

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









### **General Description**

The MAX14805/MAX14806 provide high-voltage switching on 16 channels for ultrasonic imaging. Both devices are ideal for the following applications: banks selection in biplane or triplane ultrasound probes and relays replacement. The devices utilize 200V process technology to provide sixteen high-voltage, low-charge injection SPST switches, controlled by a digital interface.

The MAX14805/MAX14806's output switches are configured as two sets of eight SPST analog switches. The switches are controlled by two input logic controls, DIN1 and DIN2 (respectively for switch 0 to 7 and switch 8 to 15). The MAX14806 features integrated  $40k\Omega$  bleed resistors on each switch terminal, which help to reduce voltage buildup in capacitive loads such as piezoelectric elements.

The MAX14805/MAX14806 operate with a wide range of high-voltage supplies, including VPP/VNN = +100V/-100V, +200V/0V, and +40V/-160V. The digital interface operates from a separate VDD supply from +2.7V to +5.5V. Digital inputs DIN1, DIN2, and LE operate on the VDD supply voltage.

The MAX14805CCM+ is a drop-in replacement for the Supertex HV2631. The MAX14806CCM+ is a drop-in replacement for the Supertex HV2731. Both devices are available in the 48-pin, TQFP package and are specified for the extended -40°C to +85°C temperature range.

#### **Features**

- ♦ HVCMOS Technology for High Performance
- ♦ Two Sets of 8-Channel SPST High-Voltage Analog **Switches**
- ♦ DC to 20MHz Low-Voltage Analog Signal **Frequency Range**
- ♦ +2.7V to +5.5V Logic Supply Voltage
- ◆ Ultra-Low (0.1µA) (typ) Quiescent Current
- ♦ Low-Charge Injection, Low-Capacitance 20Ω **Switches**
- ♦ -77dB (typ) Off-Isolation at 5MHz (50Ω)
- ◆ Flexible, High-Voltage Supplies (Vpp VNN = 230V)

Applications

Medical Ultrasound Imaging Nondestructive Test (NDT)

## **Ordering Information/Selector Guide**

| PART         | SWITCH<br>CHANNELS | BLEED<br>RESISTOR | SECOND SOURCE | PIN-PACKAGE |
|--------------|--------------------|-------------------|---------------|-------------|
| MAX14805CCM+ | 2 x 8              | No                | HV2631        | 48 TQFP     |
| MAX14806CCM+ | 2 x 8              | Yes               | HV2731        | 48 TQFP     |

Note: All devices are specified over the extended -40°C to +85°C operating temperature range. +Denotes a lead(Pb)-free/RoHS-compliant package.

### **ABSOLUTE MAXIMUM RATINGS**

| (All voltages referenced to GND.)         |                                   |
|-------------------------------------------|-----------------------------------|
| VDD Logic Supply Voltage                  | 0.3V to +7V                       |
| VPP - VNN Supply Voltage                  | 230V                              |
| VPP Positive Supply Voltage               | 0.3V to +220V                     |
| V <sub>NN</sub> Negative Supply Voltage   |                                   |
| Logic Inputs Voltage (LE, DIN1, DIN2)     | 0.3V to +7V                       |
| Analog Signal Range (SW_)(-0.3V           | + $V_{NN}$ ) to $(V_{NN} + 200V)$ |
| Peak Analog Signal Current per Channe     |                                   |
| Continuous Power Dissipation ( $T_A = +7$ |                                   |
| 48-Pin TQFP (derate 22.7mW/°C abo         | ve +70°C)1818mW                   |
|                                           |                                   |

| Junction-to-Ambient Thermal Resistance |                |
|----------------------------------------|----------------|
| θJA (Note 1)                           | 44°C/W         |
| Junction-to-Case Thermal Resistance    |                |
| θJC (Note 1)                           | 10°C/W         |
| Operating Temperature Range            | 40°C to +85°C  |
| Storage Temperature Range              | 65°C to +150°C |
| Junction Temperature                   | +150°C         |
| Lead Temperature (soldering, 10s)      | +300°C         |
| Soldering Temperature (reflow)         | +260°C         |
|                                        |                |

**Note 1:** Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to **www.maxim-ic.com/thermal-tutorial**.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **ELECTRICAL CHARACTERISTICS**

