

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MAX14746/MAX14747

USB Detection with Smart Power Selector Li+ Chargers

General Description

The MAX14746/MAX14747 are a series of USB charger detectors with an integrated Smart Power Selector™ linear charger solutions that provide a single-chip solution for charging and charger detection.

The MAX14746/MAX14747 charger detectors are compliant to USB Battery Charger Detection Rev 1.2* and capable of detecting multiple USB battery-charging methods, including Standard Downstream Ports (SDP), Charging Downstream Ports (CDP), and Dedicated Charger Ports (DCP). The devices also detect common proprietary charge adapters, including those from Apple.

The MAX14746/MAX14747 battery chargers feature Smart Power Selector operation, allowing operation with dead or no battery present. The devices limit USB V_{BUS} current based on the detect charger source type. If the charger power source is unable to supply the entire system load, the smart-power control circuit supplements the system load with current from the battery.

The devices protect against overvoltage faults up to 28V.

This series of USB charger detectors are available with several options, with slight variations in, for example, power-up states. These variations are noted throughout this data sheet.

There are five options available, with slight variations in, for example, power-up states (see Ordering Information). The devices are available in a 25-ball, 0.4mm pitch wafer-level package (WLP), and are specified over the -40°C to +85°C extended temperature range.

Applications

- Portable Consumer Devices
- Portable Digital Cameras
- Portable Digital Video Cameras
- Portable Industrial Devices

*Except DCD timeout extended from 900ms to 2s for the MAX14746/MAX14747.

Smart Power Selector $^{\text{TM}}$ is a trademark of Maxim Integrated Products, Inc.

Benefits and Features

- Flexible System Design to Operate with Any USB Charger Source
 - Compliant to USB Battery Charger Rev 1.2 Specification*
 - Supports Proprietary USB Charging Sources, Including Apple
 - · D+/D- Bias Voltage Supported
- Easy to Implement Li+ Battery Charging
 - · Smart Power Selector
 - Fully Compliant with Dead Battery/Weak Battery Charging According to USB 2.0 Specification
 - JEITA Charge Protection
 - · Thermal Protection
 - Internal USB D+/D- Switch to Manage Connection
- Integrates High Level of Protection
 - 28V Tolerant Input on VB
 - ±15kV Human Body Model ESD Protection on CDP and CDN

Ordering Information appears at end of data sheet.

Absolute Maximum Ratings

(All voltages referenced to GND.)
BAT, INT, THM, LED, UOK1, CTYP, IDEF, FSUS,
TDN, TDP, CDN, CDP, SYS, SCL, SDA0.3V to +6V
UOK2/EXTV _{SYS} + 0.3V
SFOUT, CAP0.3V to min ((V _{VB} + 0.3V), +6V)
VB0.3V to +30V
NVP0.3V to (V _{VB} + 0.3V)
Continuous Current into VB, BAT, SYS±3A

Continuous Current into any Other Terminal	±100mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
WLP (derate 19.2mW/°C above +70°C).	1536mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Reflow Temperature	+260°C

Package Thermal Characteristics (Note 1)

WI P

Junction-to-Ambient Thermal Resistance (θ_{JA})52°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(V_{VB} = 5.0V, V_{BAT} = 4.2V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{BAT} = 3.6V, V_{VB} = 5.0V, V_{SYS} = V_{SYS_REG}, T_{A} = +25^{\circ}\text{C}.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY CHARACTERISTICS						
VB Input Voltage Range	V _{VB}		0		28	V
V _{BAT} Input Voltage Range	V _{BAT}		0		5.5	V
VB Detection Threshold	\/	V _{VB} rising	3.8	3.9	4.1	V
VB Detection Threshold	V _{VBDET}	V _{VB} falling	3.0	3.1	3.2	V
VB Overvoltage Threshold	V _{VBOV}	V _{VB} rising	7.2	7.5	7.8	V
VB Overvoltage Hysteresis	V _{VBOV_HYS}			200		mV
VB Valid Trip Point	V _{VB_TRIP}		30	145	290	mV
VB Valid Trip Point Hysteresis	V _{VB_TP_HYS}			275		mV
VB Charger-Detection-Active Supply Current	I _{B_CDETON}	V _{BAT} = 0V, I _{SYS} = 0mA charger detection active, analog switch open			2.5	mA
VB Charger-Detection-Idle Supply Current	IB_CDCIDLE	V _{BAT} = 0V, I _{SYS} = 0mA charger detection idle, analog switch closed			2	mA
V _{CCINT} UVLO Threshold	V _{UVLO}	V _{CCINT} rising (Note 3)	1.6	2.2	2.6	V
V _{CCINT} UVLO Hysteresis	V _{UVLO_HYS}	(Note 3)		50		mV
BAT Overvoltage Threshold	V _{BATOV}	V _{BAT} rising, VB not connected	4.8	5.15	5.7	V
BAT Overvoltage Hysteresis	V _{BATOV_HYS}			100		mV
BAT UVLO Threshold	V _{BAT_UVLO}	V _{BAT} rising (Note 4)	1.9	2.05	2.2	V
BAT UVLO Hysteresis	V _{BAT_UVLOH}			50		mV

Electrical Characteristics (continued)

 $(V_{VB} = 5.0V, V_{BAT} = 4.2V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{BAT} = 3.6V, V_{VB} = 5.0V, V_{SYS} = V_{SYS_REG}, T_{A} = +25^{\circ}\text{C}.)$ (Note 3)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
BAT Supply Current With VB	I _{BAT_NOCHG}	V _{BAT} = 4.2V, VB co	onnected,		4	8	μА
BAT Supply Current No VB	I _{BAT_NOVB}	V _{BAT} = 4.2V, VB no	ot connected		6	11	μA
CAP Regulator Voltage	V _{CAP}	V _{VB} = 5V		3.9	4.2	4.7	V
050117.0	.,	V _{VB} = 6.0V, I _{SFOU}	T = 0mA	5.0	5.25	5.5	.,
SFOUT Regulator Voltage	V _{SFOUT}	V _{VB} = 5.0V, I _{SFOU}	_T = 15mA		4.9		V
SFOUT Overvoltage Protection Voltage	V _{SFOUT_OVP}	(Note 5)			17		V
NVP Clamp Voltage	V _{NVP}	Measured between V _{VB} > 10V	VB and NVP,	5	7	10	V
NVP Resistance	R _{NVP}	V _{VB} < 5V		120	200	300	Ω
THERMAL PROTECTION							
Thermal Shutdown Threshold	T _{SHDN_LIM}	(Note 6)			150		°C
Current Reduce Thermal Threshold	T _{CHG_LIM}	(Note 7)			120		°C
VB-TO-SYS PATH							
SYS Regulation Voltage	V _{SYS_REG}	I _{SYS} = 5mA	MAX14746	V _{BAT} _ REG ⁺ 0.14	V _{BAT} REG ⁺ 0.2	V _{BAT} _ REG ⁺ 0.26	V
			MAX14747		4.8		
VB-to-SYS Voltage Drop	V _{VB_SYS}				40		mV
VB-to-SYS On-Resistance	R _{VB_SYS}	V _{VB} = 4.4V, I _{SYS} =	400mA		160	350	mΩ
Soft-Start Input Current Time	tss_vb_sys				1		ms
		FSUS = 1			0		
		IDEF = 0, IBusLim = 11, ILimSet[2:0] =	= 1, IBusDetSw[1:0] = 000		96.5		
		IDEF = 0, IBusLim = 11, ILimSet[2:0] =	= 1, IBusDetSw[1:0] = 001		475	500	
		IDEF = 0, IBusLim = 11, ILimSet[2:0] =	= 1, IBusDetSw[1:0] = 010		633		
USB Input Current Limit	I _{LIMIT}	IDEF = 0, IBusLim = 11, ILimSet[2:0] =	= 1, IBusDetSw[1:0] = 011		737		mA
		IDEF = 0, IBusLim = 11, ILimSet[2:0] =	= 1, IBusDetSw[1:0] = 100		944		
		IDEF = 0, IBusLim = 11, ILimSet[2:0] =	= 1, IBusDetSw[1:0] = 101		1048		
		IDEF = 0, IBusLim = 11, ILimSet[2:0] =	= 1, IBusDetSw[1:0] = 110		1570		
		IDEF = 0, IBusLim = 11, ILimSet[2:0] =	= 1, IBusDetSw[1:0] = 111		1885		

