: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Quad SPST +70V Analog Switches

Abstract

General Description The MAX14756/MAX14757/MAX14758 are analog switches with a low on-resistance of 10Ω (max) that conduct equally well in both directions. All devices have a rail-to-rail analog-signal range. They operate with a single +10 V to +70 V supply in unipolar applications or $\pm 35 \mathrm{~V}$ dual supplies in bipolar applications. The bipolar supplies can be offset and do not have to be symmetrical. The MAX14756 is a quad normally closed (NC) single-pole/single-throw (SPST) switch, the MAX14757 is a quad normally open (NO) SPST switch, and the MAX14758 has two NO and two NC SPST switches. These switches have 5Ω (typ) on-resistances and low on-leakage currents of 0.01 nA (typ). The on-resistance flatness is 0.004Ω (typ).

The devices are suitable for a multitude of analog signal routing and switching applications. They are specified over an extended temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, but can be operated up to $+125^{\circ} \mathrm{C}$ with elevated leakage currents.

Industrial Control Systems
Instrumentation
Battery Management
Environmental Control Systems
Medical Systems
ATE System
Audio Signal Routing/Switching
Automotive

Features

- Single-Supply Operation from +10 V to +70 V
- Bipolar-Supply Operation Up to $\pm 35 \mathrm{~V}$
- On-Resistance of 10Ω (max)
- RoN Flatness of 0.004Ω (typ)
- 2.5 nA (max) Off-Leakage Currents at $+85^{\circ} \mathrm{C}$
- Overvoltage/Undervoltage Clamping Through Protection Diodes
- 500 A (typ) Supply Current
- TSSOP 16-Pin Package
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient Temperature Range
- Functionally Compatible to DG411, DG412, and DG413
- Functionally Operational Up to $+125^{\circ} \mathrm{C}$

Ordering Information

PART	FUNCTION	TEMP RANGE	PIN- PACKAGE
MAX14756EUE+	Quad NC SPST	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX14757EUE+	Quad NO SPST	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX14758EUE+ +	Dual NO + NC SPST	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP

+Denotes a lead(Pb)-free/RoHS-compliant package.

Functional Diagrams

Quad SPST +70V Analog Switches

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$ to $V_{S S}$
. 0.3 V to +72 V
VSS to GND \qquad -36 V to +0.3 V
VL, EN_ to GND-0.3V to the lesser of ($+12 \mathrm{~V}, \mathrm{~V} D \mathrm{DD}+0.3 \mathrm{~V}$)
 (whichever occurs first)
Continuous Current into A_{-}, B_{-} $\pm 100 \mathrm{~mA}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70$ TSSOP (derate $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above +70	
Operating Temperature Range.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

SSOP (derate $11.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 889 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range............................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TSSOP

Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$)............ $90^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance ($\theta \mathrm{JC}$)................ $27^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—DUAL SUPPLIES

