imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX14748 USB battery charger integrates a charger detector, boost/buck converter, and Li+ battery charger with smart power selector to provide fast and safe charging of 2s Li+ battery packs.

The MAX14748 provides support for devices functioning as a UFP/DRP per the USB Type-C 1.1 standard, while also providing detection of legacy USB Battery Charging Specification, Revision 1.2 (BC1.2) compliant chargers in addition to other nonstandard chargers. The programmable Automatic Input Current Limiting (AICL) feature ensures that maximum safe current is drawn from the charging adapter.

The Li+ charger includes an automatic Smart Power Selector™ to simultaneously charge the battery and provide power to the system load. The Smart Power Selector function will supplement the system power with the battery if power from the charging adapter is insufficient. The Li+ charger features JEITA thermal monitoring and charger voltage/current reduction or charger disable.

The MAX14748 is available in a 54-bump, 0.4mm pitch, 3.97mm x 2.77mm x 0.64mm wafer-level package (WLP) and operates over the -40°C to +85°C extended temperature range.

Applications

- Digital Imaging (DSC, DVC)
- Wireless Speakers
- Handheld Barcode Readers

Ordering Information appears at end of data sheet.

Benefits and Features

- Minimize Power Management Footprint Through High Integration
 - + $13m\Omega$ (typ) Integrated Battery To System Switch
 - Thermal Current Limiting
 - DC-DC Converter with Boost and Reverse Buck
 - High Efficiency
 - 92% in Boost Mode at 1A Output Current and 7.4V Battery Voltage
 - 94% in Reverse Buck Mode at 500mA Output
 - · Internal USB Switch for USB D+/D- Data Lines
- Easy-to-Implement Li+ Battery Charging
 - Charges 2s Li-Ion Batteries from Legacy 5V USB Adapters
 - 15W Input Power with 3A Type-C Adapter
 - 7.5W Input Power with DCP Adapter
 - 1A System/Charge Current From DCP Adapter
 - 2A System/Charge Current From 3A Type-C Adapter
 - DRP Mode USB Type-C Specification, Rev 1.1 Compliant
 - UFP Mode USB Type-C Specification, Rev 1.1 Support
 - V_{CONN} and Super-Speed Multiplexer Logic Controls
 - Non-Standard DCP Detection
 - USB Battery Charging Specification, Rev 1.2 Compliant
- Automatic Input Current Limit (AICL) Power Management
- Support Weak/Dead Batteries Detection
 - Smart Power Selector
 - Thermistor Monitor
- Various Protection Features
 - 28V Integrated Overvoltage Protection
 - JEITA Charge Protection
 - ±15kV ESD Protection on USB Adapter Pins

Smart Power Selector is a trademark of Maxim Integrated Products, Inc.

USB Type-C Charger

Absolute Maximum Ratings

Voltages Referenced to GND

CHGIN0.3V to +30V
BST0.3V to +16V
SYS to BAT0.3V to +12V
BAT, SYS0.3V to +12V
BYP to CHGIN30V to +0.3V
BYP, THM, INT, SYSOK, FLTIN, FSUS,
LED, SDA, SCL0.3V to 6V
COMP, SET0.3V to V _{CCINT} + 0.3V
CC1, CC2, TDN, TDP, CDN, CDP, V _{CONN} 0.3V to +6V
CC1, CC2, in fault mode through a 10k resistor0.3V to +20V
CDIR0.3V to +6V
VTPU (VTPU-TPU switch open)0.3V to V _{CCINT} + 0.3V
TPU (VTPU-TPU switch open)0.3V to 6 or VTPU + 0.3V
VTPU, TPU Maximum Current
(VTPU-TPU switch closed)100mA to +100mA
BVCEN0.3V to V _{CCINT} + 0.3V

SFOUT, V _{CCINT} , BREG0.3V to min ((V _{CHGIN} + 0.3), 6)V
LX0.3V to V _{SYS} + 0.3V
NVP0.3V to +30V
AGND, DGND, PGND, GND0.3V to +0.3V
Continuous Current into
CHGIN, SYS+6.4A
BAT+4.8A
Any Other Terminal+100mA
Continuous Power Dissipation
(multilayer board at +70°C): 9 x 6 Array 54-Bump,
3.97mm x 2.77mm 0.4mm Pitch WLP
(derate 24.46mW/°C)1.957W
Operating Temperature Range40°C to +85°C
Junction Temperature +150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s) +300°C
Soldering Temperature (reflow) +260°C

Package Thermal Characteristics (Note 1)

WLP

Junction-to-Ambient Thermal Resistance (θ_{JA})40.88°C/W

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
SUPPLY CURRENT						
BAT Supply Current	IBAT	V _{CHGIN} = 0V or Floating, Type-C detection active		140		μA
	27.11	Low Power mode		25		μA
		V _{CHGIN} = +5V, T _A +25°C, ChgEn = 0		5.3		mA
CHGIN Supply Current	ICHG	V _{CHGIN} = +5V, T _A +25°C, Suspend Mode (FSUS = High)		0.98		mA
CHGIN TO BYP PATH						•
Allowed CHGIN Input Voltage Range	V _{CHGIN_RNG}		0		28	V
CHGIN Detect	V _{BDET}	Rising	3.8	3.9	4.0	v
Threshold	V _{BDET_F}	Falling	3.6	3.7	3.8	
	V _{OVP}	Rising	5.59	5.66	5.72	V
CHGIN Overvoltage Threshold	V _{OVP_F}	Falling	5.56			V
	V _{OVP_H}	Hysteresis		28		mV

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CHGIN-BYP Resistance	R _{CHGIN_BYP}	V _{CHGIN} = 5V		45		mΩ
CHGIN-BYP Soft-Start Timeout	^t BYP_SFTTO	If V_{BYP} has not reached within 50mV of V_{CHGIN} at timeout, a fault is flagged by SysFlt of register 0x02.		100		ms
CHGIN-BYP Soft-Start Current	IBYP_SFT			60		mA
CHGIN-BYP Soft-Start End Comparator	V _{BYP_SFTEND}		15	50	80	mV
CHGIN-BYP Overload Comparator	V _{BYP_OVL}		290	360	420	mV
		SpvChglLim[4:0] = 00100		0.4		
Input Current Limit	I _{LIM}	SpvChglLim[4:0] = 01110		1.5		A
		SpvChglLim[4:0] = 11101		3		1
Input Current Limit Programming Range	ILIM_RNG		0.1		3	A
Input Current Limit Programming Step	I _{LIM_STEP}			100		mA
INTERNAL SUPPLIES						
Internal V _{CCINT} Regulator	V _{CCINT}	V _{CHGIN} = 5V, boost off	4.0	4.3	4.6	V
Boost Regulator BREG	V _{BREG}			4.3		V
V _{CCINT} UVLO		V _{CCINT} rising	3.1	3.4	3.7	
Threshold	VUVLO	V _{CCINT} falling	3.0	3.3	3.6	V
V _{CCINT} UVLO Threshold Hysteresis	V _{UVLO_HYS}	Hysteresis		100		mV
		SfOutLvI = 1, V _{CHGIN} = 6V, I _{SFOUT} = 0	3.15	3.3	3.45	
	N/	SfOutLvI = 1, V _{CHGIN} = 6V, I _{SFOUT} = 15mA		2.95		
SFOUT LDO Voltage	LDO Voltage V _{SFOUT}	SfOutLvI = 0, V _{CHGIN} = 6V, I _{SFOUT} = 0	5.0	5.25	5.5	V
		SfOutLvI = 0, VCHGIN = 6V, I _{SFOUT} = 15mA		4.9		
SFOUT Maximum Current	ISFOUT_MAX		15			mA