Electrical Characteristics (continued)

 $(V_{VB} = 5.0V, V_{BAT} = 4.2V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{BAT} = 3.6V, V_{VB} = 5.0V, V_{SYS} = V_{SYS_REG}, T_{A} = +25^{\circ}\text{C}.)$ (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CHARGER PATH						
BAT to SYS On-Resistance	D	V _{BAT} = 5V, I _{BAT} = 400mA		40	80	0
DAT to 515 Off-Resistance	R _{BAT_SYS}	V _{BAT} = 1.9V, I _{BAT} = 100mA		83		mΩ
BAT to SYS Switch-On Threshold	V _{BAT_SYS_ON}	V _{SYS} falling	10	22	35	mV
BAT to SYS Switch-Off Threshold	V _{BAT_SYS_OFF}	V _{SYS} rising	-3	-1.5	0	mV
		SysMin[2:0] = 000, V _{BAT} > 3.6V		V _{BAT} + 0.1		
		SysMin[2:0] = 000, V _{BAT} < 3.4V		3.6		
		SysMin[2:0] = 001, V _{BAT} < 3.4V		3.7		
SYS Charger Current-		SysMin[2:0] = 010, V _{BAT} < 3.4V		3.8		
Limiting Threshold Voltage	V _{SYS_LIM}	SysMin[2:0] = 011, V _{BAT} < 3.4V		3.9		
		SysMin[2:0] =100, V _{BAT} < 3.4V	3.86	4	4.14	
		SysMin[2:0] =101, V _{BAT} < 3.4V		4.1		
		SysMin[2:0] =110, V _{BAT} < 3.4V		4.2		
		SysMin[2:0] =111, V _{BAT} < 3.4V		4.3		
Charger Current Soft-Start Time				1		ms
BATTERY CHARGER LEVELS	3					
		IPChg[1:0] = 00		30		
Precharge Current	I _{PCHG}	IPChg[1:0] = 01		50		mA
r roomango carrom	PCHG	IPChg[1:0] = 10		70		''''
		PChg[1:0] = 11		100		
		VPChg = 0, VPChgLow[1:0] = 00, V _{BAT} rising		2.15		
		VPChg = 0, VPChgLow[1:0] = 01, V _{BAT} rising	2.15	2.25	2.35	
		VPChg = 0, VPChgLow[1:0] = 10, V _{BAT} rising		2.35		
Prequalification Threshold	V _{BAT_PCHG}	VPChg = 0, VPChgLow[1:0] = 11, V _{BAT} rising		2.45		V
1 requalification Trifeshold	ARAI_PCHG	VPChg = 1, VPChgHigh[1:0] = 00, V _{BAT} rising		2.7]
		VPChg = 1, VPChgHigh[1:0] = 01, V _{BAT} rising	2.70	2.80	2.90	
		VPChg = 1, VPChgHigh[1:0] = 10, V _{BAT} rising		2.9		1
		VPChg = 1, VPChgHigh[1:0] = 11, V _{BAT} rising		3		1
Prequalification Threshold Hysteresis	V _{BAT_PCHG_HYS}			100		mV

 $(V_{VB} = 5.0V, V_{BAT} = 4.2V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{BAT} = 3.6V, V_{VB} = 5.0V, V_{SYS} = V_{SYS_REG}, T_{A} = +25^{\circ}\text{C}.)$ (Note 3)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS	
		IFChg[2:0] = 000	IFChg[2:0] = 000		700			
		IFChg[2:0] = 001 300]	
		IFChg[2:0] = 010		180	200	220		
BAT Charge Current Set		IFChg[2:0] = 011			600			
Range	IFCHG	IFChg[2:0] = 100			800		mA	
		IFChg[2:0] = 101			900		1	
		IFChg[2:0] = 110			350			
		IFChg[2:0] = 111			450			
		ChgDone[2:0] = 00	0		10			
		ChgDone[2:0] = 00	1		20			
		ChgDone[2:0] =			40			
		010	TA = 0°C to +60°C	30		50		
Charge Done Qualification	I _{CHG_DONE}	ChgDone[2:0] = 01	1		50		mA	
		ChgDone[2:0] = 100			60			
		ChgDone[2:0] = 101			80			
		ChgDone[2:0] = 11	0		100			
		ChgDone[2:0] = 11	1		120			
		BatRegSel = 0, Ba	tRegLow[1:0] = "00"		4.05			
		BatRegSel = 0, Ba	tRegLow[1:0] = "01"		4.1			
		BatRegSel = 0, Ba	tRegLow[1:0] = "10"		4.15			
		BatRegSel = 0, Bar T _A =+25°C	tRegLow[1:0] = "11",	4.179	4.2	4.221		
		BatRegSel = 0, Bat T _A =-40°C to +85°C	tRegLow[1:0] = "11",	4.158	4.2	4.242		
BAT Regulation Voltage	V _{BAT_REG}	BatRegSel = 1, Ba	tRegHi[2:0] = "000"		4.25		V	
	_	BatRegSel = 1, Ba	tRegHi[2:0] = "001"		4.3		1	
		BatRegSel = 1, Ba	tRegHi[2:0] = "010"		4.35			
		BatRegSel = 1, Ba	tRegHi[2:0] = "011"		4.4			
		BatRegSel = 1, Ba	tRegHi[2:0] = "100"		4.45			
		BatRegSel = 1, Ba	tRegHi[2:0] = "101"		4.5			
		BatRegSel = 1, Ba	tRegHi[2:0] = "110"		4.55		1	
		BatRegSel = 1, Ba	tRegHi[2:0] = "111"		4.6			

Electrical Characteristics (continued)