 $(V_{DD} = +2.7V \text{ to } +5.5V, V_{PP} = +40V \text{ to } (V_{NN} + 200V), V_{NN} = -40V \text{ to } -160V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$  Typical values are at  $T_A = +25^{\circ}\text{C.}$ ) (Note 2)

| PARAMETER                                                                           | SYMBOL             | CONDITIONS                                                                                                     | MIN  | TYP  | MAX                      | UNITS |
|-------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|------|------|--------------------------|-------|
| POWER SUPPLIES                                                                      |                    |                                                                                                                |      |      |                          |       |
| V <sub>DD</sub> Supply Voltage                                                      | V <sub>DD</sub>    |                                                                                                                | 2.7  |      | 5.5                      | V     |
| Vpp Supply Voltage                                                                  | VPP                |                                                                                                                | 40   | 100  | V <sub>NN</sub><br>+ 220 | V     |
| V <sub>NN</sub> Supply Voltage                                                      | V <sub>NN</sub>    |                                                                                                                | -160 | -100 | -15                      | V     |
| V <sub>DD</sub> Supply Quiescent Current                                            | IDDQ               |                                                                                                                |      |      | 5                        | μΑ    |
| V <sub>DD</sub> Supply Dynamic Current                                              | IDDD               | $V_{DD} = +5V$ , $\overline{LE} = GND$ , $f_{DIN1} = f_{DIN2} = 5MHz$                                          |      |      | 2                        | mA    |
| V <sub>PP</sub> Supply Quiescent Current                                            | IPPQ               |                                                                                                                |      |      | 10                       | μΑ    |
| VPP Supply Dynamic Current (All Channel Switching Simultaneously)                   | t IPPD             | $V_{PP} = +40V$ , $V_{NN} = -160V$ , $f_{SW} = 50kHz$ , $f_{DIN1} = f_{DIN2} = 50kHz$ , $\overline{LE} = GND$  |      |      | 5                        |       |
|                                                                                     |                    | $V_{PP} = +100V$ , $V_{NN} = -100V$ , $f_{SW} = 50$ kHz, $f_{DIN1} = f_{DIN2} = 50$ kHz, $\overline{LE} = GND$ |      |      | 6                        | mA    |
|                                                                                     |                    | $V_{PP} = +160V$ , $V_{NN} = -40V$ , $f_{SW} = 50kHz$ , $f_{DIN1} = f_{DIN2} = 50kHz$ , $\overline{LE} = GND$  |      |      | 7                        |       |
| V <sub>NN</sub> Supply Quiescent Current                                            | I <sub>NNQ</sub>   |                                                                                                                |      |      | 10                       | μΑ    |
| V <sub>NN</sub> Supply Dynamic Current<br>(All Channel Switching<br>Simultaneously) | nel Switching INND | $V_{PP} = +40V, V_{NN} = -160V, f_{SW} = 50kHz, f_{DIN1} = f_{DIN2} = 50kHz, \overline{LE} = GND$              |      |      | 5.5                      |       |
|                                                                                     |                    | $V_{PP} = +100V$ , $V_{NN} = -100V$ , $f_{SW} = 50$ kHz, $f_{DIN1} = f_{DIN2} = 50$ kHz, $\overline{LE} = GND$ |      |      | 5                        | mA    |
|                                                                                     |                    | $V_{PP} = +160V$ , $V_{NN} = -40V$ , $f_{SW} = 50kHz$ , $f_{DIN1} = f_{DIN2} = 50kHz$ , $\overline{LE} = GND$  |      |      | 4.5                      |       |

### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{DD} = +2.7V \text{ to } +5.5V, V_{PP} = +40V \text{ to } (V_{NN} + 200V), V_{NN} = -40V \text{ to } -160V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$  Typical values are at  $T_A = +25^{\circ}C$ .) (Note 2)