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ΤΥΡ	MAX	UNITS
Current Reduce Temperature	T _{CHG_LIM}			120		°C
Thermal Shutdown Temperature	TSHUTDOWN			150		°C
Thermal Shutdown Hysteresis	T _{SHUTDOWN_H}			20		°C
		BYPUVLO[2:0] = 000, V _{BYP} falling		3.8		
		BYPUVLO[2:0] = 001, V _{BYP} falling		3.9]
		BYPUVLO[2:0] = 010, V _{BYP} falling		4.0		
BYP UVLO Threshold	Verseense	BYPUVLO[2:0] = 011, V _{BYP} falling		4.1		v
BTP UVLO TITESIIOIO	VBYPUVLO	BYPUVLO[2:0] = 100, V _{BYP} falling		4.2		
		BYPUVLO[2:0] = 101, V _{BYP} falling		4.3		
		BYPUVLO[2:0] = 110, V _{BYP} falling		4.4		
		BYPUVLO[2:0] = 111, V _{BYP} falling		4.5]
BYP UVLO Threshold Hysteresis	V _{BYPUVLO_H}			25		mV
		VPChg[2:0] = 000, V _{SYS} rising		5.9		
		VPChg[2:0] = 001, V _{SYS} rising		6.0]
		VPChg[2:0] = 010, V _{SYS} rising		6.1]
SYS UVLO (SYSOK)	M	VPChg[2:0] = 011, V _{SYS} rising		6.2		v
Threshold	VSYSUVLO	VPChg[2:0] = 100, V _{SYS} rising		6.3		
		VPChg[2:0] = 101, V _{SYS} rising		6.4		
		VPChg[2:0] = 110, V _{SYS} rising		6.5]
		VPChg[2:0] = 111, V _{SYS} rising		6.6		
SYS UVLO Threshold Hysteresis	V _{SYSUVLO_H}			500		mV
BYP-SYS BOOST PATH						1
Switching Frequency	f _{BST_} SW			0.8		MHz
Maximum Input Current	IBST_MAX	L = 2.2µH	3			A
Input Peak Current Limit	IBST_LIM_PK			4.5		A

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS					
			00000		100							
							00001		200			
			00010		300							
			00011		400							
			00100	405	450	495						
						00101		600				
			00110		700							
			00111		800		1					
			01000		900		1					
			01001		1000		1					
			01010		1100		1					
			01011		1200		1					
			01100		1300							
			01101		1400							
			01110		1500							
Forced Input Current	IILIM_F		CurLim1Frc = 1,	01111		1600						
_imit		CurLim1Set[4:0] =	10000		1700		mA					
			10001		1800							
			10010		1900							
			10011		2000							
									10100		2100	
			10101		2200		1					
			10110		2300		-					
			10111		2400		1					
			11000		2500		1					
			11001		2600		1					
			11010		2700		1					
			11011		2800		1					
			11100		2900		1					
			11101		3000		1					
			11110		3100		1					
			11111		3200		1					
Efficiency	EFF _{BST}	I _{SYS} = 1000mA, V _E L1 = Bourns SRP40	_{BAT} = 7.4V,		91.6		%					
		Charger disabled			V _{BAT} + 0.4		V					
SYS Regulation Voltage	V _{SYS_REG}	Charger in precharg	ge, V _{BAT} = 5V		PCHG + 0.4	Ļ	V					
SYS Regulation Voltage	V _{SYS_LIM}	See Battery Charge Diagram	er State		V _{SYS_REG} - 0.2		V					

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BYP-SYS BUCK PATH						
Switching Frequency	f _{BK_SW}			0.8		MHz
Maximum Output Current	I _{BK_MAX}	L = 2.2µH	500			mA
Short-Circuit Peak Current Limit	IBK_LIM			1.3		A
Efficiency	EFF _{BK}	I _{CHGIN} = 500mA , V _{BAT} = 7.4V, L1 = Bourns SRP4012TA-2R2M		94		%
Output Voltage Range	V _{BK_OUT_RNG}		4		5.5	V
Output Accuracy	VBK_OUT_ACC		-1.5		+1.5	%
SYS-BAT CHARGER/SWI	TCH CONTROLLER					
BAT-to-SYS Regulation Voltage	VBAT-SYS_ON			-20		mV
BAT-to-SYS Switch Fast Turn-On Threshold	VBAT-SYS_OFF	V _{SYS} falling		-100		mV
BAT-to-SYS Switch On- Resistance	R _{BAT_SYS}	I _{BAT} = 1A		13		mΩ
Charger Current Soft-Start Time	^t CHG_SOFT			1		ms
PRECHARGE			•			
		IPChg[1:0] = 00		5		
Precharge Current	le esse	IPChg[1:0] = 01		10		0/1
Precharge Current	IPCHG	IPChg[1:0] = 10		20		%IFCHC
		IPChg[1:0] = 11, R _{SET} = 20kΩ	27	30	33	
		VPChg[2:0] = 000		5.7		
		VPChg[2:0] = 001		5.8		
		VPChg[2:0] = 010		5.9		
Prequalification	V _{PCHG}	VPChg[2:0] = 011		6.0		v
Threshold	▼PCHG	VPChg[2:0] = 100		6.1		_ v
		VPChg[2:0] = 101		6.2		
		VPChg[2:0] = 110		6.3		
		VPChg[2:0] = 111		6.4		1
Prequalification Threshold Hysteresis	V _{PCHG_H}			100		mV