 $(V_{VB} = 5.0V, V_{BAT} = 4.2V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{BAT} = 3.6V, V_{VB} = 5.0V, V_{SYS} = V_{SYS_REG}, T_{A} = +25^{\circ}\text{C}.)$ (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
		BatReChg[1:0] = 00	50		
DAT Dashanna Thuashald		BatReChg[1:0] = 01	100		
BAT Recharge Threshold	V _{BAT_RECHG}	BatReChg[1:0] = 10	150		mV
		BatReChg[1:0] = 11	200		
BATTERY CHARGER TIMING					•
		PChgTmr[1:0] = 00	30		
Maximum Prequalification		PChgTmr[1:0] = 01	60		Minutes
Time	t _{PCHG}	PChgTmr[1:0] = 10	120		Minutes
		PChgTmr[1:0] = 11	240		
		FChgTmr[1:0] = 00	75		
Mavimum Fast Charge Time		FChgTmr[1:0] = 01	150		Minutes
Maximum Fast-Charge Time	t _{FCHG}	FChgTmr[1:0] = 10	300		Minutes
		FChgTmr[1:0] = 11	600		
	[†] ТОСНG	MtChgTmr[1:0] = 00	30		
Maintain Channa Tina		MtChgTmr[1:0] = 01	15		Minutes
Maintain-Charge Time		MtChgTmr[1:0] = 10	0		Minutes
		MtChgTmr[1:0] = 11	60		1
Charge-Timer Accuracy	osc		-10	+10	%
Charge-Timer Extend Threshold	IFC_HALF	Charge current reduced due to overcurrent or overtemperature condition (Note 10)	50		%I _{FCHG}
Charge-Timer Suspend Threshold	I _{FC_FIFTH}	Charge current reduced due to overcurrent or overtemperature condition (Note 10)	20		%I _{FCHG}
BATTERY DETECTION		,			- 1
		BatDetCntl = 0, V _{BAT} > V _{BAT_UVLO}	61		ms
V _{VB} Rising to Battery Detection Valid Delay	t _{BUS_BATDET}	BatDetCntl = 0, V _{BAT} < V _{BAT_UVLO}	1.031		s
tion valid Delay	_	BatDetCntl = 1	46		ms
V _{BAT} Falling to BatDet		BatDetCntl = 0	1.015		s
Update Delay	tBATDET_F	BatDetCntl = 1	15		ms
		BatDetCntl = 0, V _{BAT} > V _{BAT UVLO}	1.03		_
V _{BAT} Rising to BatDet	t _{BATDET_R}	BatDetCntl = 0, V _{BAT} < V _{BAT_UVLO}	1.015		s
Update Delay	_	BatDetCntl = 1	15		ms

Electrical Characteristics (continued)

 $(V_{VB} = 5.0V, V_{BAT} = 4.2V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{BAT} = 3.6V, V_{VB} = 5.0V, V_{SYS} = V_{SYS_REG}, T_{A} = +25^{\circ}\text{C}.)$ (Note 3)

PARAMETER	SYMBOL	CC	ONDITIONS	MIN	TYP	MAX	UNITS
JEITA BATTERY PACK MONIT	OR AND NTC DE	TECTION		·			
THM Hot Threshold		Vfalling	MAX14746		23.8		0/ \/
THIN HOL TITIESTICIA	T ₄	V _{THM} falling	MAX14747		19		%V _{CAP}
THM Warm Threshold	T ₃	V _{THM} falling	MAX14746		33.7		%V _{CAP}
Triwi wariii Triiesiioid	13	V I HM railing	MAX14747		30		70 V CAP
THM Cool Threshold	T ₂	V _{THM} rising	MAX14746		63.3		%V _{CAP}
Triwi Cool Triiconola	'2	V I HIM Homig	MAX14747		66.75		70 V CAP
THM Cold Threshold	T ₁	V _{THM} rising	MAX14746		72.3		%V _{CAP}
	- 1	. 111101	MAX14747		77.2		
THM Disable Threshold	T _{HMDIS}	V _{THM} rising			96.6		%V _{CAP}
THM Threshold Hysteresis	T _{HMHYS}				60		mV
THM Input Leakage Current	ILTHM			-1		+1	μA
THM Detection Time	t _{THM}				15		ms
CHARGER STATUS OUTPUT	(LED)						
Output Logic-Low Voltage	V _{OLED}	I _{SINK} = 10mA			35	100	mV
Temperature Suspend Mode Blink Period	t _{TSUS}	Blinking with 50 ⁴	% duty cycle		1.5		s
Timeout Mode Blink Period	tтімоит	Blinking with 50°	% duty cycle		0.15		s
Pulse Time for Fresh Battery Insertion					1		s
IMPEDANCE-MODE BATTERY	DETECTION			·			
Discharge Current	I _{DIS}	V _{BAT} = 3.6V		6	10	14	mA
Replace Current	I _{RPL}	V _{BAT} = 3.6V, V _S	_{YS} > 4.0V	6	10	14	mA
Test Current Mismatch	I _{DR_MIS}			-15		+15	%
Discharge Replace Time	t _{DIS_RPL}	V _{BAT} = 3.6V			15		ms

 $(V_{VB} = 5.0V, V_{BAT} = 4.2V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{BAT} = 3.6V, V_{VB} = 5.0V, V_{SYS} = V_{SYS_REG}, T_{A} = +25^{\circ}\text{C}.)$ (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CHARGER DETECTION						
V _{DP_SRC} Voltage	V _{DP_SRC}	I _{LOAD} = 0 to 200μA	0.5	0.6	0.7	٧
V _{DAT_REF} Voltage	V _{DAT_REF}		0.25	0.3	0.35	V
V _{LGC} Voltage	V _{LGC}		1.15	1.24	1.5	V
I _{DM_SINK} Current	I _{DM_SINK}	V _{OUT} = 0.15V to 3.6V	50	80	110	μA
I _{DP_SRC} Current	I _{DP_SRC}	V _{OUT} = 0V to 2.5V	5.5	8.4	10	μA
R _{DM_DWN}	R _{DM_DWN}		14.25	20	24.8	kΩ
I _{WEAK} Current	I _{WEAK}		0.01	0.1	0.3	μA
25% Resistor-Divider Ratio	R ₂₅		22.5	25	27.5	%
47% Resistor-Divider Ratio	R ₄₇		43.3	47	51.7	%
71% Resistor-Divider Ratio	R ₇₁		69.5	71.6	73.5	%
USB Charger Detect Time	t _{DPSRC_ON}		40		60	ms
V _{BUS} Debounce Time	t _{MDEB}		20	30	40	ms
DCD Debounce	t _{DCD_DEB}		36	40	44	ms
DCD Timeout	t _{DCD} TO			2000		ms
USB ANALOG SWITCH PERFO	RMANCE (TDN/	TDP)				
Analog-Signal Range	V _{TDN} V _{TDP}		0		V _{CCINT}	V
On-Resistance	R _{ONUSB}	V _{BAT} = 3.0V, I _{CDN} , I _{CDP} = 10mA, V _{CDN} , V _{CDP} = 0 to 3.0V		3	6	Ω
On-Resistance Match Between Channels	DR _{ONUSB}	V _{BAT} = 3.0V, I _{CDN} , I _{CDP} = 10mA, V _{CDN} , V _{CDP} = 400mV			0.5	Ω
On-Resistance Flatness	R _{FLATUSB}	V _{BAT} = 3.0V, I _{CDN} , I _{CDP} = 10mA, V _{CDN} , V _{CDP} = 0 to 3V		0.3	1	Ω
Off-Leakage Current	I _{LUSB_OFF}	Switch open, $V_{TDN}/V_{TDP} = 0.3V/2.5V$, $V_{CDP}/V_{CDN} = 2.5V/0.3V$	-360		+360	nA
On-Leakage Current	I _{LUSB_ON}	Switch closed, $V_{TDN}/V_{TDP}/V_{CDN}/V_{CDP} = 0.3V/2.5V$	-360		+360	nA
Analog Switch Turn-On Time	t _{ON}	I^2 C stop to switch on, R_L = 50Ω		0.5	1	ms
Analog Switch Turn-Off Time	t _{OFF}	I^2 C stop to switch on, R_L = 50Ω		0.1	1	ms
On-Capacitance	C _{ON}	V _{IN} = 0.5V _{P-P} DC = 0V, f = 240MHz		6		pF
Off-Capacitance	C _{OFF}	V _{IN} = 0.5V _{P-P} DC = 0V, f = 240MHz		3.5		pF

