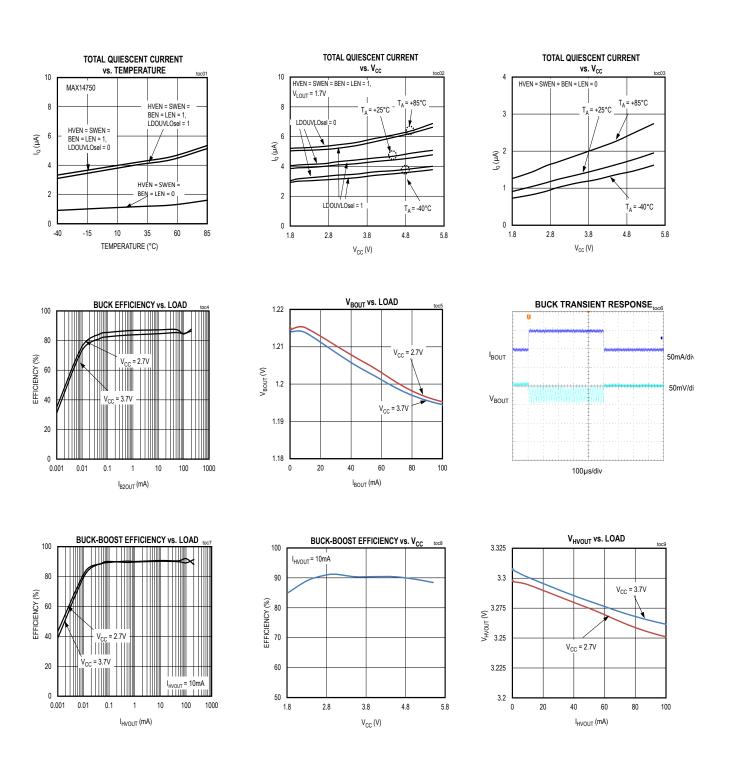
Power-Management Solution

Electrical Characteristics (continued)

 $(V_{CC} = V_{BIN} = V_{LIN} = V_{HVIN} = V_{SWIN} = 2.7V$, $T_A = -40^{\circ}C$ to +85°C, all registers in their default state, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
DIGITAL SIGNALS (V _{CC}	= 1.8V to 5.5V, unles	s otherwise noted. Typical values	are at V _{CC} = 2.	7V.)		-
Input Logic-High (SDA, SCL,SWEN,KIN, BEN,MPC,LEN,HVEN)	V _{IH}	No seal mode	1.4			v
Input Logic-Low (SDA, SCL,SWEN,KIN,	VIL	No seal mode			0.45	V
BEN, MP, LEN, HVEN)	IL.	No seal mode, $V_{CC} \ge 2.7V$			0.5	V
Input Logic-High, Seal Mode (SDA, SCL, KIN,	VIH_SEAL	Seal mode	4.1	· · · · · · · · · · · · · · · · · · ·		V
MPC)	-III_SEAL	Seal mode, $V_{CC} \ge 2.7V$	2.2			V
Input Logic-Low, Seal Mode (SDA, SCL, KIN, MPC)	VIL_SEAL	Seal mode			0.5	v
Output Logic-Low (SDA, RST, KOUT)	V _{OL}	I _{OL} = 4mA			0.4	V
SCL Clock Frequency	f _{SCL}		0		400	kHz
KIN Pullup Resistance	R _{KIN}			210		kΩ
Bus Free Time Between a Stop and Start Condition	^t BUF		1.3			μs
Start Condition (Repeated) Hold Time	^t HD:STA	(Note 3)	0.6			μs
Low Period of SCL Clock	t _{LOW}		1.3			μs
High Period of SCL Clock	^t ніgн		0.6			μs
Setup Time for a Repeated Start Condition	^t su:sta		0.6			μs
Data Hold Time	thd:dat	(Note 4)	0		0.9	μs
Data Setup Time	t _{SU:DAT}		100			ns
Setup Time for Stop Condition	t _{SU:STO}		0.6			μs
Spike Pulse Widths Suppressed by Input Filter	t _{SP}		50			ns

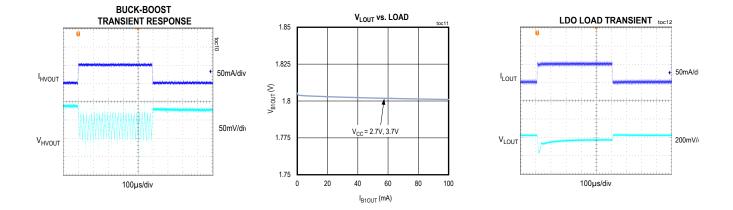
Note 2: All devices are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

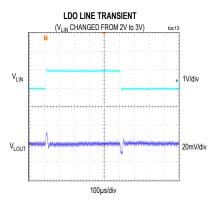

Note 3: f_{SCL} must meet the minimum clock low time plus the rise/fall times.