$\left(\mathrm{V}_{\mathrm{DD}}=+35 \mathrm{~V}, \mathrm{~V}_{S S}=-35 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
VDD Supply-Voltage Range	VDD		+10		+35	V
VSS Supply-Voltage Range	VSS		-10		-35	V
VL Logic Supply-Voltage Range	VL		+1.6		+11	V
VDD Supply Current	IDD(OFF)	$V_{E N}+$ to switch off state, $\mathrm{V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}=+20 \mathrm{~V}$		200	450	$\mu \mathrm{A}$
	IDD(ON)	$V_{E N}$ _ to switch on state, $\mathrm{V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}=+20 \mathrm{~V}$		500	800	
VSS Supply Current	ISS(OFF)	$V_{E N}+$ to switch off state, $\mathrm{V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}=+20 \mathrm{~V}$		200	450	$\mu \mathrm{A}$
	ISS(ON)	$\mathrm{V}_{E N}$ _ to switch on state, $\mathrm{V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}=+20 \mathrm{~V}$		500	800	
VL Current	IL	$\begin{aligned} & V_{L}=+11 \mathrm{~V}, \mathrm{~V}_{\text {EN } 1}=\mathrm{V}_{\text {EN2 }}=\mathrm{V}_{\text {EN3 }}=\mathrm{V}_{\text {EN4 }}= \\ & \left(0.25 \times \mathrm{V}_{\mathrm{L}}\right) \text { or }\left(0.75 \times \mathrm{V}_{\mathrm{L}}\right) \end{aligned}$			0.4	mA
SWITCH						
Analog-Signal Range	$\mathrm{V}_{\mathrm{A}_{-},} \mathrm{V}_{\mathrm{B}_{-}}$	Figure 1	VSS		VDD	V
Current Through Switch	$1 A_{-}, \mathrm{IB}_{-}$	$\mathrm{V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}=+20 \mathrm{~V}$	-50		+50	mA
On-Resistance	Ron	$\mathrm{I}_{\mathrm{A}_{-},} \mathrm{I}_{\mathrm{B}_{-}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}= \pm 20 \mathrm{~V}$, Figure 1		5	10	Ω
On-Resistance Matching Between Channels	$\triangle \mathrm{RON}$	$\begin{aligned} & I_{A_{-}}, I_{B_{-}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}= \pm 20 \mathrm{~V}, 0 \mathrm{~V} \\ & (\text { Note } 2) \end{aligned}$		0.3	0.5	Ω
On-Resistance Flatness	RFLAT(ON)	$\mathrm{IA}_{-}, \mathrm{IB}_{-}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}= \pm 20 \mathrm{~V}$		0.004		Ω
On-Leakage Current	IA/B_(ON)	$\mathrm{V}_{\mathrm{B}_{-}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}=$unconnected, Figure 2	-5		+5	nA
		$\begin{aligned} & \mathrm{V}_{\mathrm{B}_{-}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}=\text {unconnected }, \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text {, Figure } 2 \end{aligned}$		0.01		
Off-Leakage Current	IA/B_(OFF)	$\mathrm{V}_{\mathrm{B}_{-}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}=-20 \mathrm{~V}$, Figure 3	-2.5		+2.5	nA
		$\mathrm{V}_{\mathrm{B}_{-}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}=-20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ Figure 3		0.01		

Quad SPST +70V Analog Switches

ELECTRICAL CHARACTERISTICS—DUAL SUPPLIES (continued)

$\left(V_{D D}=+35 \mathrm{~V}, \mathrm{~V}\right.$ SS $=-35 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V} \mathrm{~L}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC (EN1, EN2, EN3, EN4)						
Input-Voltage Low	VIL				$\begin{gathered} 0.25 x \\ V_{L} \end{gathered}$	V
Input-Voltage High	VIH		$\begin{gathered} 0.75 \mathrm{x} \\ \mathrm{VL} \end{gathered}$			V
Input Leakage Current		$\mathrm{V}_{E N}=0 \mathrm{~V}$ or V_{L}	-1		+1	$\mu \mathrm{A}$

DYNAMIC CHARACTERISTICS

VDD/VSS Power-On Time		$R \mathrm{~L}=10 \mathrm{k}$,	1		$\mu \mathrm{s}$
Enable Turn-On Time	ton	$\mathrm{V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Figure 4	35	60	$\mu \mathrm{s}$
Enable Turn-Off Time	toff	$\mathrm{V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Figure 4	2	3	$\mu \mathrm{s}$
Off-Isolation	VISO	$\begin{aligned} & V_{A_{-}}, V_{B_{-}}=1 \mathrm{~V} R M S, f=100 \mathrm{kHz}, R_{L}=1 \mathrm{k} \Omega, \\ & C_{L}=15 \mathrm{pF} \text {, Figure } 5 \end{aligned}$	65		dB
Crosstalk	VCT	$R_{S}=R_{L}=1 \mathrm{k} \Omega$, Figure 6	96		dB
-3dB Bandwidth	BW	$R S=50 \Omega, R L=1 \mathrm{k} \Omega$, Figure 7	145		MHz
Total Harmonic Distortion Plus Noise	THD+N	$R S=R L=1 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz	0.001		\%
Charge Injection	Q	$\mathrm{A}_{-}, \mathrm{B}_{-}=\mathrm{GND}, \mathrm{CL}^{2}=1 \mathrm{nF}$, Figure 8	580		pC
Switch-On Capacitance	Cin	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}=+4 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	40		pF
Switch-Off Capacitance	CIN	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}=+4 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	35		pF

DC ELECTRICAL CHARACTERISTICS—SINGLE SUPPLY

$\left(\mathrm{VDD}=+70 \mathrm{~V}, \mathrm{VSS}=\mathrm{V}_{\mathrm{GND}}=\mathrm{OV}, \mathrm{VL}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | UNITS

Note 2: Guaranteed by design; not production tested.
Note 3: All parameters in single-supply operation are expected to be the same as in dual-supply operation.