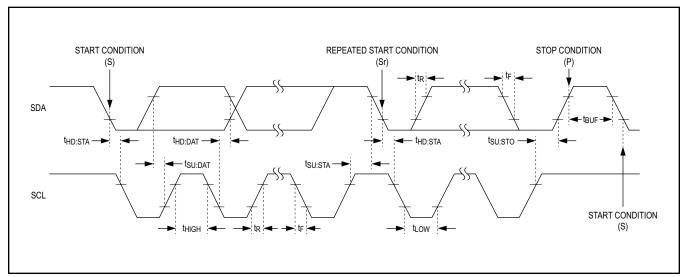
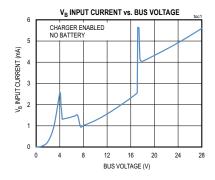
 $(V_{VB} = 5.0V, V_{BAT} = 4.2V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{BAT} = 3.6V, V_{VB} = 5.0V, V_{SYS} = V_{SYS_REG}, T_{A} = +25^{\circ}\text{C}.)$ (Note 3)

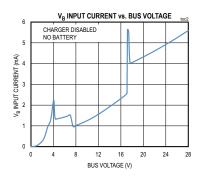
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Off-Isolation	V _{ISO}	$R_S = R_L = 50\Omega, f = 20kHz,$ $V_{IN} = 0.5V_{P-P}$		-60		dB
DIGITAL INPUTS/OUTPUTS (ID	EF, CTYP, INT, U	JOK_, FSUS)				
Input Logic High-Voltage	V _{IH}		1.4			V
Input Logic Low-Voltage	V _{IL}				0.4	V
Leakage Current	I _{LEAK}	CTYP, INT, UOK_ only	-250		+250	nA
Open-Drain Output Logic-Low	V _{ODOL}				0.4	V
STARTUP TIMINGS						•
VB to SYS Rise		IBusLim = 0, FSUSMsK = 0, IDEF = 0		205		ms
VB to SFOUT Rise		SFoutAsrt = 0		205		ms
VB to CTYP Falling Edge				205		ms
CTYP to UOK1 Falling Edge	tsys_uok1_f			5.5		ms
UOK1 to UOK2 Falling Edge Delay	tuok1_uok2	If UOK2 option enabled		400		ms
I ² C TIMING SPECIFICATIONS ((FIGURE 1)					1
I ² C Maximum Clock Frequency	f _{SCL}			400		kHz
Bus Free Time Between STOP and START Conditions	t _{BUF}		1.3			μs
START Condition Setup Time	t _{SU:STA}		0.6			μs
Repeated Start Condition Setup Time	t _{SU:STA}		0.6			μs
START Condition Hold Time	t _{HD:STA}		0.6			μs
STOP Condition Setup Time	t _{SU:STO}		0.6			μs
Clock Low Period	t _{LOW}		1.3			μs
Clock High Period	tHIGH		0.6			μs
Data Valid to SCL Rise Time	t _{SU:DAT}	Write-setup time	100			ns
Data Hold Time to SCL Fall	t _{HD:DAT}	Write-hold time	0			ns
SCL, SDA Spike Suppression	t _{SP}	Duration of spike on SCL and SDA that is not detected as a valid edge		50		ns
PROTECTION SPECIFICATION	IS					•
		Human Body Model		±15		
ESD Protection, CDP/CDN		IEC61000-4-2 Air Gap		±4		kV
		IEC61000-4-2 Contact		±5		1
ESD Protection, All Other Pins		Human Body Model		±2		kV

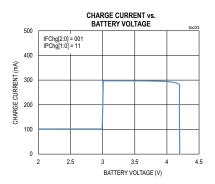
- Note 2: All units are production tested at +25°C. Specifications over temperature are guaranteed by design.
- $V_{CCINT} = V_{CAP}$ (if CAP is present) or V_{BAT} (if CAP is not present). Note 3:
- Note 4: Threshold is valid when V_{VBDET} < V_{VB} < V_{VBOV}. When V_{SYS} < V_{BAT UVLO}, the BAT-SYS switch opens and BAT is connected to SYS through a diode.
- When $V_{VB} > V_{SFOUT_OVP}$, SFOUT LDO turns off. Note 5:
- Note 6: When the die temperature exceeds T_{SFOUT_TLIM}, SFOUT regulator and SYS limiter turns off. V_{SYS} is supplied by V_{BAT}.
- Note 7: When the die temperature exceeds T_{CHG} LIM, charger current starts to reduce.

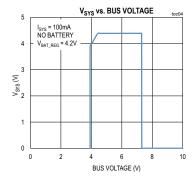
 Note 8: V_{SYS}_LIM is the SYS voltage below which the charger starts to limit the charging current.
- Note 9: When V_{SYS} drops below V_{SYS} HLD, the battery charger does not move to the maintain charge state.
- Note 10: The charge timer extend threshold is the charge current level below which the charge timer clock runs at half speed. The charge timer suspend threshold is the charge current level below which the charge timer clock is paused.