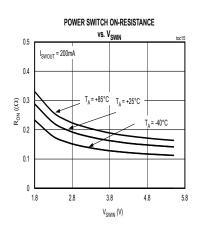
Note 4: The maximum t_{HD:DAT} has to be met only if the device does not stretch the low period (t_{LOW}) of the SCL signal.

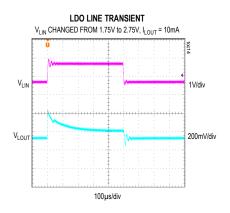
Power-Management Solution

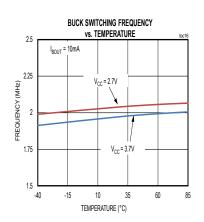
Typical Operating Characteristics

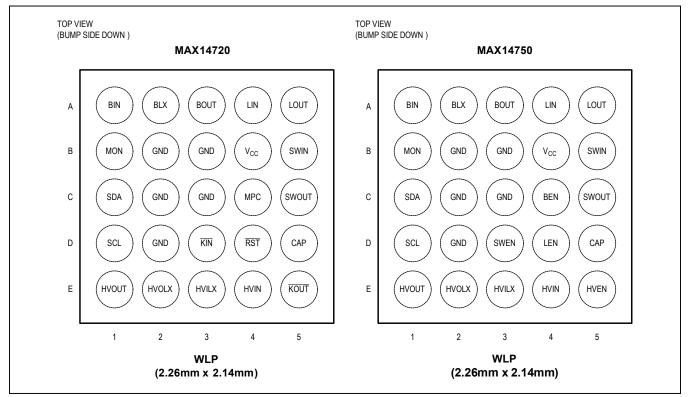

(V_{CC} = V_{BIN} = V_{LIN} = V_{HVIN} = V_{SWIN} = 2.7V, T_A = +25°C, all registers in their default state, unless otherwise noted.)




Power-Management Solution


Typical Operating Characteristics (continued)

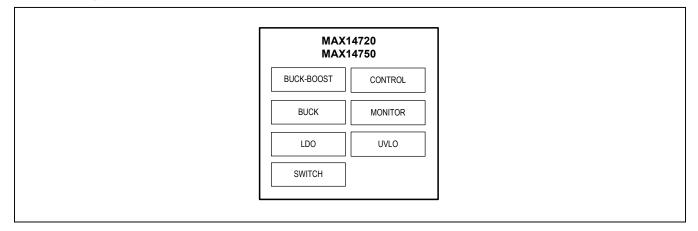

 $(V_{CC} = V_{BIN} = V_{LIN} = V_{HVIN} = V_{SWIN} = 2.7V$, $T_A = +25^{\circ}C$, all registers in their default state, unless otherwise noted.)



Power-Management Solution

Bump Configurations

Bump Description


BU	BUMP		FUNCTION
MAX14720	MAX14750	NAME	FUNCTION
A1	A1	BIN	Buck Regulator Input (must be connected to HVIN on the board). Bypass with a $1\mu F$ capacitor to GND.
A2	A2	BLX	Buck Regulator Switch
A3	A3	BOUT	Buck Regulator Output. Bypass with a 10µF capacitor to GND.
A4	A4	LIN	LDO Input. Bypass with a 1µF capacitor to GND.
A5	A5	LOUT	LDO Output. Bypass with a 1µF capacitor to GND.
B1	B1	MON	Monitor Multiplexer Output
B2, B3, C2, C3, D2	B2, B3, C2, C3, D2	GND	Ground
B4	B4	V _{CC}	Power Supply Input
B5	B5	SWIN	Power Switch Input. SWIN ≤ V _{CC}
C1	C1	SDA	Open-Drain I ² C Serial Data Input/Output
C4	_	MPC	Multipurpose Control Input
	C4	BEN	Active-High Buck Regulator Enable Input