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FAST CHARGE		· ·				
SET Current Gain Factor	K _{SET}			10000		A/A
SET Regulation Voltage	V _{SET}			1		V
		R _{SET} = 20kΩ	0.43	0.5	0.57	
Fast Ohanna Oumant		R _{SET} = 20kΩ, T = 25°C	0.475	0.5	0.525	
Fast-Charge Current	I _{FCHG}	R _{SET} = 10kΩ		1		A
		R _{SET} = 4kΩ		2.5		
		T_T_IFChg[2:0] = 000		20		
		T_T_IFChg[2:0] = 001		30		
		T_T_IFChg[2:0] = 002		40		
Fast-Charge Current		T_T_IFChg[2:0] = 003		50		
Scaling	IFCHG_T	T_T_IFChg[2:0] = 004		60		%IFCHG
		T_T_IFChg[2:0] = 005		70		1
		T_T_IFChg[2:0] = 006		80		1
		T_T_IFChg[2:0] = 007		100		
1/2 Fast-Charge Current Comparator Threshold	IFC_HALF			50		%IFCHG
1/5 Fast-Charge Current Comparator Threshold	IFC_FIFTH			20		%I _{FCHC}
MAINTAIN CHARGE						
		ChgDone[1:0] = 00		5		
Charge Done Qualification	ICHG_DONE	ChgDone[1:0] = 01		10		%I _{FCHC}
Qualification	—	ChgDone[1:0] = 10, R _{SET} = 20kΩ	18	20	22	
		BatReg[1:0] = 00, T _A = +25°C	8.258	8.3	8.342	
		BatReg[1:0] = 00, T _A = -40°C to +85°C	8.217	8.3	8.383	
BAT Regulation Voltage	V _{BATREG}	BatReg[1:0] = 01		8.4		V
		BatReg[1:0] = 10		8.5		
		BatReg[1:0] = 11		8.6		1
		BatReChg[1:0] = 00		200		
BAT Recharge		BatReChg[1:0] = 01		300		1
Threshold	VBATRECHG	BatReChg[1:0] = 10		400		- mV
		BatReChg[1:0] = 11		500		
CHARGE TIMER		· ·				
		PChgTmr[1:0] =00		30		
Maximum		PChgTmr[1:0] = 01		60		1.
Prequalification Time	^t PCHG	PChgTmr[1:0] = 10		120		- min
		PChgTmr[1:0] = 11		240		-

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		FChgTmr[1:0] = 00		75		
Maximum Fast-Charge	•	FChgTmr[1:0] = 01		150		NA:
Time	^t FCHG	FChgTmr[1:0] = 10		300		Min
		FChgTmr[1:0] = 11		600		
		MtChgTmr[1:0] = 00		0		
Maintain Ohanna Tinaa		MtChgTmr[1:0] = 01		15		
Maintain Charge Time	^t TOCHG	MtChgTmr[1:0] = 10		30		Min
		MtChgTmr[1:0] = 11		60]
Timer Accuracy	tACC		-10		+10	%
Timer Extend Threshold	PTIMERX	If charge current is reduced due to I _{LIM} or T _{DIE} , this is the percentage of charge current below which timer clock operates at half speed		50		%
Timer Suspend Threshold	PTIMERSUS	If charge current is reduced due to I _{LIM} or T _{DIE} , this is the percentage of charge current below which timer clock pauses		20		%
THERMISTOR MONITOR	AND NTC DETECTION	N				
THM Hot Threshold	T4	V _{THM} falling, WarmCoolSel = 0	21.3	23.3	25.3	%V _{TPU}
		V _{THM} falling, WarmCoolSel = 1	30.9	32.9	34.9	/**TPU
THM Warm Threshold	Т3	V _{THM} falling, WarmCoolSel = 0	30.9	32.9	34.9	- %V _{TPU}
	10	V _{THM} falling, WarmCoolSel = 1	46.5	50	53.5	
THM Cool Threshold	T2	V _{THM} rising, WarmCoolSel = 0 or 1	62.5	64.5	66.5	%V _{TPU}
THM Cold Threshold	T1	V _{THM} rising, WarmCoolSel = 0 or 1	71.9	73.9	75.9	%V _{TPU}
THM Disable Threshold	V _{THM_DIS}	V _{THM} rising	91.0	93.0	95.0	%V _{TPU}
THM Threshold Hysteresis	V _{THM_DIS_H}			60		mV
JEITA BAT Voltage Reduction	V _{BAT_JEITA}			300		mV
THM Input Leakage	I _{THM_LK}		-1		+1	μA
THM Detection Time	^t THM_DET			0.35		ms
DIGITAL I/O (SDA, SCL, F	TTIN, INT, SYSOK,	FSUS, LED, CDIR)				
Leakage Current	IIO_LK		-1		+1	μA
Logic Input High-Voltage	V _{IO_IH}		1.4			V
Logic Input Low-Voltage	V _{IO_IL}				0.5	V
Logic Output Low-Voltage	V _{IO_OL}	I _{OL} = 4mA			0.4	V
FSUS Input Pulldown Resistance	R _{FSUS_PD}			470		kΩ
SDA, SCL Bus Low- Detection Current	I _{PD}	$V_{SDA} = V_{SCL} = 0.4V$		0.2	0.4	μA
SCL Clock Frequency	f _{SCL}	Note 3	0		400	kHz

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Bus Free Time Between a STOP and START Condition	tBUF		1.3			μs
START Condition (Repeated) Hold Time	^t HD_SDA	Note 3	0.6			μs
Low Period of SCL Clock	tLOW		1.3			μs
High Period of SCL Clock	^t HIGH		0.6			μs
Setup Time for a Repeated START Condition	^t su_sta		0.6			μs
Data Hold Time	t _{HD_DAT}	Note 4	0		0.9	μs
Data Setup Time	t _{SU_DAT}	Note 4	100			ns
Setup Time for STOP Condition	tsu_sto		0.6			μs
Spike Pulse Widths Suppressed by Input Filter	t _{SP}	Note 5		50		ns
BC1.2 DETECTION	L.	L	I			1
V _{DP_SRC} Voltage	V _{DP_SRC} /V _{SRC06}	I _{LOAD} = 0 to 200μA	0.5	0.6	0.7	V
V _{DM_SRC} Voltage	V _{DM_SRC} /V _{SRC06}	I _{LOAD} = 0 to 200μA	0.5	0.6	0.7	V
V _{D33} Voltage	V _{SRC33}	I _{LOAD} = 0 to 365μA	2.6		3.4	V
V _{DAT_REF} Voltage	V _{DAT_REF}		0.25	0.32	0.4	V
V _{LGC} Voltage	V _{LGC}		1.5	1.7	1.9	V
I _{DM_SINK} Current	I _{DM_SINK} /I _{DATSINK}	0.15V to 3.6V	55	80	105	μA
I _{DP_SRC} Current	IDP_SRC/IDCD	0V to 2.5V	7	10	13	μA
R _{DM_DWN} Resistor	R _{DM_DWN} /R _{DWN15}		12	20	24	kΩ
IWEAK Current	IWEAK		0.01	0.1	0.5	μA
V _{BUS31} Threshold	V _{BUS31}	DP and DN pins. Threshold in percent of V _{BUS} voltage 4V < V _{BUS} < 5.5V	26	31	36	%
V _{BUS47} Threshold	V _{BUS47}	DP and DN pins. Threshold in percent of V _{BUS} voltage 4V < V _{BUS} < 5.5V	43.3	47	51.7	%
V _{BUS64} Threshold	V _{BUS64}	DP and DN pins. Threshold in percent of V _{BUS} voltage 4V < V _{BUS} < 5.5V	57	64	71	%