| PARAMETER                                | SYMBOL            | CONDITIONS                                                                                          |                                    | MIN             | TYP        | MAX         | UNITS |
|------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------|------------------------------------|-----------------|------------|-------------|-------|
| SWITCH CHARACTERISTICS                   |                   |                                                                                                     |                                    |                 |            |             |       |
| Analog Signal Range                      | V <sub>SW</sub> _ | (Note 3)                                                                                            |                                    | V <sub>NN</sub> |            | VPP -<br>10 | V     |
|                                          |                   | VPP = +40V,                                                                                         | I <sub>SW_</sub> = 5mA             |                 | 28         | 52          |       |
|                                          |                   | $V_{NN} = -160V,$<br>$V_{SW} = 0V$                                                                  | I <sub>SW_</sub> = 200mA           |                 | 22         | 37          |       |
| Small-Signal                             | Rons              | VPP = +100V,                                                                                        | Isw_ = 5mA                         |                 | 22         | 34          |       |
| On-Resistance                            |                   | $V_{NN} = -100V,$<br>$V_{SW} = 0V$                                                                  | Isw_ = 200mA                       |                 | 18         | 27          | Ω     |
|                                          |                   | VPP = +160V,                                                                                        | Isw_ = 5mA                         |                 | 20         | 30          |       |
|                                          |                   | $V_{NN} = -40V,$<br>$V_{SW} = 0V$                                                                   | I <sub>SW_</sub> = 200mA           |                 | 16         | 23          |       |
| Small-Signal On-Resistance Matching      | ΔRons             | VPP = +100V, VN                                                                                     | IN = -100V, ISW_ = 5mA             |                 | 5          |             | %     |
| Large-Signal Switch<br>On-Resistance     | Ronl              | Vsw_ = Vpp - 10V, Isw_ = 1A                                                                         |                                    |                 | 15         |             | Ω     |
| Shunt Resistance                         | RINT              | MAX14806 only                                                                                       |                                    | 27              | 40         | 53          | kΩ    |
| Switch-Off Leakage                       | ISW_(OFF)         | Vsw_ = Vpp - 10V or unconnected (MAX14805 only) (Figure 1)                                          |                                    |                 | 0          | 2.5         | μΑ    |
| Switch-Off DC Offset                     |                   | $R_L = 100$ k $Ω$ (Figure 1)                                                                        |                                    | -30             |            | +30         | mV    |
| Switch Output Peak Current               |                   | 100ns pulse width, 0.1% duty cycle                                                                  |                                    |                 | 3          |             | А     |
| Switch Output Isolation Diode<br>Current |                   | 300ns pulse width, 2% duty cycle (Figure 1)                                                         |                                    |                 | 2          |             | А     |
| SWITCH DYNAMIC CHARACTE                  | RISTICS           |                                                                                                     |                                    |                 |            |             |       |
| Turn-On Time                             | ton               | Vsw_ = Vpp - 10 <sup>1</sup><br>Vnn = -40V to -1                                                    |                                    |                 |            | 5           | μs    |
| Turn-Off Time                            | toff              | V <sub>SW</sub> = V <sub>PP</sub> - 10 <sup>1</sup><br>V <sub>NN</sub> = -40V to -1                 |                                    |                 |            | 5           | μs    |
| Output Switching Frequency               | fsw               | Duty cycle = 50%                                                                                    | %                                  |                 |            | 50          | kHz   |
| Off-Isolation                            | V <sub>ISO</sub>  | $f = 5MHz$ , $R_L = 1k\Omega$ , $C_L = 15pF$ (Figure 1)<br>$f = 5MHz$ , $R_L = 50\Omega$ (Figure 1) |                                    |                 | -50<br>-77 |             | dB    |
| Crosstalk                                | VCT               | $f = 5MHz$ , $R_L = 50\Omega$ (Figure 1)<br>$f = 5MHz$ , $R_L = 50\Omega$ (Figure 1)                |                                    |                 | -80        |             | dB    |
| Switch Off-Capacitance (Note 4)          | Csw_(off)         | V <sub>SW</sub> = 0V, f = 1MHz                                                                      |                                    | 4               | 11         | 18          | pF    |
| Switch On-Capacitance (Note 4)           | Csw_(ON)          | V <sub>SW</sub> _ = 0V, f = 1MHz                                                                    |                                    | 20              | 36         | 56          | pF    |
| Output Voltage Spike (Note 4)            | VSPK              | $R_L = 50\Omega$ (Figure 1)                                                                         |                                    | -500            |            | +250        | mV    |
| Small-Signal Analog Bandwidth            | f <sub>BW</sub>   | VPP = +100V, VN                                                                                     | IN = -100V, C <sub>L</sub> = 200pF |                 | 20         |             | MHz   |