BU	BUMP		FUNCTION
MAX14720	MAX14750	NAME	FUNCTION
C5	C5	SWOUT	Power Switch Output. Bypass with a 100µF capacitor to GND for battery impedance measurement.
D1	D1	SCL	I ² C Serial Clock
D3	_	KIN	KEY Input. Active-low button monitor with internal 210k Ω pullup.
	D3	SWEN	Active-High Power Switch Enable Input
D4	_	RST	Active-Low, Open-Drain Reset Output
_	D4	LEN	Active-High Linear Regulator Enable Input
D5	D5	CAP	Internal Power Decoupling. Bypass with a 0.1µF capacitor to GND.
E1	E1	HVOUT	Buck-Boost Regulator Output. Bypass with a 10µF capacitor to GND.
E2	E2	HVOLX	Buck-Boost Regulator Boost Switch
E3	E3	HVILX	Buck-Boost Regulator Buck Switch
E4	E4	HVIN	Buck-Boost Regulator Input (Must be Connected to BIN on the Board). Bypass with a $1\mu F$ capacitor to GND.
E5	_	KOUT	KEY Output. Active-low, open-drain buffered copy of KIN.
_	E5	HVEN	Active-High Buck-Boost Regulator Enable Input

Bump Description (continued)

Note: All capacitance values listed in this document refer to effective capacitance. Be sure to specify capacitors that will meet these requirements under typical system operating conditions taking into consideration the effects of voltage and temperature.

Block Diagram

Detailed Description

Power Regulation

The MAX14720/MAX14750 include a buck-boost regulator, a synchronous buck regulator, a low quiescent current linear regulator, and a power switch with integrated battery monitoring. Burst mode operation of the switching regulators provides excellent light-load efficiency and allows the switching regulators to run continuously without significant energy cost.

The buck-boost regulator in the devices is suitable for applications (such as low-power display biasing) that need the voltage present continuously while running from a battery. The buck-boost regulator can also operate in a current-limited mode to reduce current surges to the supply. The current-limiting is implemented by dividing down the frequency of the switching and is dependent on the ratio of the input-to-output voltage. Step-down operation is not allowed when current-limiting is active.

UVLO

In addition to the internal power-on reset (POR) circuit, the devices also have two UVLO circuits that monitor the voltages on BIN and LIN pin to ensure that input voltages are sufficient for proper operation. It is required that the boost and buck-boost are powered from the same voltage so they share a UVLO on the BIN pin. The LDO has its own UVLO on the LIN pin. The UVLO circuits are disabled when the blocks are not enabled to reduce the guiescent current. The devices provide the ability to select which of the two UVLOs are used so that applications with BIN and LIN tied to the same supply can share a single UVLO to reduce quiescent current. The selection is made in the UVLOCfg register and the effects of the different settings are shown in the Table 1. In the MAX14720, if there is a fault in a block that is enabled by the sequencer (every Seq[2:0] option except 000, 110 or 111) the part will transition to the shutdown and then the off state. The part will remain off until the next button press. After the button press it will wait for the fault to clear before beginning the power on sequence. A fault is any condition that causes the block to turn off when it should be enabled, such as a UVLO condition or thermal shutdown.

Output Discharge

The regulators include circuitry to discharge their outputs. Active discharge applies a current sink, while passive discharge applies a load resistor. The active discharge is enabled during hard reset, or for 10ms as the part enters the off/seal mode. It can also be activated in the on state by a register bit when the regulator is disabled. Passive discharge is applied in the off/seal mode if the GlbPasDsc bit is set and can also be applied in the on state by a register bit when the regulator is disabled.

Power On/Off and Reset Control

The MAX14750 provides individual enable pins for each of the primary functions, while the MAX14720 includes a push-button monitor and sequencing controller. Figure 1 shows the basic flow diagram for the power-management control inside the MAX14720. Each primary function of the MAX14720 can be automatically enabled by the sequencing controller. The functions can default to be controlled by the I²C configuration registers. The default state is determined by the factory configuration. See I<u>2</u>C *Register Descriptions* section for more information.