Electrical Characteristics (continued)

(V_{BAT} = 8.3V, T_A = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at V_{CHGIN} = 5.0V, V_{BAT} =7.4V, V_{SYS} = V_{BATREG}, T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Charger Detection Debounce	t _{CDDEB}		45	50	55	ms
Primary-to-Secondary Timer	t _{PDSDWAIT}		27	35	39	ms
Proprietary Charger Debounce	^t PRDEB		5	7.5	10	ms
Data Contact Detect Timeout	^t DCDTMO	DCD2s = 0 DCD2s = 1	700 1.8	800 2.0	900 2.2	ms
DP/DN Overvoltage Debounce	^t ovdxdeb		90	100	110	μs
OVDX Comparator	OVDX _{THRESHOLD}	Rising Falling	0 -0.04		0.15 +0.08	v
CDP/CDN Pulldown Resistor	R _{CDP/CDN_PD}		3	6	12	mΩ
TYPE-C DETECTION						
V _{CONN} Switch Voltage Drop	V _{CONN_REQ}	V_{CONN} = 5.5V, I_{CC_LOAD} = 20mA	5.5		5.6	V
V _{CONN} Bulk Capacitance	C _{VCONN}		10		220	μF
CC Pin Operational Voltage Range	V _{CONN_RNG}				5.5	V
CC Pin Voltage in DFP 3.0A Mode	V _{CC} _PIN30		3.1			V
CC Pin Voltage in DFP 1.5A Mode	V _{CC_PIN15}		1.85			V
CC Pin Low-Power Mode Pulldown Resistance	R _{LPPD_CC}			170		kΩ
CC Pin Low-Power Mode Voltage Threshold	V _{LP_CC} _	Rising		0.7		v
CC Pin Clamp Requirements	V _{CC_PIN_CLAMP}	60µA ≤ I _{CC} _≤ 600µA		1.1	1.32	V
CC UFP Pulldown Resistance	R _{DUFP_CC_}		4.59	5.1	5.61	kΩ
CC DFP 0.5A Current Source	IDFP0.5_CC_		72	80	88	μA
CC DFP 1.5A Current Source	IDFP1.5_CC_		165.6	180	194.4	μA
CC DFP 3.0A Current Source	IDFP3.0_CC_		303.6	330	356.4	μA
CC R_A and R_D Threshold	V _{RA_RD0.5}	Rising Falling	0.16 0.15	0.2	0.25	v
CC UFP 0.5A R _D Threshold	V _{UFP_RD0.5}	Rising Falling	0.62 0.61	0.66	0.7	v
CC UFP 1.5A R _D Threshold	V _{UFP_RD1.5}	Rising Falling	1.17 1.16	1.23	1.31	v
CC V _{CONN} Detect Threshold	V _{VCONN_DET}	Rising Falling	2.11 2.1	2.25	2.4	v

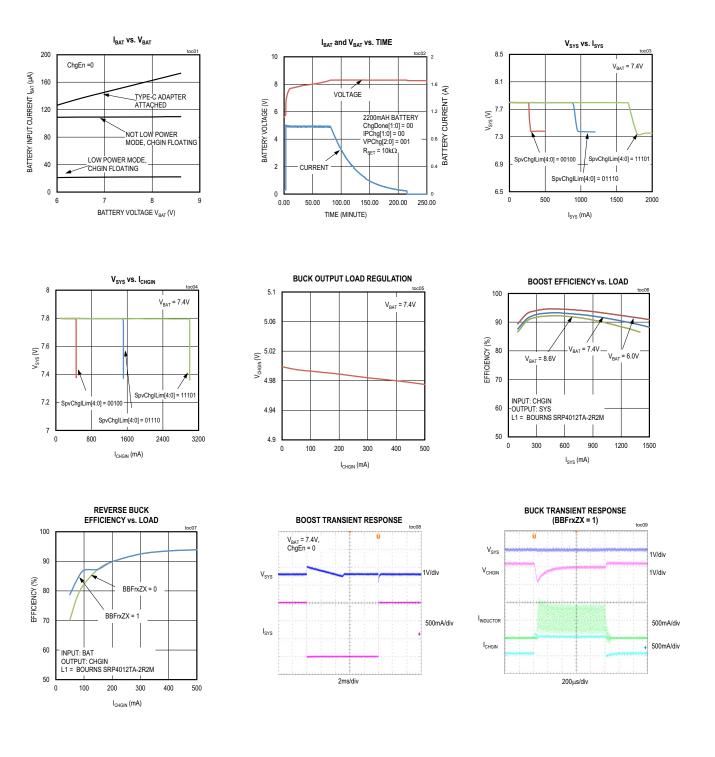
Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
CC DFP VOPEN Detect	M	Rising	1.51	1.575	1.65	- V
Threshold	V _{DFP_} VOPEN	Falling	1.5			
CC DFP V _{OPEN} with	N	Rising	2.46	2.6	2.75	V
3.0A Detect Threshold	V _{DFP_} VOPEN3A	Falling	2.45			V
V _{BUS} Valid	V _{BDET}	Rising	3.8	4.12	4.4	V
V _{BUS} Valid Hysteresis	V _{BDET_H}	Falling hysteresis		0.7		V
V _{BUS} Discharge Value	V _{SAFE0V}	Falling. Voltage level where a connected UFP will find V _{BUS} removed.	0.6	0.7	0.84	v
		Rising hysteresis		100		mV
CC Pin Power-Up Time	^t CLAMPSWAP	The maximum time allowed from removal of voltage clamp to attachment of the 5.1k resistor			15	ms
Type-C CC Pin Detection Debounce	^t CCDEB		100		200	ms
Type-C Debounce	^t PDDEB		10		20	ms
Type-C Quick Debounce	^t QDEB		0.9	1	1.9	ms
V _{BUS} Debounce	t _{VBDEB}		9	10	11	ms
V _{SAFE0V} Debounce	t _{VSAFE0VDEB}		9	10	11	ms
Type-C Error Recovery Delay	^t errorrecovery		25			ms
Type-C DRP Toggle Time	t _{DRP}		50		100	ms
Duty Cycle of DRP Swap	D _{DRP}	Duty cycle of UFP to DFP role swap	30		70	%
DRP Transition Time	^t DRPTRAN	Time a role swap from DFP to UFP or reverse is completed			1	ms
DRP Lock Time	^t DRPLOCK	DRP Lock wait time before transition to unattached state	100		150	ms
V _{CONN} Enable Time	^t vconnon	Time from when V _{BUS} is supplied in DFP mode in state Attach.DFP. DRPWait			10	ms
V _{CONN} Disable Time	^t vconnoff	Time from UFP detached or as directed by I ² C command until V _{CONN} is removed			35	ms