### **ELECTRICAL CHARACTERISTICS (continued)**

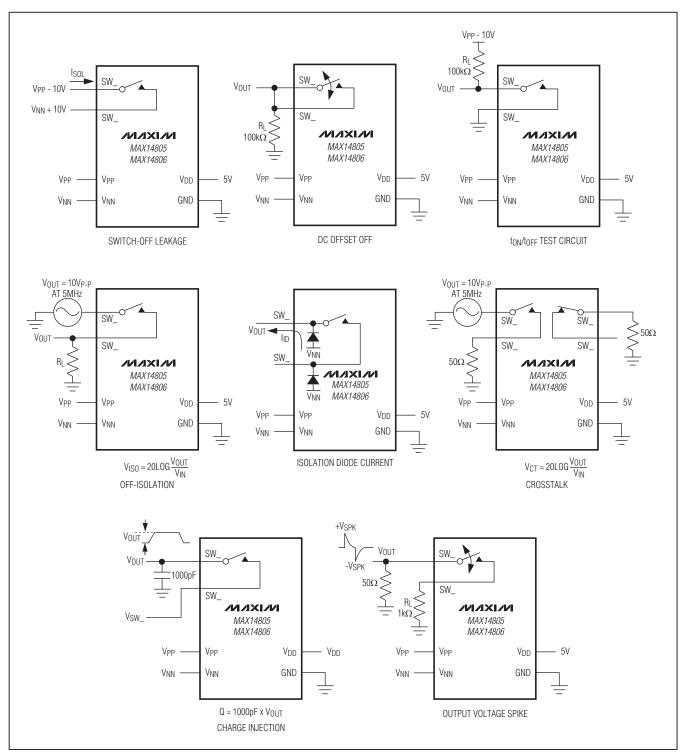
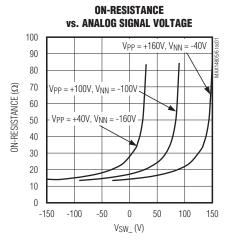
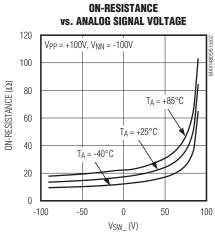
 $(V_{DD} = +2.7V \text{ to } +5.5V, V_{PP} = +40V \text{ to } (V_{NN} + 200V), V_{NN} = -40V \text{ to } -160V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$  Typical values are at  $T_A = +25^{\circ}C$ .) (Note 2)

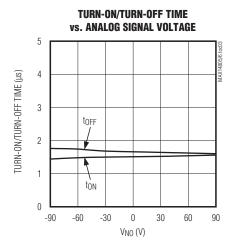
| PARAMETER                    | SYMBOL        | CONDITIONS                                                               | MIN                    | TYP | MAX  | UNITS |
|------------------------------|---------------|--------------------------------------------------------------------------|------------------------|-----|------|-------|
| Charge Injection             |               | VPP = +40V, V <sub>NN</sub> = -160V, V <sub>SW</sub> = 0V<br>(Figure 1)  |                        | 650 |      |       |
|                              | Q             | VPP = +100V, V <sub>NN</sub> = -100V, V <sub>SW</sub> = 0V<br>(Figure 1) | 450                    |     | рС   |       |
|                              |               | VPP = +160V, V <sub>NN</sub> = -40V, V <sub>SW</sub> = 0V<br>(Figure 1)  |                        | 250 |      |       |
| LOGIC LEVELS (DIN1, DIN2, LE | Ē)            |                                                                          |                        |     |      |       |
| Logic-Input Low Voltage      | VIL           |                                                                          |                        |     | 0.75 | V     |
| Logic-Input High Voltage     | VIH           |                                                                          | V <sub>DD</sub> - 0.75 |     |      | V     |
| Logic-Input Capacitance      | CIN           |                                                                          |                        |     | 10   | рF    |
| Logic-Input Leakage Current  | liN           |                                                                          | -1                     |     | +1   | μΑ    |
| LOGIC TIMING (See Timing Dia | ıgram, Figure | 2)                                                                       |                        |     |      |       |
| Setup Time                   | tsd           |                                                                          | 30                     |     |      | ns    |
| Hold Time                    | tHOLD         |                                                                          |                        |     | 30   | ns    |
| Time Width of LE             | twlE          |                                                                          | 30                     |     |      | ns    |

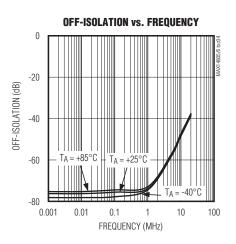
Note 2: All devices are 100% tested at TA = +85°C. Limits over the operating temperature range are guaranteed by design and characterization.