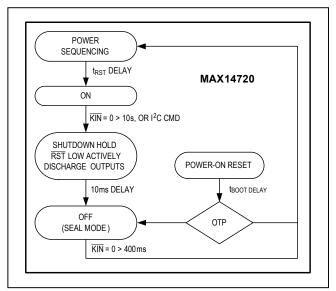


Figure 1. Power State Diagram for MAX14720

UVLOCfg	BBBUVLOsel	LDOUVLOsel	BIN UVLO	LIN UVLO
0x00	LIN	LIN	Disabled	Enabled
0x01	LIN	BIN	Enabled	Enabled
0x02	BIN	LIN	Enabled	Enabled
0x03	BIN	BIN	Enabled	Disabled

Table 1. UVLO Configuration

Power-Management Solution

When the device begins the shutdown process, reset is driven low, all functions are disabled and outputs are actively discharged. Then, 10ms later, the device will be in the off state (seal mode) where all functions are disabled except for the power button monitor.

Power Sequencing (MAX14720 Only)

The sequencing of the voltage regulators during poweron is configurable. Each regulator can be configured to be turned on at one of four points during the power-on process. The four points are: t_{BOOT} after the power-on event, after the RST signal is released, or at two points in between. The two points in between are fixed proportionally to the duration of the POR process, but the overall time of the reset delay is configurable at 80ms, 120ms, 220ms, and 420ms. (Note that the actual turn-on time of some converters may be limited by the soft-starting of the output.) Figure 2 shows the timing relationship. Additionally, the regulators can be preselected to default off and can be turned on with an I²C command after reset is released.

Battery Impedance Measurement

The MAX14720 contains circuitry to measure the impedance of the power supply. To perform this measurement, SWIN must be connected to V_{CC} , with no capacitor present on the battery-side; all loads draw their power from the power-switch output (see <u>Typical Application Circuits</u>).

By default, the power switch is configured with a soft-start current limit that prevents potential high current drawn from the battery. This soft-start lasts 60ms after the power switch is turned on.

During battery measurement, the impedance measurement circuitry will open the power switch and record the voltage at the input to the switch before and after a current load is

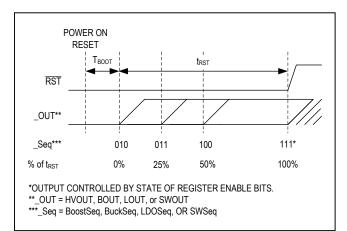


Figure 2. Reset Sequence Programming (MAX14720)

applied. During the measurement, the system must rely on the energy stored in the capacitor attached to the output of the switch for operation. If the SWOUT voltage falls below SWOUT UVLO threshold, the battery measurement is immediately aborted and the power switch closes.

The parameters of the current load and the timing of the pulse are specified in registers BatTime(0x0D) and BatCfg(0x0E) when the measurement is requested and the results are presented in registers BatV(0x0F), BatOCV(0x10), and BatLCV(0x11) (see Figure 3).

I²C Interface

The devices use the two-wire I²C interface to communicate with the host microcontroller. The configuration settings and status information provided through this interface are detailed in the register descriptions.

I²C Addresses

The registers of the devices are accessed through the slave address of 010101Ax (A is configurable by OTP).