Electrical Characteristics (continued)

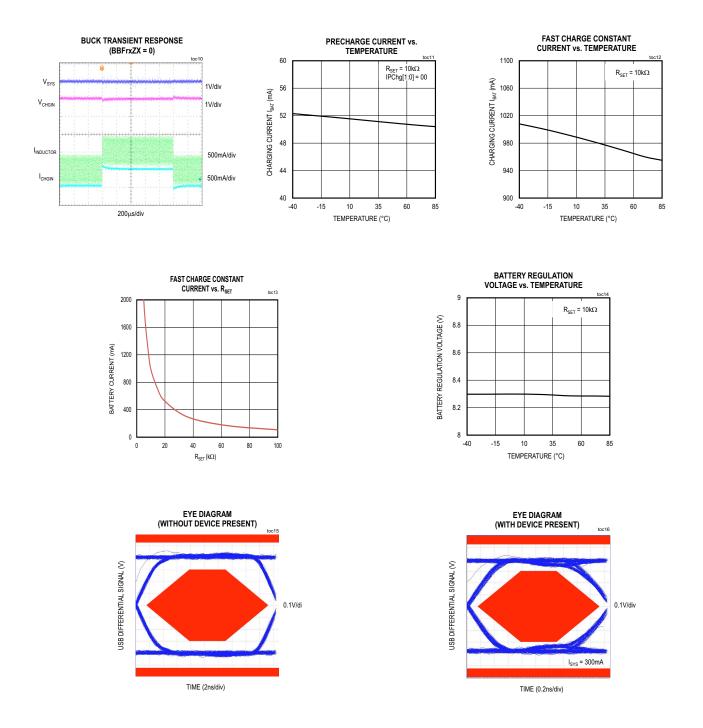
(V_{BAT} = 8.3V, T_A = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at V_{CHGIN} = 5.0V, V_{BAT} =7.4V, V_{SYS} = V_{BATREG}, T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ΤΥΡ	MAX	UNITS
CC Pin Current Change Time	^t SINKADJ	Time from CC pin changes state in UFP mode until current drawn from DFP reaches new value			60	ms
V _{BUS} On-Time	^t VBUSON	Time from UFP is attached until V _{BUS} On			275	ms
V _{BUS} Off-Time	^t vbusoff	Time from UFP is detached until V_{BUS} reaches V_{SAFE0V}			650	ms
BVCEN Output Low- Voltage	V _{BVCEN_} OL	I _{SINK} = 1mA			0.4	V
BVCEN Output High- Voltage	VBVCEN_OH	I _{SOURCE} = 1mA	V _{CCINT} - 0.4			V

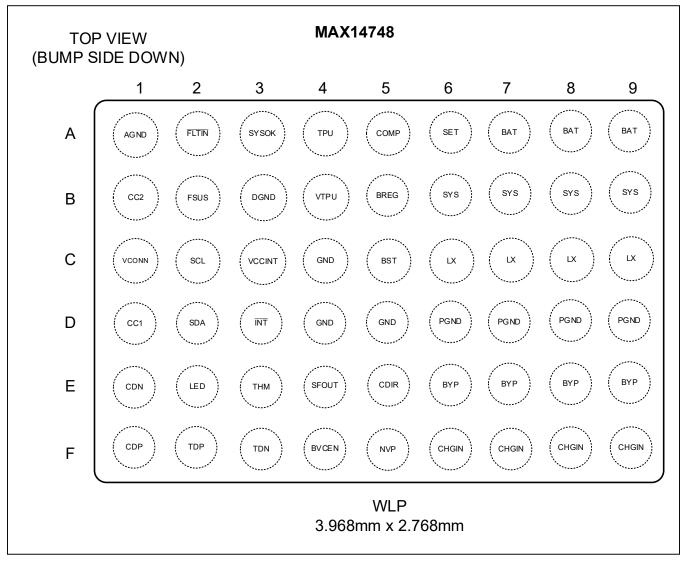

Note 2: All devices are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design and characterization.

Note 3: f_{SCL} must meet the minimum clock low time plus the rise/fall times.

Note 4: The maximum t_{HD:DAT} has to be met only if the device does not stretch the low period (t_{LOW}) of the SCL signal. **Note 5:** Filters on SDA and SCL suppress noise spikes at the input buffers and delay the sampling instant.


Typical Operating Characteristics

 $(V_{BAT} = 8.5V, T_A = -20^{\circ}C \text{ to } +70^{\circ}C, \text{ all registers in their default state, unless otherwise noted. Typical values are at V_{CHGIN} = 5.0V, V_{BAT} =7.4V, V_{SYS} = V_{BATREG}, T_A = +25^{\circ}C.)$

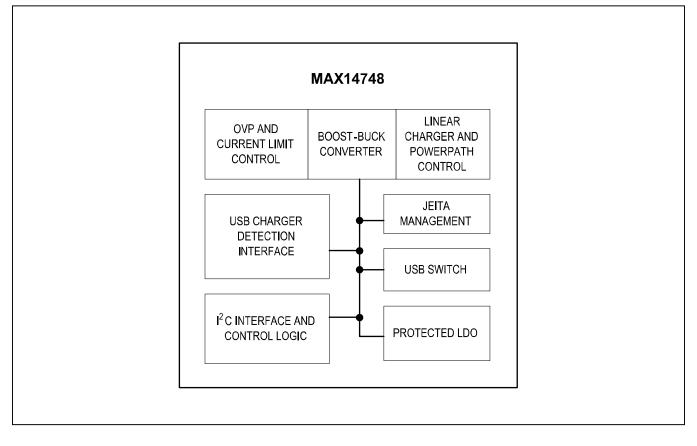

Typical Operating Characteristics (continued)

 $(V_{BAT} = 8.5V, T_A = -20^{\circ}C \text{ to } +70^{\circ}C, \text{ all registers in their default state, unless otherwise noted. Typical values are at V_{CHGIN} = 5.0V, V_{BAT} =7.4V, V_{SYS} = V_{BATREG}, T_A = +25^{\circ}C.)$