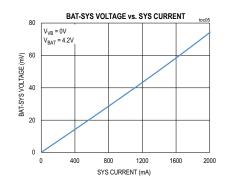
Timing Diagram

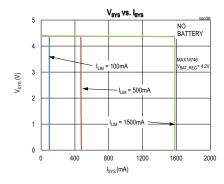



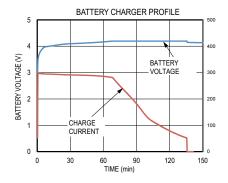

Figure 1. I²C Timing Diagram

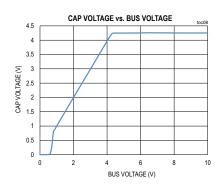

Maxim Integrated | 10 www.maximintegrated.com

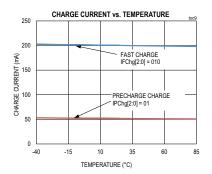

Typical Operating Characteristics

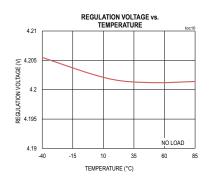

 $(V_{BAT} = 3.6V, V_{VB} = 5V, T_{A} = +25^{\circ}C, \text{ unless otherwise noted.})$

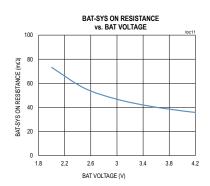


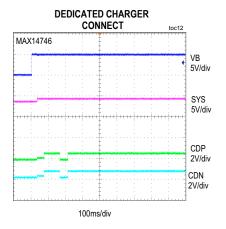


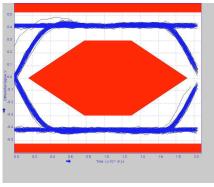


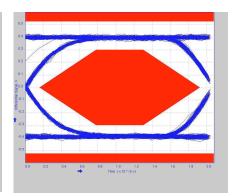


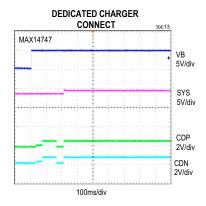


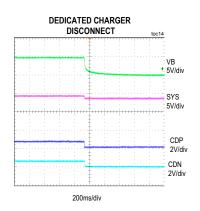


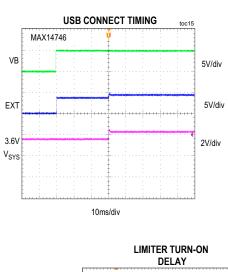

Typical Operating Characteristics (continued)

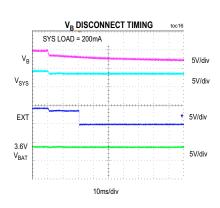

 $(V_{BAT} = 3.6V, V_{VB} = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$

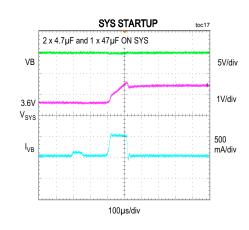


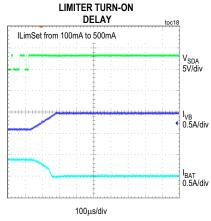


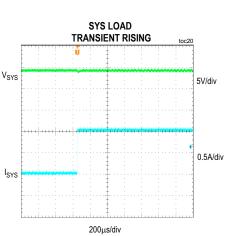


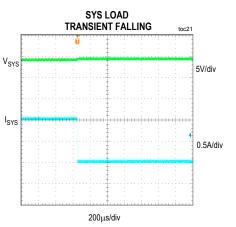


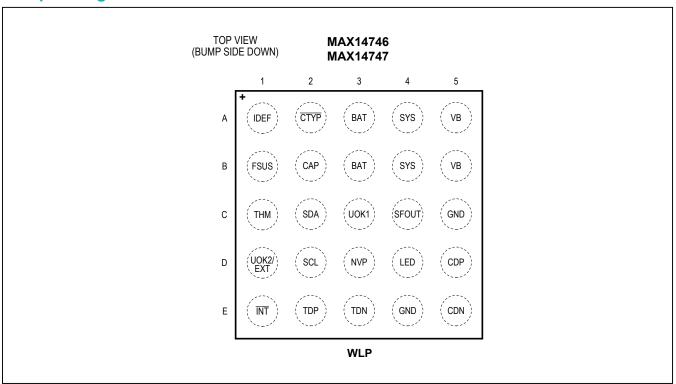




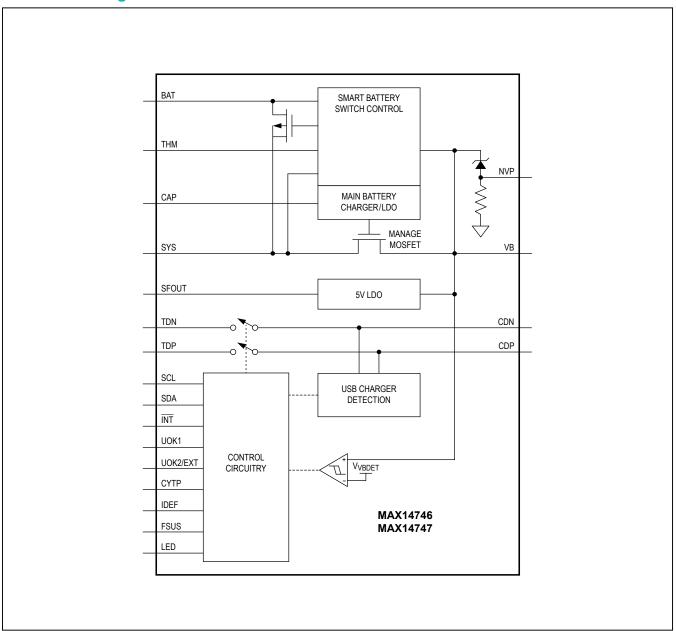

Typical Operating Characteristics (continued)


 $(V_{BAT} = 3.6V, V_{VB} = 5V, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$





Bump Configuration


Bump Descriptions

BUMP	NAME	FUNCTION
A1	IDEF	Current-Limit Setting Input. IDEF has an internal $470k\Omega$ pulldown resistor to GND. IDEF is only active if FSUSMsk bit is set to 0 and FSUS is LOW 0 = Input current limit determined by I ² C settings (IBusLim, ILimSet, IBusDetSw bits) 1 = Input current limit set to 100mA
A2	CTYP	Charger Type Output. CTYP is an open-drain output that asserts when DCP, CDP, or Apple 2A adapter is detected.
A3, B3	BAT	Battery Connection. Connect a single-cell Li+ battery from BAT to GND. Connect a capacitor from BAT to GND with a minimum value of 10μF and a maximum value of 30μF.
A4, B4	SYS	System Load Connection. Connect SYS to the system load. Bypass SYS with a 10µF low-ESR ceramic capacitor to GND as close as possible to the device. Connect 50µF additional capacitance to GND away from the device.
A5, B5	VB	USB V _{BUS} Input. VB is the input for the overvoltage protector. VB is monitored to detect the presence of a USB input power supply. Bypass VB with a 1µF ceramic capacitor to GND as close as possible to the device.
B1	FSUS	Force-Suspend Enable Input. FSUS is only active if the FSUSMsk bit is set to 0. FSUS has a $470k\Omega$ pulldown resistor to GND. 0 = Current limit determined by IDEF/I ² C configuration 1 = Input current limit is forced to 0

Bump Description (continued)