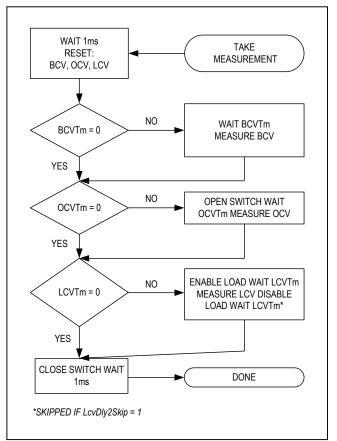


Figure 3. Battery Impedance Measurement

I²C Register Map

REGISTER ADDRESS	REGISTER NAME	B7	В6	В5	B4	В3	B2	B1	B0	
0x00	Chipld		11		Ch	ipId[7:0]*	1			
0x01	ChipRev				Chip	oRev[7:0]*				
0x02	Reserved				R	eserved				
0x03	BoostCDiv	ClkDivEn				ClkDivSet[6	6:0]			
0x04	BoostlSet	—	—	— — — — BoostlSet[2:0]						
0x05	BoostVSet	—	— — BoostVSet[4:0]							
0x06	BoostCfg	I	BoostSeq[2:0]* BoostEn[1:0] - BoostEMI Boo							
0x07	BuckVSet	—	— BuckVSet[5:0]							
0x08	BuckCfg		BuckSeq[2:0]*		Buck	Vd[1:0]	BuckFst			
0x09	BuckISet		BucklSet[2:0]		BuckCfg	BuckInd	BuckHysOff	BuckMinOT	BuckInteg	
0x0A	LDOVSet	—	LDOVSet[4:0]							
0x0B	LDOCfg		LDOSeq[2:0]*		LDO PasDSC	LDO ActDSC	LDOEn[1:0]		LDOMode	
0x0C	SwitchCfg		SWSeq[2:0]*			_	SWE	En[1:0]	SWSoftStart	
0x0D	BatTime			BCVTm[1:0] OCVTm[1:0] LCVTm[1:0]						
0x0E	BatCfg	BIA**	BIMAbort**	_	_	LcvDly2Skip		BatImpCur[2:0]		
0x0F	BatBCV				B	CV[7:0]*				
0x10	BatOCV				0	CV[7:0]*				
0x11	BatLCV				L	CV[7:0]*				
0x12-0x18	Reserved				R	eserved				
0x19	MONCfg	MONEn	—	_	—	MONHIZ		MONCtr[2:0]		
0x1A	BootCfg		PwrRstCfg	[3:0]*		SftRstCfg*	PFNPUDCfg*	BootDly	/[1:0]*	
0x1B	PinStat	—	—	—	—	KIN/SWEN	KOUT/HVEN	MPC/BEN	RST/LEN	
0x1C	BBBExtra	Boost HysOff	BoostPasDsc	Boost ActDsc	_	_	BuckPasDsc	BuckActDsc	BuckFScl	
0x1D	HandShk	StartOff*	GlbPasDsc*	_	_	_	_	_	StayOn	
0x1E	UVLOCfg	_	_	_	_	_	_	BBBUVLOsel*	LDO UVLOsel	
0x1F	PWROFF				PWRC	FFCMD[7:0]				
0x20 0x2B	ОТРМар	Programmed Default OTP Values								

Note: All registers reset to default value on hard and soft reset.

Reserved Bits: Must not be modified from their default states to ensure proper operation. Bolded Names: Bits default value can be factory configured by OTP. Bolded bits with asterisk are set by OTP only.

*Read-only

**Bits autoreset at the end of impedance measurement (either completed or aborted).

I²C Register Descriptions

Table 2. ChipId Register (0x00)

ADDRESS:	0x00 (Read-	0x00 (Read-Only)									
BIT	7	7 6 5 4 3 2 1 0									
NAME		ChipId[7:0]									
Chip_Id[7:0]	Chip_ld[7:0]	Chip_Id[7:0] bits show information about the version of the MAX14720/MAX14750.									

Table 3. ChipRev Register (0x01)

ADDRESS:	0x01 (Read-Only)									
BIT	7	7 6 5 4 3 2 1 0								
NAME		ChipRev[7:0]								
ChipRev[7:0]	ChipRev[7:0]	ChipRev[7:0] bits show information about the revision of the MAX14720/MAX14750 silicon.								

Table 4. BoostCDiv Register (0x03)

ADDRESS:	0x03									
BIT	7	6	5	4	3	2	1	0		
NAME	ClkDivEn		ClkDivSet[6:0]							
ClkDivEn	This allows th 0: Normal O 1: Divided C When the clo frequency. Th ClkDivSet[6:0	peration, Full (lock Current L ick divider is e ne peak currer 0]. The regulat below the out	ator to be oper Dutput Current imited Mode nabled, the bo t is set by Boo or will stop swi	ated in a curre Capability ost is operated stISet[2:0] and tching when t	ent limited outp d with a fixed p d the switching he voltage is at only be enabled	eak current lim frequency is d pove the set po	etermined by bint and will on	lly run when		
ClkDivSet[6:0]	Current-Limited Boost Clock Divider Setting When the current limited mode is enabled, the frequency of the boost regulator in current limited mode will be the frequency of the oscillator divided by the value of (10 + ClkDivSet[6:0]). The range is f _{OSC} /10 to f _{OSC} /137.									

Table 5. BoostlSet Register (0x04)

ADDRESS:	0x04									
BIT	7 6 5 4 3 2 1 0									
NAME	_	_	_	_	_	BoostlSet[2:0]				
BoostlSet[2:0]										

Power-Management Solution

Table 6. BoostVSet Register (0x05)

ADDRESS:	0x05										
BIT	7	6	5	4	3	2	1	0			
NAME	_	— — — BoostVSet[4:0]									
BoostVSet[4:0]		linear scale, 1 V V	g. This setting 00mV increme	,	tched and can	change only w	/hen boost is (disabled.			