USB Type-C Charger

Bump Configuration

Bump Descriptions


BUMP	NAME	FUNCTION				
A1	AGND	Analog Ground.				
A2	FLTIN	Charger Fault Input. Logic-low on this pin forces the charger into a fault state and generates an interrupt. See Register 0x35 description for more information. Connect to digital I/O supply if not used.				
A3	SYSOK	Open-Drain Status Output of SYS Regulation. When V_{SYS} is above the SYS UVLO threshold and Boos is active, this output is high-impedance. When V_{SYS} is below the SYS UVLO threshold, this output is low. Leave unconnected if not used.				
A4	TPU	High-Side of Internal Resistor for THM Detection. Connect a 10k resistor between this pin and THM.				
A5	COMP	Buck/Boost Converter Compensation Connection. Connect a 3.9nF capacitor for internal Buck/Boost compensation				
A6	SET	External Resistor Connection for Fast Charge Current Setting. Connect a resistor to this pin to set th fast charge current. Other charge currents are set as a proportion of fast charge current based on I ² (register settings.				
A7–A9	BAT	Battery Connection. Connect a 2s Li-ion+ battery from BAT to GND. Bypass to PGND with a parallel combination of a 0.1μ F capacitor and an effective 10μ F - 30μ F capacitor. Keep the capacitors as close to BAT as possible and keep the stray inductance and resistance of the trace from BAT to the battery terminal as low as possible.				
B1	CC2	USB Type-C CC2. Connect to CC2 on USB Type-C connector.				
B2	FSUS	Force Suspend Input. Logic-high on this pin causes the input limiter to open and input current from CHGIN is reduce to zero. This pin is internally pulled to GND through a $470 k\Omega$ (typ) resistor and has no effect if FSUSMsk = 1.				
B3	DGND	Digital Ground.				
B4	V _{TPU}	External Voltage Input for TPU connection. Connect to external supply or V _{CCINT} .				
B5	BREG	Bypass for Internal Switching Converter Supply. Bypass with 1µF capacitor to AGND.				
B6–B9	SYS	System Load Connection. Connect SYS to the system load. Bypass to PGND with a parallel combination of a 0.1μ F capacitor and an effective 22μ F capacitor. (Note: there is a diode between SYS and BAT)				
C1	V _{CONN}	External V _{CONN} Supply Input. Leave unconnected if not used.				
C2	SCL	I ² C Serial Clock Input. Connect an external pull-up resistor.				
C3	V _{CCINT}	Bypass For Internal Analog Supply. Bypass with 1µF capacitor to GND.				
C4, D4, D5	GND	Ground.				
C5	BST	Charge Pump Connection. Connect a 0.1µF capacitor between BST and LX.				
C6, C7, C8, C9	LX	Switching Node of Boost Converter. Connect a 1.5µH or 2.2µH inductor between LX and BYP. See <i>Applications Information</i> section for more details.				
D1	CC1	USB Type-C CC1. Connect to CC1 on USB Type-C connector.				
D2	SDA	I ² C Serial Data Input/Output. Connect an external pullup resistor.				
D3	ĪNT	Active-Low, Open-Drain Interrupt Output. Connect an external pullup resistor.				
D6, D7, D8, D9	PGND	Power Ground.				

Bump Descriptions (continued)

BUMP	NAME	FUNCTION			
E1	CDN	USB Connector D-Input. Leave unconnected if not used.			
E2	LED	LED Charging Status Indicator. Open-drain output indicating battery charging status. When LEDAuto = 1 and a temperature fault is detected, the output is pulsed at 50% duty cycle for a period of 1.5s. When a charge timer expires or SysFlt fault occurs, LED is pulsed at 50% for a period of 0.15s. When LEDAuto = 0, the open-drain output is controlled by the LEDCtrl bit. Connect this pin to GND if unused.			
E3	ТНМ	Battery Temperature Thermistor Measurement Connection. This pin is used for NTC thermistor presence detection and JEITA compliant temperature control.			
E4	SFOUT	Output of overvoltage protected LDO powered from CHGIN. Bypass SFOUT with a 1μ F ceramic capacitor to GND.			
E5	CDIR	USB Cable Orientation Open-drain Output. When CC1 is active, this output is pulled low. Otherwise, t output is high-impedance. Leave unconnected if not used.			
E6–E9	BYP	Bypass Connection. Bypass to PGND with a parallel combination of a 0.1μ F capacitor and an effective 10μ F capacitor.			
F1	CDP	USB Connector D+ Input. Leave unconnected if not used.			
F2	TDP	USB Transceiver D+ Connection. Connect TDP to device microprocessor USB transceiver D+ line. Leave unconnected if not used.			
F3	TDN	USB Transceiver D- Connection. Connect TDN to device microprocessor USB transceiver D- line. Leave unconnected if not used.			
F4	BVCEN	External V _{CONN} Supply Enable Output. Push-pull output between V _{CCINT} and GND. Leave unconnected if not used.			
F5	NVP	Negative Voltage PFET Gate Control. Leave unconnected if not used.			
F6–F9	CHGIN	USB Charger Input. Bypass this pin with a 1µF capacitor to PGND.			

Note: All capacitance values listed in this document refer to effective capacitance. Be sure to specify capacitors that will meet these requirements under typical system operating conditions taking into consideration the effects of voltage and temperature.

Block Diagram

Detailed Description

The MAX14748 is a battery charger with a Smart Power Selector that safely charges two Li+ cell in accordance with JEITA specifications*.

Input OVP

The MAX14748 CHGIN input is protected by an internal N-channel FET. The device monitors the voltage at CHGIN and, if CHGIN is greater than V_{OVP} , switches off the internal FET to prevent damage to the device. If V_{CHGIN} is above the overvoltage threshold or below the USB valid voltage threshold, the MAX14748 enters overvoltage lockout (OVLO). During OVLO, the internal circuits remain powered, the SYSOK pin is high-impedance, and an interrupt is asserted. During OVLO, the charger turns off and the system load switch closes, allowing the battery to power SYS.

Negative Voltage Protection (NVP)

The MAX14748 provides a gate protection circuit for an external PFET that protects against negative voltages on V_{BUS}. NVP pin drives the gate of the external PFET. If a negative voltage is present on V_{BUS}, e.g., by a backwards connector, the NVP turns off the external PFET, therefore providing negative voltage protection.

Low Power Mode

The MAX14748 features a Low Power mode, which reduces the battery current consumption from 25μ A to 140 μ A. To enter Low Power mode, write 1 to LowPowEn (Register 0x33[7]). To manually exit Low Power mode, set LowPowAbort (Register 0x33[1]) to 1. If a DFP pullup connect to CC1/CC2 is detected, the device automatically exits Low Power mode and resumes normal operations.