BUMP	NAME	FUNCTION
B2	CAP	Internal LDO Bypass Connection. Connect a 1µF ceramic capacitor from CAP to GND as close as possible to the device. Connect the pullup resistor for the battery thermistor output (THM) to CAP. Ensure that the total load current out of CAP is less than 2mA.
C1	THM	Battery Temperature Thermistor Measurement Input
C2	SDA	I ² C Serial Data Input/Output. Connect an external pullup resistor on SDA to the logic supply voltage.
C3	UOK1	SYS Voltage Valid and Battery Detect Output. UOK1 is an open-drain output.
C4	SFOUT	Protected LDO Output. SFOUT is powered from VB. Bypass SFOUT with a 1µF ceramic capacitor to GND as close as possible to the device. SFOUT can power the on-board USB 2.0 Hi-Speed host.
C5, E4	GND	Ground
D1	UOK2/EXT	UOK2: Delayed SYS Voltage Valid and Battery-Detect Output. UOK2 is an open-drain output. EXT: Push-Pull Output Control for External SYS-BAT pMOS Switch. Output pulled high to BAT when the charger is not present.
D2	SCL	I ² C Serial Clock Input. Connect an external pullup resistor on SCL to the logic supply voltage.
D3	NVP	Gate Bias and Protection for External PFET. NVP protects VB from negative voltages. Leave unconnected if not used.
D4	LED	Charging Fault Indicator. LED is an open-drain output that indicates a battery charging fault. When a JEITA temperature fault is detected, LED is pulsed at 50% duty cycle with a period of 1.5s. When a charge timer fault is detected, or the BAT overvoltage threshold (V _{BATOV}) is exceeded, LED is pulsed at 50% duty cycle with a period of 0.15s. Connect LED to GND if unused.
D5	CDP	USB Connector D+ Input
E1	INT	Interrupt Output. INT is an open-drain output that asserts whenever an unmasked interrupt occurs. Connect an external pullup resistor on INT to the logic supply voltage.
E2	TDP	USB Transceiver D+ Connection. Connect TDP to device microprocessor USB transceiver D+ line.
E3	TDN	USB Transceiver D- Connection. Connect TDN to device microprocessor USB transceiver D- line.
E5	CDN	USB Connector D- Input

Functional Diagram

MAX14746/MAX14747

USB Detection with Smart Power Selector Li+ Chargers

Detailed Description

The MAX14746/MAX14747 charger detector solutions integrate a smart-power selector with a linear charger that allows charging a Li+ battery and a powering system to load off the same USB power source. When the USB power source is not present or cannot provide enough power, the Li+ battery helps power the system. The devices protect against voltage faults and transients on VB up to 28V without interrupting operation.

The MAX14746/MAX14747 are compliant to USB Battery Charger Detection Rev 1.2* as well, as special chargers that bias the D+/D- lines. The devices limit VB input current based on the type of charging device that is detected and two digital inputs (IDEF and FSUS).

The devices monitor overcurrent and overtemperature faults and automatically manages the charger. Configurable interrupts and status information allow the system microcontroller to intervene.

Negative Voltage Protection

The MAX14746/MAX14747 feature a gate protection circuit for an external PFET that protects against negative voltages on V_{BUS}. The NVP output has a resistor to GND and a voltage clamp for the gate of the PFET. The voltage clamp limits the gate-to-source voltage to 7.0V (typ) when the V_{BUS} voltage is positive. If a negative voltage is present on V_{BUS}, e.g., by a backwards connector, then the PFET turns off and provides negative voltage protection. This negative voltage protection requires that a device downstream from the MAX14746/MAX14747 provide reverse-current blocking on V_{BUS}. This is required to allow the PFET to turn off. When the drain of the PFET is negative, current flows out of VB. If this reverse current is limited to a small value, V_{VB} drops and the PFET gate-to-source voltage will drop below the threshold voltage.

Supply Voltage Selector

The MAX14746/MAX14747 select their power source themselves by monitoring the voltages at VB and BAT. The devices select V_{VB} when it is present; otherwise, V_{BAT} .

Smart Power Selector

The MAX14746/MAX14747 feature circuitry that seamlessly distributes power between the USB power supply input on VB, the battery on BAT, and system load on SYS when both an external charger adaptor and a battery are connected.

*Except DCD timeout extended from 900ms to 2s for the MAX14746/ MAX14747. When the system load requirements are less than the input current limit, residual power from the input charges the battery. When the system load requirements exceed the input current limit, the battery supplies supplemental current to the load. When the battery is connected and there is no external power input, the battery powers the system. When an external power input is connected and the battery is discharged or not present, VB powers the system.

USB Charger Detection

The MAX14746/MAX14747 charger detection circuitry support full USB Battery Charger Rev 1.2* detection. The devices detect all charger types, including standard USB ports, charging downstream ports (CDPs), and dedicated chargers. The devices also support Apple power adaptors with resistor dividers on the D+/D- pins at 500mA, 1000mA, and 2000mA current levels. See Charger Detection Timing Diagram.

System Load Switch

The MAX14746/MAX14747 feature an internal MOSFET that connect SYS to BAT for the battery to provide power to the system load. If the USB supply is at the current limit, the devices enable the switch to prevent the system voltage from falling below the battery voltage by supplying extra current from the battery. The battery is not charged if the system load continuously exceeds the input current limit, so this feature is useful for handling loads that are nominally below the input current limit but have high-current peaks exceeding the input current limit. The system uses battery energy during these peaks, but VB charges the battery at all other times.

External System Load Switch

The UOK2/EXT pin can be configured to function as a control signal for an external system load switch.

When the EXT functionality is enabled, the UOK2/EXT pin can drive the gate of an external PMOS connected between SYS and BAT.

When a valid VB voltage is present, EXT is pulled up to V_{SYS} . When VB is disconnected and V_{SYS} is equal to V_{BAT} , the EXT pin is driven to GND. This feature provides an extremely low-impedance SYS-BAT connection.

Input-Current Limiter

The input-current limiter distributes power from the external USB supply to the system load and battery charger. The input current limiter consists of a MOSFET bulk management to optimize the use of available power.

Invalid VB Voltage Protection

The MAX14746/MAX14747 enter overvoltage lockout (OVL) if V_{VB} is above the overvoltage threshold. OVL protects the device and downstream circuitry from high-voltage stress up to 28V. The internal circuit remains powered, the charger turns off, the system load switch closes, and an interrupt triggers during OVL. V_{VB} is also invalid if it is less than V_{BAT} or less than the USB undervoltage threshold. The device takes the same actions as OVL while V_{VB} is invalid.

VB Input Current Limit

The device limits VB input current to prevent input overload. Three methods can set the input current limit:

- a) Set the current limit automatically based on the capabilities of the source as indicated by the ChgTyp [3.0] value read from I²C (register 0x02).
- b) Set the current limit manually over I2C.
- c) Set the current limit manually using the IDEF and/ or FSUS inputs.

Thermal Limiting

If the local temperature exceeds 120°C (typ), the MAX14746/MAX14747 attempt to limit temperature increase by reducing the input current from VB. The system load has priority over charger current, so the device lowers the charge current to reduce overall input current. If the temperature continues to rise and reaches 150°C (typ), the device disconnects VB and the battery powers the entire system load.

Adaptive Battery Charging

The battery charger draws power from SYS while VB powers the system. The device reduces charge current to prevent V_{SYS} from falling if the total load exceeds the input current limit.