Quad SPST +70V Analog Switches

Figure 3. Off-Leakage Current
\qquad

Quad SPST +70V Analog Switches

Quad SPST +70V Analog Switches

Figure 7. Frequency Response

Vout IS THE MEASURED VOLTAGE DUE TO CHARGE
TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF
$Q=C_{L} \times V_{\text {OUT }}$

Figure 8. Charge Injection

Quad SPST＋70V Analog Switches

Typical Operating Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{L}}=+3.3 \mathrm{~V}\right.$ ，unless otherwise noted．）

ON－RESISTANCE vs．VB＿AND TEMPERATURE （SINGLE SUPPLY）

ON－RESISTANCE vs．VB＿AND TEMPERATURE （DUAL SUPPLIES）

ON－LEAKAGE vs．TEMPERATURE

ON－RESISTANCE vs． \mathbf{V}_{B}
（SINGLE SUPPLY）

ON－LEAKAGE vs．TEMPERATURE

VL INPUT CURRENT vs．VEN

Quad SPST +70V Analog Switches

TURN-ON TIME vs. INPUT VOLTAGE

PSRR vs. FREQUENCY

TURN-OFF TIME vs. INPUT VOLTAGE

Quad SPST +70V Analog Switches

Pin Description

PIN	NAME	FUNCTION
1	A1	Terminal A of Switch 1
2	B1	Terminal B of Switch 1
3	EN1	Enable Input of Switch 1. When EN1 is driven high, the switch's state (NO/NC) changes (see Tables 1, 2, and 3).
4	VSS	Negative Supply Voltage. Bypass VSS to GND with a 1 μ F ceramic capacitor (100V rated) as close as possible to the pin.
5	GND	Ground
6	EN4	Enable Input of Switch 4. When EN4 is driven high, the switch's state (NO/NC) changes (see Tables 1, 2, and 3).
7	B4	Terminal B of Switch 4
8	A4	Terminal A of Switch 4
9	A3	Terminal A of Switch 3
10	B3	Terminal B of Switch 3
11	EN3	Enable Input of Switch 3. When EN3 is driven high, the switch's state (NO/NC) changes (see Tables 1, 2, and 3).
12	VL	Logic Supply Voltage. Bypass VL to GND with a 1 μ F ceramic capacitor as close as possible to the pin.
13	VDD	Positive Supply Voltage. Bypass VDD to GND with a 1 possible ceramic capacitor (100V rated) as close as pin.
14	EN2	Enable Input of Switch 2. When EN2 is driven high, the switch's state (NO/NC) changes (see Tables 1, 2, and 3).
15	B2	Terminal B of Switch 2
16	A2	Terminal A of Switch 2

Quad SPST +70V Analog Switches

Detailed Description

The MAX14756/MAX14757/MAX14758 are analog switches with low on-resistance of 10Ω (max) that conduct equally well in both directions. All devices have a rail-to-rail analog-signal range. They operate with a single +70 V supply in unipolar applications or $\pm 35 \mathrm{~V}$ dual supplies in bipolar applications. The bipolar supplies can be offset and do not have to be symmetrical.
The MAX14756 is a quad NC SPST switch, the MAX14757 is a quad NO SPST switch, and the MAX14758 has two NO and two NC SPST switches. These switches have 5Ω (typ) on-resistances and low on-leakage currents of 5 nA (max). The on-resistance flatness is 0.004Ω (typ). These devices are suitable for a multitude of analog-signal routing and switching applications, and are functonally operational up to $+125^{\circ} \mathrm{C}$ with increased leakage currents.