Input Current Limiter

The primary function of the input limiter is supplying power from the external adapter at CHGIN to the system

load and battery charger. In addition, it performs several other functions to optimize use of the available power efficiently and safely, including:

- CHGIN Input Current Limiting: The CHGIN input current is limited to prevent input overload. The current limit can be automatically selected through charger detection to match the capabilities of the source. The result is indicated by SpvChgllim[4:0] in register 0x22. See <u>Table 1a</u> for more details. It can also be manually set through CurLim1Frc and CurLim1Set[4:0] in register 0x21. Figure 1 illustrates how the current limit setting is selected.
- 2) Thermal Limiting: In case the die temperature exceeds the normal limit (T_{CHG_LIM}), the MAX14748 will attempt to limit temperature increase by reducing the input current at CHGIN. In this condition, the system load has priority over charger current, so the input current is first reduced by lowering the charge current. If the junction temperature continues to rise and reaches the maximum operating limit (T_{BUS_LIM}), no input current is drawn from CHGIN and the battery powers the entire system load.
- Adaptive Battery Charging: While the system is powered from CHGIN, the charger draws power from SYS to charge the battery. If the total load exceeds the input current limit, the battery supplies supplmental current to the load.
- 4) Adaptive Input Current Limiting: If the MAX14748 input current limit is programmed in such a way that the adapter voltage collapses due to resistive drop, current limiting, or poor load transient response, the AICL loop allows the MAX14748 to regulate the input voltage above a value needed to ensure proper operation. <u>Figure 2</u> illustrates high-level operation of the AICL block and associated parameters are found in the registers 0x2C to 0x2E.

*JEITA (Japan Electronics and Information Technology Industries Association) Standard, A Guide to the Safe Use of Secondary Lithium Ion Batteries on Notebook–Type Personal Computers, April 20, 2007.

ChgTyp[1:0]	PrChgTyp[2:0]	CCIStat[1:0]	SDPMaxCur[1:0]	CDPMaxCur[1:0]	ILIM	SpvChgllim[4:0]
"xx"	"xxx"	"11 = 3A"	"00"	"0"	3A	0x1D
"11 = 1.5A"	"xxx"	"11 = 3A"	"xx"	"x"	ЗA	0x1D
"xx"	"110 = 3A"	"xx"	"xx"	"x"	ЗA	0x1D
"xx" "101 = 2.4A"		"00" or "01 = 500mA" or "10 = 1.5A"	"XX"	"X"	2.4A	0x17
"xx"	"100 = 2A" or "001 = 2A"	"00" or "01 = 500mA" or "10 = 1.5A"	"XX"	"X"	2A	0x13
"1x = 1.5A"	"000" or "010 = 500mA"	"00" or "01 = 500mA" or "10 = 1.5A"	"xx"	"X"	1.5A	0x0E
"1x = 1.5A"	"000" or "010 = 500mA" or "011 = 1A"	"10 = 1.5A"	"xx"	"X"	1.5A	0x0E
"xx" "011 = 1A"		"00" or "01 = 500mA"	"xx"	"X"	1A	0x09
"01 = 500mA"	"000" or "010 = 500mA"	"00" or "01 = 500mA"	"xx"	"X"	0.5A	0x04
"01 = 500mA"	"000"	"10 = 1.5A" or "11 = 3A"	01	"X"	0.5A	0x04
"01 = 500mA"	"000"	"10 = 1.5A" or "11 = 3A"	10	"Х"	1.0A	0x09
"01 = 500mA"	"000"	"10 = 1.5A" or "11 = 3A"	11	"X"	1.5A	0x0E
"10 = 1.5A"	"000"	"11 = 3A"	XX	"1"	1.5A	0x0E
"00"	"xxx"	"xx"	"XX"	"x"	NA	NA

Table 1a. Automatic Input Current Limit Control

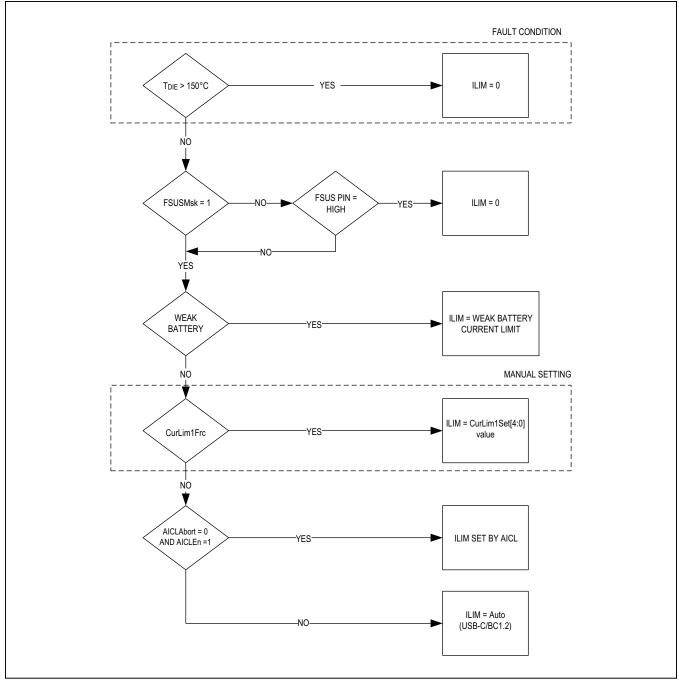


Figure 1. Input Current Limit Settings Flow Diagram

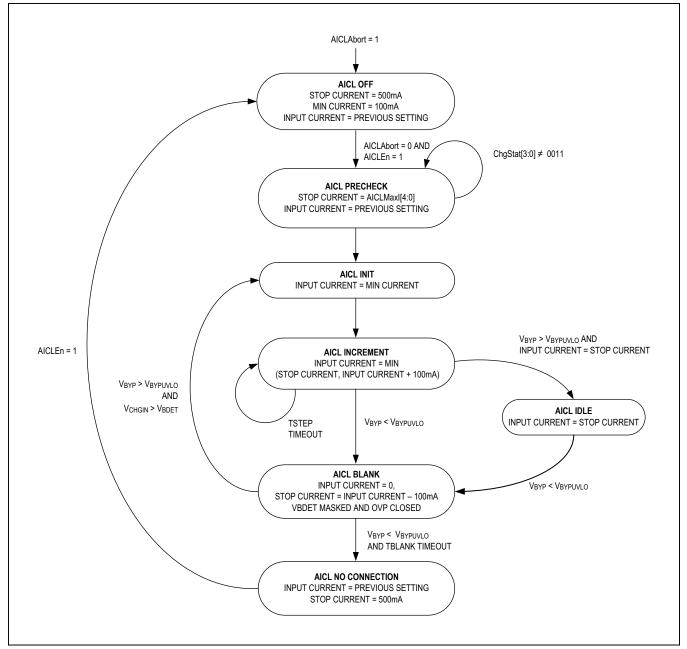


Figure 2. AICL Operation Flow Diagram

Boost Converter with Reverse Buck

Boost Mode

The MAX14748 boost converter operates as either a current-limited voltage source, or current source, depending on the charger operational state. When a valid USB voltage is present at CHGIN, and the charger is disabled, V_{SYS} is regulated to V_{BAT} + 400mV. If the charger is in precharge mode, V_{SYS} is regulated to V_{PCHG} + 400mV. When the system is in fast-charge mode, the boost converter operates as a current source, delivering current into the SYS node that is shared by the battery and system loads.