JEITA Compliant Battery Protection/ Charging

The MAX14746/MAX14747 monitor the temperature of the battery for safe charging of Li+ batteries according to JEITA standards. The devices measure the battery pack temperature by using a resistor divider formed by a pullup resistor connected to CAP and the battery pack thermistor. The external pullup allows matching to different thermistor nominal values. The JEITA circuitry supports thermistors with different β values, but the value must be fixed to choose the CAP pullup resistor. Typical $\boldsymbol{\beta}$ values are 4250 (MAX14747) and 3380 (MAX14746). The THM input measures the voltage across the resistor divider. There are five temperature zones of operation and the charger termination voltage is controlled based on the pack temperature. The charger is automatically controlled and the active current temperture zone can be read from the JEITAStat[3:0] bits over I2C (register 0x03).

Register Map and Descriptions

REGISTER	ADDR	TYPE	BIT7	ВІТ6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0		
Chip_ld	0x00	R		•			Chip_ld[7:0]					
Chip_Rev	0x01	R				(Chip_Rev[7:0]					
StatusA	0x02	R		ChgTyp[3:0]					ChgStat[2:0]			
StatusB	0x03	R	VLim	ILim	UsbOVP	SysBatV	UsbOk		JeitaStat[2:0]		
StatusC	0x04	R	RFU	RFU	RFU	RFU	ThrmSd	ChgTReg	DCDTmr	ChgTmo		
IntA	0x05	CoR	ChgTypInt	UsbOVPInt	SysBatVInt	RFU	BatDetInt	ChgStatInt	ChgTRegInt	ChgTmoInt		
IntB	0x06	CoR	VLimInt	DCDTmrInt	lLimInt	ThrmSdInt	UsbOkInt	JeitaStatInt	JeitaHighTInt	JeitaTSdInt		
IntMaskA	0x07	R/W	ChgTypIntM	UsbOVPIntM	SysBatVIntM	RFU	BatDetIntM	ChgStatIntM	ChgTRegIntM	ChgTmoIntM		
IntMaskB	0x08	R/W	VLimIntM	DCDTmrIntM	ILimIntM	ThrmSdIntM	UsbOkIntM	JeitaStatIntM	JeitaHighTIntM	JeitaTSdIntM		
CDetCntlA	0x09	R/W	RFU	RFU	nFsusEn	FSUSMsk	RFU	RFU	DCDEn	RFU		
ILimCntl	0x0A	R/W	IBusLim	RFU	RFU		ILimSet[2:0]	IBusDetSw[2:0]				
ChgCntlA	0x0B	R/W	RFU	RFU	RFU		IFChg[2:0]		RFU	RFU		
ChgCntlB	0x0C	R/W	JeitaEn	BatUOKMsk	BatDetCntl	ChgEn	RFU		ChgDone[2:0]		
ChgTmr	0x0D	R/W	RFU	RFU	MtChg7	Γmr[1:0]	FChgTi	mr[1:0]	PC	hgTmr[1:0]		
ChgVSet	0x0E	R/W	BatRe	Chg[1:0]	BatReg	Low[1:0]	BatRegSel		BatRegHi[2:0]		
RFU	0x0F	R/W	RFU	RFU	RFU	RFU	RFU	RFU	RFU	RFU		
ChgPCntl	0x10	R/W	VPChg	IPChg	[1:0]	VPChg	Low[1:0]	VPChg	High[1:0]	BatDetChgM		
CDetCntlB	0x11	R/W	SFOutOrd	SFOutAsrt	AnSwC	Cntl[1:0] ChgTypMan		ChgAutoStart	BatDetChgEn	UsbCompl		
ChgCntlC	0x12	R/W	ChgAutoStp	SFOutData	RFU	RFU SysMin[2:0] RF				RFU		
ILimMon	0x13	R					ILimMon[7:0]					

MAX14746/MAX14747

USB Detection with Smart Power

Selector Li+ Chargers

RFU = Reserved for future use. Do not change from default value.

^{**} Register resets to default value on VB rising edge.

Chip ID Register

ADDRESS:	0x00										
MODE:	Read Only										
BIT	7	6	5	4	3	2	1	0			
NAME		Chip_ld[7:0]									
RESET		SEE TABLE 4									
Chip_ld[7:0]	The Chip_Id	The Chip_Id[7:0] bits show information about the version of the MAX14746/MAX14747.									

Chip Revision Register

ADDRESS:	0x01										
MODE:	Read Only										
BIT	7	6	5	4	3	2	1	0			
NAME				Chip_l	Rev[7:0]						
RESET		SEE TABLE 4									
Chip_Rev[7:0]	The Chip_Re	ev[7:0] bits sh	ow information	about the revi	sion of the M	AX14746/MAX1	4747 silicon.				

Status A Register

ADDRESS:		0x02								
MODE:		Read Only								
BIT	7	6	5	4	3	2	1	0		
NAME		ChgT	ChgTyp[3:0] BatDet ChgStat[2:0]							
RESET				SEE T	ABLE 4					
ChgTyp[3:0]	0000 = Noth 0001 = SDP 0010 = CDP 0011 = DCP 0100 = Apple 0101 = Apple 0110 = Apple 0111 = Non- current limit	ing attached. In automatic r In automatic r In automatic r 50mA charge 1A charger. I 2A charger. I standard charg is set to 0mA.	node, the curr node, the curr node, the curr er. In automati n automatic m n automatic m er (D+/D- > 0	rent limit is set to tent limit is set to tic mode, the current ode, the current ode, the current ode, the current of the c	o 500mA (Or 10 o 1.5A. o 1.5A. urrent limit is set to 5 t limit is set to 1 ssibly indicating	00mA if UsbCo t to 500mA 500mA. .5A. a PS2 adapte	er). In automat			
BatDet	BatDet indic 0 = No batte 1 = Battery o	ry detected.	of the battery	detection wher	n VB is present.					
ChgStat[2:0]	000 = Charg 001 = Charg 010 = Prech 011 = Fast c 100 = Fast c 101 = Mainta 110 = Mainta	ier off. ing suspended arge in progres harge in progre	due to overteess. ess using consess using consessusing consess. r done.	of the battery comperature. stant-current mostant-voltage m	ode.					

^{*}POR value depends on external conditions.

Status B Register

ADDRESS:		0x03								
MODE:		Read Only								
BIT	7	6	5	4	3	2	1	0		
NAME	VLim	ILim	UsbOVP	SysBatV	UsbOk		JeitaStat[2:0]			
RESET				SEE T	ABLE 4					
RFU	Reserved for	future use.								
VLim	0 = VB input	/Lim indicates when the input limiter is in drop-out. D = VB input voltage under limit I = VB input voltage limited								
lLim	0 = VB input	im indicates when the VB input current reaches the limit. = VB input current under limit. = VB input current limited.								
UsbOVP	VB Overvolta 0 = VB OVP 1 = VB OVP		Status							
SysBatV	charge the be charge curre valid condition a) V _{SYS} - V _B b) V _{SYS} = V _S 0 = Charge co	attery. If the tot	al load exceed SYS from colla following two: yp)	Is the input cur apsing. The reg	rent limit, an ac	daptive charg	draws power from ger control loop re nt is done looking	duces		
UsbOk		esent or outsid		present and val	id.					
JeitaStat[2:0]	000 = T < 0°C 001 = 0°C < 010 = 10°C < 011 = 45°C < 100 = No the 101 = NTC ir	C or T > 60°C. T < 10°C. T < 45°C. T < 60°C. rmistor detected by the disabled by the disabled during the	ed (THM high o y JeitaEn.	due to external	ery monitor is c pullup).	urrently dete	cting.			