Applications Information

Low-Distortion Audio

The MAX14756/MAX14757/MAX14758 switches, having low RON and very low RON variation with signal amplitude, are well suited for low-distortion audio applications. The Typical Operating Characteristics show Total Harmonic Distortion (THD) vs. Frequency graphs for several signal amplitudes.

Current Through the Switches

The current flowing through every switch must be limited to $\pm 50 \mathrm{~mA}$ for normal operation. If the current exceeds this limit, an internal leakage current flows from the switch to VSS. Larger input currents do not destroy the device, as long as the Absolute Maximum Ratings are not exceeded.

Input-Voltage Clamping

For applications that require input voltages beyond the supplies rails, the internal input diodes to VDD and $V_{S S}$ can be used to limit the input voltages. As shown in Figure 9, series resistors can be employed at the inputs to limit the currents flowing into the diodes during undervoltage and overvoltage conditions. Choose the limiting resistors such that the input currents are limited to IIN_(MAX) $=100 \mathrm{~mA}$. The values of the current-limit resistors can be calculated as the larger of RLIM+ and RLIM-.

$$
\begin{aligned}
& R_{\text {LIM }+}=\frac{V_{I N}(M A X)-V_{D D}}{I_{I_{N}}(M A X)} \\
& R_{\text {LIM }-}=\frac{V_{S S}-V_{I N}(M I N)}{I_{I_{N}}(M A X)}
\end{aligned}
$$

Table 1. MAX14756 Truth Table

LOGIC		SWITCH	
EN1	0	A1/B1	Closed
EN2	0	A2/B2	Closed
EN3	0	A3/B3	Closed
EN4	0	A4/B4	Closed
EN1	1	A1/B1	Open
EN2	1	A2/B2	Open
EN3	1	A3/B3	Open
EN4	1	A4/B4	Open

Table 2. MAX14757 Truth Table

LOGIC		SWITCH	
EN1	0	A1/B1	Open
EN2	0	A2/B2	Open
EN3	0	A3/B3	Open
EN4	0	A4/B4	Open
EN1	1	A1/B1	Closed
EN2	1	A2/B2	Closed
EN3	1	A3/B3	Closed
EN4	1	A4/B4	Closed

Table 3. MAX14758 Truth Table

LOGIC		SWITCH	
EN1	0	A1/B1	Closed
EN2	0	A2/B2	Open
EN3	0	A3/B3	Open
EN4	0	A4/B4	Closed
EN1	1	A1/B1	Open
EN2	1	A2/B2	Closed
EN3	1	A3/B3	Closed
EN4	1	A4/B4	Open

During an undervoltage or overvoltage condition, the input impedance is equal to RLIM. The additional power dissipation due to the fault currents needs to be calculated. During an overvoltage or undervoltage clamping condition on one switch input, the other switches of the MAX14756/MAX14757/MAX14758 operate normally.

Beyond-the-Rail Input

If input voltages are expected to go beyond the supply voltages, but within the absolute maximum supply voltages of the MAX14756/MAX14757/MAX14758, add two diodes in series with the supplies as shown in Figure 10.

Quad SPST＋70V Analog Switches

Figure 9．Input Overvoltage and Undervoltage Clamping

Figure 10．Beyond－the－Rail Application

During undervoltage and overvoltage events，the internal diodes pull VDD／VSS supplies up／down．An advantage of this scheme is that the input impedance is high and currents do not flow though the MAX14756／MAX14757／ MAX14758 during overvoltage and undervoltage events． The input voltages must be limited to the voltages speci－ fied in the Absolute Maximum Ratings section．

Chip Information

PROCESS：BiCMOS

Package Information

For the latest package outline information and land patterns （footprints），go to www．maxim－ic．com／packages．Note that a ＂+ ＂，＂\＃＂，or＂－＂in the package code indicates RoHS status only． Package drawings may show a different suffix character，but the drawing pertains to the package regardless of RoHS status．

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO．	LAND PATTERN NO．
16 TSSOP	$\mathrm{U} 16+1$	$\underline{21-0066}$	$\underline{90-0117}$

Quad SPST +70V Analog Switches

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$12 / 10$	Initial release	-