Table 7. BoostCfg Register (0x06)

ADDRESS:	0x06									
BIT	7	6	5	4	3	2	1	0		
NAME	Boost	Seq[2:0] (Read	d-only)	Boost	En[1:0]	BoostEMI	BoostInd			
BoostSeq[2:0]	Boost Enable Configuration (Read-Only) 000 = Disabled 001 = Reserved 010 = Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control 100 = Enabled at 50% of Boot/POR Process Delay Control 101 = Reserved 110 = Controlled by HVEN (MAX14750) 111 = Controlled by BoostEn [1:0] after 100% of Boot/POR Process Delay Control (MAX14720)									
BoostEn[1:0]	Boost Enable Configuration (effective only when BoostSeq[2:0] == 111) 00 = Disabled. Active discharge behavior depends on BoostActDsc. 01 = Enabled 10 = Enabled when MPC is high 11 = Reserved									
BoostEMI	0 = EMI dam	Boost EMI reduction. Dampens ringing of the inductor when in discontinuous mode 0 = EMI damping active (improve EMI) 1 = EMI damping disabled (improve Efficiency)								
BoostInd	Boost Inductance Select 1 = Inductance is 3.3µH 0 = Inductance is 4.7µH									

Power-Management Solution

Table 8. BuckVSet Register (0x07)

ADDRESS:	0x07										
BIT	7 6 5 4 3 2 1 0										
NAME	— — BuckVSet[5:0]										
BuckVSet[5:0]		linear scale, 2 00V 25V		is internally late	ched and can o	change only wl	hen buck is dis	abled.			

Table 9. BuckCfg Register (0x08)

ADDRESS:	0x08									
BIT	7	6	5	4	3	2	1	0		
NAME	Buck	Seq[2:0] (Re	ead-only)	Buck	En[1:0]	/d[1:0] BuckFst				
BuckSeq[2:0]	000 = Dis. 001 = Res 010 = Ena 011 = Ena 100 = Ena 101 = Res 110 = Cor	Buck Enable Configuration (Read-Only) 000 = Disabled 001 = Reserved 010 = Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control 100 = Enabled at 50% of Boot/POR Process Delay Control 101 = Reserved 110 = Controlled by BEN (MAX14750) 111 = Controlled by BuckEn [1:0] after 100% of Boot/POR Process Delay Control								
BuckEn[1:0]	Buck Enable Configuration (effective only when BuckSeq[2:0] == 111) 00 = Disabled. Active discharge behavior depends on BuckActDsc. 01 = Enabled 10 = Enabled when MPC is high 11 = Reserved									
BuckMd[1:0]	00 = Burs 01 = Forc 10 = Forc	Buck Mode Select 00 = Burst mode 01 = Forced PWM mode 10 = Forced PWM mode when MPC is high 11 = Reserved								
BuckFst	Buck Fast Start 0 = Normal startup current limit 1 = Double the startup current to reduce the startup time by half									

Power-Management Solution

Table 10. BucklSet Register (0x09)

ADDRESS:	0x09									
BIT	7	6	5	4	3	2	1	0		
NAME		BuckISet[2:0]		BuckCfg	BuckInd	BuckHysOff	BuckMinOT	BuckInteg		
BucklSet[2:0]	Buck Peak C 000: 50mA 001: 100mA 010: 150mA 011: 200mA 100: 250mA 101: 300mA 110: 350mA 111: 400mA		tting							
BuckCfg	Buck Configuration 0 = set to 0 for burst mode 1 = set to 1 for FPWM mode									
BuckInd	Buck Inducta 0 = Inductan 1 = Inductan	ce is 2.2µH								
BuckHysOff	0 = Enable c	Buck Hysteresis Off 0 = Enable comparator hysteresis 1 = Disable comparator hysteresis (recommended to reduce voltage ripple)								
BuckMinOT	0 = Enable d	Buck Minimum On-Time 0 = Enable deglitch delay on comparator for better efficiency 1 = Disable deglitch delay on comparator to minimize voltage ripple								
BuckInteg	Buck Integrate 0 = Helps stabilize the buck regulator for high currents with small output capacitor 1 = Better load regulation at high current (recommended for output capacitance > 6µF)									

Table 11. LDOVSet Register (0x0A)