The boost converter current limit may be acted upon by multiple system blocks, including the programmed input current limit, thermal status, charging current, SYS regulation voltage block, and battery termination voltage block. The minimum requested current from these blocks at any given time determines the active current limit in the boost.

Reverse Buck Mode

The CHGIN-SYS switching converter may operate as a buck converter when needed to supply a load attached to CHGIN. The load may be a Type-C sink or some other proprietary device.

If Type-C DRP operation is enabled, the buck converter can be enabled by the Type-C state machine. The output voltage of the buck can be programmed from 4V to 5.5V in 0.1V steps by writing to BuckVSet[3:0], however, it is not recommended to change the output voltage when the buck is active.

The output of the buck converter turns off when a fault occurs. The specific fault occurred is indicated by DCDCILim, DCDCRunAway, DCDCPGood status bits (register 0x04). See Register Descriptions for more details. When the buck is disabled due to a fault, both VBUSDet (register 0x07) and VSAFE0V (register 0x0A) change to 0. After the fault condition is removed, the buck converter can be restarted by writing 1 to CCSnkRst, CCSrcRst, CCForceError, or USBCRset auto-reset bits.

Smart Power Selector

The Smart Power Selector seamlessly distributes power between CHGIN, battery (BAT) and the system (SYS). The basic modes of operation of the smart power selector are:

- 1. With a valid external power source:
 - a. The external power source at CHGIN is the primary source of energy.
 - b. The battery is the secondary source of energy.
 - c. Energy delivery to SYS is the highest priority.
 - d. Any energy that is not required by SYS is available to the battery.
- 2. With no power source available at CHGIN:
 - a. The battery is the primary source of energy.
 - b. Energy delivery to SYS has the highest priority.
- 3. With a Type-C Sink or other load present at CHGIN:
 - a. The battery is the primary source of energy.
 - b. Energy delivery to SYS is the highest priority.
 - c. Energy delivery to BYP is the second highest priority.

- 4. SYS Regulation Voltage:
 - a. When the charger path is enabled and the charger is disabled, V_{SYS} is regulated to V_{BAT} + 400mV and BAT switch is off.
 - When the charger is enabled but in a non-charging state such as maitain charge done, thermistor suspend, or timer fault, V_{SYS} is regulated to V_{BAT} + 400mV and BAT switch is off.
 - c. When the input charger path is enabled and the battery is charging in prequalification, V_{SYS} is regulated to V_{PCHG} + 400mV. Charge current is reduced when V_{SYS} approaches V_{PCHG} + 200mV.
 - d. When the input charger path is enabled and the battery is charging in fast-charge or maintain charge done, the BAT switch is closed and $V_{SYS} = V_{BAT}$. In maintain charge done state, the connection between SYS and BAT acts as an ideal diode. Therefore, when V_{SYS} drops below V_{BAT} , the BAT switch is turned fully on and the battery supplements the SYS load along with the current from CHGIN.
 - e. When the switching converter is enabled as a reverse buck, the BAT switch is closed and V_{SYS} = V_{BAT}.

Short-Circuit Protection

The MAX14748 provides short-circuit protection to the power nodes. When SYS is shorted to ground, input current from CHGIN is limited by boost converter current limit. Note in this case, FET diode from BAT-SYS prevents control of FET BAT-SYS current. Battery current is not limited by the MAX14748 and a pack protector is needed to limit the battery current.

When either BYP or CHGIN is shorted to ground, the current from BAT is limited by the reverse buck converter.

USB Type-C 1.1

USB Type-C 1.1 UFP and DRP Support

The MAX14748 provides support for devices functioning as a Upstream Facing Port (UFP) or Dual Role Port (DRP) per the current USB Type-C 1.1 specification. When acting as a power source in DRP mode, the MAX14748 can provide a 5V V_{BUS} on the CHGIN pin through operation of the reverse buck converter. The USB Type-C V_{CONN} supply is provided externally via the V_{CONN} pin, and switched internally onto one of the CC pins. An open-drain output pin, BVCEN, is provided to enable the external V_{CONN} supply based on the Type-C state machine output. BVCEN is a push-pull output between GND and V_{CCINT}.

USB BC1.2 Compliant and Nonstandard Charger Support

The BC1.2 charger detection and special charger detection routine is embedded within the Type-C state machine. The BC1.2 and Special Charger detection routine runs always when the state machine enters the 'AttachWait. SNK' state of the USB Type-C 1.1 state-machine.

USB Type-C Adapter Insertion

Figure 3a and Figure 3b depict the general timings when a USB Type-C adapter is attached. For more information on the behavior and timings of the USB Type-C 1.1 statemachine, please refer to the USB Type-C specification.

USB Type-C Charger

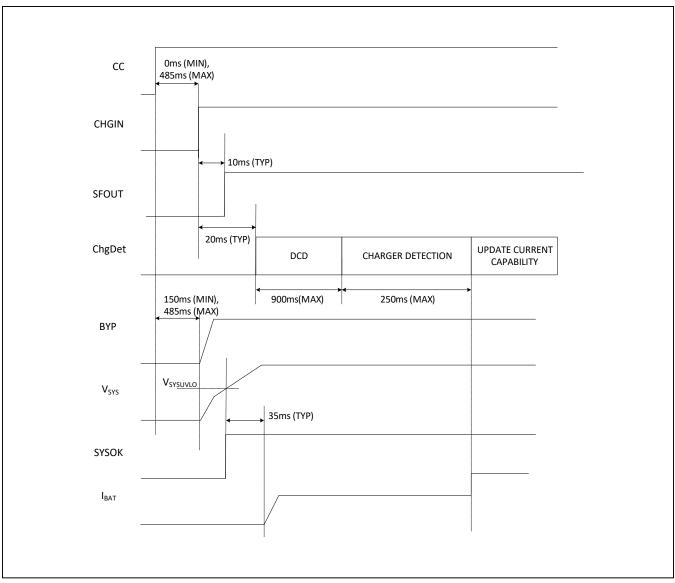


Figure 3a. Type-C Adapter Insertion (CHGINILimGate = 0)