Status C Register

ADDRESS:		0x04								
MODE:		Read Only								
BIT	7	6	5	4	3	2	1	0		
NAME	RFU	RFU	RFU RFU RFU ThrmSd ChgTReg DCDTmr ChgTmo							
RESET		SEE TABLE 4								
RFU	Reserved for	future use.								
ThrmSd	ThrmSd indicates when the device is in thermal shutdown. 0 = Device not in thermal shutdown. 1 = Device in thermal shutdown.									
ChgTReg	0 = Device n	dicates when the ot reducing cha educing charge	irger current oi			vent overheatin	g.			
DCDTmr	DCDTmr indicates when a data contact detect time wait exceeds t _{DCD_TO} . 0 = DCD timer not expired or not running. 1 = DCD timer has been running for t _{DCD_TO} .									
ChgTmo	0 = Charger	icates when the has not reache has reached a	d a timeout co	ndition or is dis	sabled.		dicate this faul	t condition.		

Interrupt A Register

ADDRESS:	0x05										
MODE:	Clear on Rea	d									
BIT	7	6	5	4	3	2	1	0			
NAME	ChgTypInt	ChgTypInt UsbOVPInt SysBatVInt RFU BatDetInt ChgStatInt ChgTRegInt ChgTmoInt									
RESET		SEE TABLE 4									
ChgTypInt	ChgTypInt is s	ChgTypInt is set when there is a change in ChgTyp[3:0] in register 0x02.									
UsbOVPInt	UsbOVPInt is set when there is a change in UsbOVP in register 0x03.										
SysBatVint	SysBatVint is	set when there	e is a change	in SysBatV in	register 0x03.						
BatDetInt	BatDetInt is se change in batt		•	n BatDet or the	e first battery de	etection comp	letes after a PC	R or a			
ChgStatInt	ChgStatInt is after a POR.	ChgStatInt is set when there is a change in ChgStat[2:0] in register 0x02 or the first charger status is entered after a POR.									
ChgTRegInt	ChgTRegInt is	ChgTRegInt is set when there is a change in ChgTReg in register 0x04.									
ChgTmoInt	ChgTmoInt is	set when there	e is a change	in ChgTmo in	register 0x04.			·			

Interrupt B Register

ADDRESS:		0x06									
MODE:		Clear on Read									
BIT	7	6	5	4	3	2	1	0			
NAME	VLimInt	DCDTmrInt	lLimInt	ThrmSdInt	UsbOkInt	JeitaStatInt	JeitaHighTInt	JeitaTSdInt			
RESET		SEE TABLE 4									
VLimInt	VLimInt is se	VLimInt is set when the VB voltage reaches the input voltage limit.									
DCDTmrInt	DCDTmrInt is set when a DCD timeout occurs.										
lLimInt	ILimInt is set	when the VB of	urrent reach	es the input cu	rrent limit.						
ThrmSdInt	ThrmSdInt is	set when there	is a change	in ThrmSd in	egister 0x04.						
UsbOkInt	UsbOkInt is s	set when there	is a change	in UsbOk in reo	gister 0x03.						
JeitaStatInt	JeitaStatInt is	s set when ther	e is a chang	e in JeitaStat[2	:0] in register (0x03.					
JeitaHighTInt	JeitaHighTIn	JeitaHighTInt is set when the JEITA monitor enters the high battery temperature range (45°C < T < 60°C).									
JEITATSDINT	JeitaTSdInt is (T < 0°C or T		JEITA monit	or enters the ve	ery low or very	high battery te	emperature range	Э			

Interrupt Mask A Register

ADDRESS:		0x07										
MODE:		Read/Write										
ВІТ	7	6	5	4	3	2	1	0				
NAME	ChgTypIntM	UsbOVPIntM	bOVPIntM SysBatVIntM RFU BatDetIntM ChgStatIntM ChgTRegIntM ChgTmc									
RESET		SEE TABLE 4										
ChgTypIntM	0 = Masked.	ChgTypIntM masks the ChgTypInt interrupt in the IntA register (0x05). 0 = Masked. 1 = Not masked.										
UsbOVPIntM	0 = Masked.	UsbOVPIntM masks the UsbOVPInt interrupt in the IntA register (0x05). 0 = Masked. 1 = Not masked.										
SysBatVIntM	SysBatVintM	masks the SysB	atVint interrupt i	n the in	tA register (0x0	05).						
BatDetIntM	BatDetIntM m 0 = Masked. 1 = Not maske	asks the BatDet	Int interrupt in th	ne IntA i	egister (0x05).							
ChgStatIntM	ChgStatIntM r 0 = Masked. 1 = Not maske	masks the ChgS	tatInt interrupt ir	the Int	A register (0x0	5).						
ChgTRegIntM	0 = Masked.	ChgTRegIntM masks the ChgTRegInt interrupt in the IntA register (0x05). 0 = Masked. 1 = Not masked.										
ChgTmoIntM	ChgTmoIntM 0 = Masked. 1 = Not maske	masks the ChgT	molnt interrupt i	n the Ir	ntA register (0x	05).						

Interrupt Mask B Register

ADDRESS:		0x08					-				
MODE:		Read/Write									
BIT	7	6	5	4	3	2	1	0			
NAME	VLimIntM	DCDTmrIntM	ILimIntM	ThrmSdIntM	UsbOkIntM	JeitaStatIntM	JeitaHighTIntM	JeitaTSdIntM			
RESET		SEE TABLE 4									
VLimIntM	VLimIntM r	VLimIntM masks the VLimInt interrupt in the IntB register (0x06).									
DCDTmrIntM	0 = Maske	DCDTmrIntM masks the DCDTmrInt interrupt in the IntB register (0x06). 0 = Masked. 1 = Not masked.									
lLimIntM	0 = Maske	ILimIntM masks the ILimInt interrupt in the IntB register (0x06). 0 = Masked. 1 = Not masked.									
ThrmSdIntM	0 = Maske	ThrmSdIntM masks the ThrmSdInt interrupt in the IntB register (0x06). 0 = Masked. 1 = Not masked.									
UsbOkIntM	UsbOkIntN 0 = Maske 1 = Not ma		OkInt inte	rrupt in the IntE	3 register (0x0	96).					
JeitaStatInt M	0 = Maske	JeitaStatIntM masks the JeitaStatInt interrupt in the IntB register (0x06). 0 = Masked. 1 = Not masked.									
JeitaHighTIntM	0 = Maske	JeitaHighTIntM masks the JeitaHighTInt interrupt in the IntB register (0x06). 0 = Masked. 1 = Not masked.									
JeitaSdIntM	JeitaSdIntl 0 = Maske 1 = Not ma		itaSdInt int	errupt in the In	tB register (0x	(06).					