ADDRESS:	0x0A									
BIT	7 6 5 4 3 2 1 0									
NAME		LDOVSet[4:0]								
LDOVSet[4:0]	LDO Output V 0.9V to 4V, lir 00000 = 0.9V 00001 = 1.0V 10000 = 2.5V 11111 = 4.0V	near scale, 10 ,	g 0mV incremen	ts						

Power-Management Solution

Table 12. LDOCfg Register (0x0B)

ADDRESS:	ADDRESS: 0x0B										
BIT	7	6	5	4	3	2	1	0			
NAME	LDOSe	eq[2:0] (Read-0	Only)	LDOPasDsc	LDOActDsc	LDOE	En[1:0]	LDOMode			
LDOSeq[2:0]	000 = Disabl 001 = Enable 010 = Enable 011 = Enable 100 = Enable 101 = Disabl 110 = Contro	LDO Enable Configuration (Read-Only) 000 = Disabled 001 = Enabled always when BAT/SYS is present 010 = Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control 100 = Enabled at 50% of Boot/POR Process Delay Control 101 = Disabled 101 = Disabled 110 = Controlled by LEN (MAX14750) 111 = Controlled by LDOEn[1:0] after 100% of Boot/POR Process Delay Control									
LDOPasDsc	0: LDO outpu	LDO Passive Discharge Control 0: LDO output will be discharged only entering off and hard-reset modes. 1: LDO output will be discharged only entering off and hard-reset modes and when the enable is low.									
LDOActDsc	0: LDO outpu		ely discharg		off and hard-rese off and hard-rese		when the er	able is low.			
LDOEn[1:0]	00 = Disable 01 = Enable 10 = Enable	d d d when MPC is		nly when LDOSe	q[2:0] == 111)						
LDOMode	0 = Normal L 1 = Load swi output is unr	11 = Reserved LDO Mode Control 0 = Normal LDO operating mode 1 = Load switch mode. FET is either fully on or off depending on the state of LDOEn. When FET is on, the output is unregulated and is not affected by UVLO's control block. This setting is internally latched and can change only when the LDO is disabled.									

Power-Management Solution

Table 13. SwitchCfg Register (0x0C)

ADDRESS:	0x0C									
BIT	7	6	5	4	3	2	1	0		
NAME	SWS	eq[2:0] (Read	-Only)	_	_	SWI	SWSoftStart			
SWSeq[2:0]	000 = Disabl 001 = Enable 010 = Enable 011 = Enable 100 = Enable 101 = Disabl 110 = Contro	SW Enable Configuration (Read-Only) 000 = Disabled 001 = Enabled always when BAT/SYS is present 010 = Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control 100 = Enabled at 50% of Boot/POR Process Delay Control 101 = Disabled 110 = Controlled by SWEN (MAX14750) 111 = Controlled by SWEn[1:0] after 100% of Boot/POR Process Delay Control								
SWEn	00 = Disable 01 = Enableo 10 = Enableo	SW Enable Configuration (effective only when SWSeq[2:0] == 111) 00 = Disabled 01 = Enabled 10 = Enabled when MPC is high 11 = Reserved								
SWSoftStart	0 = No soft-s	SW SoftStart 0 = No soft-start is present when the switch is enabled. 1 = Current limit of 25mA (typ) is ensured for 60ms when the switch is enabled.								

Table 14. BatTime Register (0x0D)

ADDRESS:	0x0D										
BIT	7	6	5	4	3	2	1	0			
NAME	_	_	BCV	Tm[1:0]	OCVT	[m[1:0]	LCVT	m[1:0]			
BCVTm[1:0]	00: Skip bat 01: Take bat 10: Take bat	Battery Cell Voltage Timing 00: Skip battery measurement 01: Take battery measurement after 10ms delay 10: Take battery measurement after 100ms delay 11: Take battery measurement after 1000ms delay									
OCVTm[1:0]	Battery Open Cell Voltage Timing If this step is skipped, LCV measurement will be taken with switch closed 00: Skip OCV measurement 01: Take OCV measurement after 10ms delay 10: Take OCV measurement after 100ms delay 11: Take OCV measurement after 1000ms delay										
LCVTm[1:0]	Battery Loaded Cell Voltage Timing 00: Skip LCV measurement 01: Take LCV measurement after 10ms delay 10: Take LCV measurement after 100ms delay 11: Take LCV measurement after 1000ms delay										

Table 15. BatCfg Register (0x0E)

ADDRESS:	0x0E	0x0E										
BIT	7	6	5	4	3	2	1	0				
NAME	BIA	BIMAbort	_	_	LcvDly2Skip		BatImpCur[2:0]				
BIA	Bit will remain 0: Battery imp		measuremen urement is no	t is completed t ongoing	measurement is	already runr	ning, the write is	s ignored.				
BIMAbort	Write 1 to im 0: Battery im	Battery Impedance Measurement Skip Write 1 to immediately abort the battery impedance measurement 0: Battery impedance measurement is aborted 1: Battery impedance measurement is not aborted yet										
LcvDly2Skip		ows V _{CC} to re d delay time	• • •	-	CVTm) after LCV fore closing the p			s second				
BatImpCur [2:0]	Battery Imper 000: 0 001: 250µA 010: 500µA 011: 1mA 100: 2mA 101: 4mA 110: 8mA 111: Reserve	dance Current										

Table 16. BatV Register (0x0F)

ADDRESS:	0x0F (Read-0	Only)									
BIT	7	7 6 5 4 3 2 1 0									
NAME		BCV[7:0]									
BCV[7:0]	If BCVTm[2:0	voltage measu v] = 00, BCV[7	ent Result irement: V _{CC} = :0] = 0000 000 urement is abo	0.		١v					

Table 17. BatOCV Register (0x10)

ADDRESS:	0x10 (Read-	0x10 (Read-Only)									
BIT	7 6 5 4 3 2 1										
NAME		OCV[7:0]									
OCV[7:0]	8-bit battery If OCVTm[2:0	0] = 00, OCV[7	rement: V _{CC} = 7:0] =0000 000	= [2.6 x (OCV[7)0. prted, OCV[7:0]] V					

Table 18. BatLCV Register (0x11)

ADDRESS:	0x11 (Read-Only)										
BIT	7 6 5 4 3 2 1 0										
NAME		LCV[7:0]									
LCV[7:0]	If LCVTm[2:0	voltage measu v] = 00, BCV[7	ent Result rement: V _{CC} = 0] = 0000 000 urement is abo	0.		I] V					

Table 19. MONCfg Register (0x19)

ADDRESS:	0x19										
BIT	7	6	5	4	3	2	1	0			
NAME	MonEn	_	_	—	MONtHiZ		MONCtr[2:0]				
MonEn	0 = Monitor f	Monitor Enable 0 = Monitor function disabled 1 = Monitor function enabled									
MONtHiZ		MON OFF MODE Condition 0 = Pulled Low by a 100k Pulldown Resistor 1 = Hi-Z									
MONCtr[2:0]	000 = MON (001 = MON (010 = MON (011 = MON (100 = MON (101 = MON (110 = MON (urce Selection connected to S connected to B connected to B connected to B connected to F connected to F connected to L connected to L	WIN WOUT IN OUT VIN VOUT IN								

Power-Management Solution

Table 20. BootCfg Register (0x1A)

ADDRESS:	0x1A (Read-	Only)									
BIT	7	6	5	4	3	2	1	0			
NAME		PwrRstCfg[4:0] SftRstCfg PFNPUDCfg BootDly[1:0]									
PwrRstCfg [4:0]		0000: Pin Controlled (MAX14750) 0110: Push-Button Monitor (MAX14720)									
SftRstCfg	0 = Registers	Soft Reset Register Default 0 = Registers do not reset to default values on soft reset 1 = Registers reset to default values on soft reset									
PFNPUDCfg	KIN Pullup/Pulldown Configuration 0 = Pullups and pulldowns on control lines disabled 1 = Selective pullups and pulldowns enabled on KIN pin										
BootDly[1:0]	Boot/POR Pr 00 = 80ms 01 = 120ms 10 = 220ms 11 = 420ms	rocess tRESET	Delay Contro	bl							

Table 21. PinStat Register (0x1B)

ADDRESS:	0x1B (Read-0	Only)						
BIT	7	6	5	4	3	2	1	0
NAME (MAX14720)	_	_	_	_	KIN	KOUT	MPC	RST
NAME (MAX14750)	_	_	_	_	SWEN	HVEN	BEN	LEN
KIN, KOUT, MPC, RST, SWEN, HVEN, BEN, LEN	Input State 0 = Pin Iow 1 = Pin high							