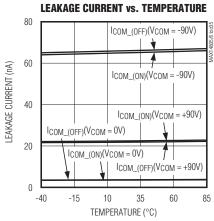
Note 3: The analog signal input  $V_{SW}$  must satisfy  $V_{NN} \le V_{SW} \le V_{PP}$  or remain unconnected during power-up.

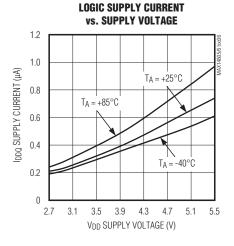
Note 4: Guaranteed by characterization; not production tested.

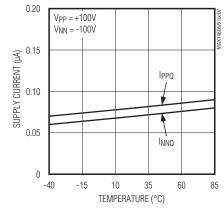


Figure 1. Test Circuits


### **Typical Operating Characteristics**

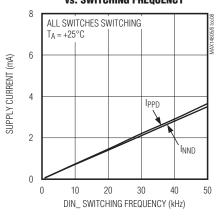

 $(V_{DD} = +3V, V_{PP} = +100V, V_{NN} = -100V, T_A = +25$ °C, unless otherwise noted.)



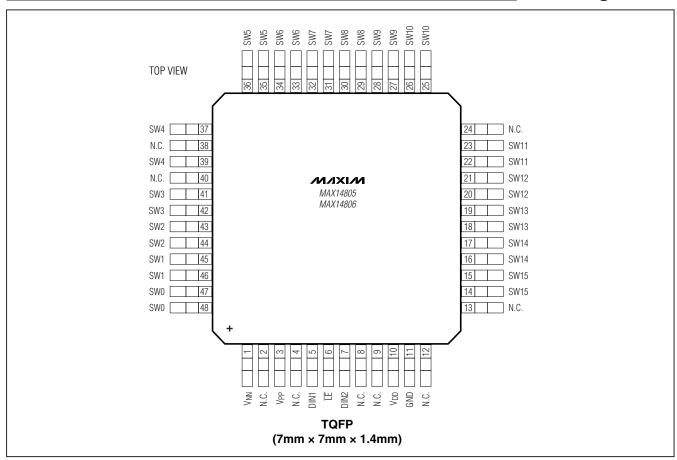








## HIGH-VOLTAGE SUPPLY CURRENT vs. TEMPERATURE



## HIGH-VOLTAGE SUPPLY CURRENT vs. SWITCHING FREQUENCY



## **Pin Configuration**



## **Pin Description**

| PIN                               | NAME            | FUNCTION                                                                                                                                        |
|-----------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                 | VNN             | Negative High-Voltage Power Supply. Bypass V <sub>NN</sub> to GND with a 0.1µF or greater ceramic capacitor as close as possible to the device. |
| 2, 4, 8, 9, 12,<br>13, 24, 38, 40 | N.C.            | No Connection. Not internally connected.                                                                                                        |
| 3                                 | VPP             | Positive High-Voltage Power Supply. Bypass Vpp to GND with a 0.1µF or greater ceramic capacitor as close as possible to the device.             |
| 5                                 | DIN1            | Data Input 1                                                                                                                                    |
| 6                                 | ĪĒ              | Active-Low Latch Enable Input. Drive $\overline{\text{LE}}$ low to latch data input. Drive $\overline{\text{LE}}$ high to hold data.            |
| 7                                 | DIN2            | Data Input 2                                                                                                                                    |
| 10                                | V <sub>DD</sub> | Digital Power Supply. Bypass V <sub>DD</sub> to GND with a 0.1µF or greater ceramic capacitor as close as possible to the device.               |
| 11                                | GND             | Ground                                                                                                                                          |
| 14, 15                            | SW15            | Analog Switch Terminal 15                                                                                                                       |

## Pin Description (continued)

| PIN    | NAME | FUNCTION                  |
|--------|------|---------------------------|
| 16, 17 | SW14 | Analog Switch Terminal 14 |
| 18, 19 | SW13 | Analog Switch Terminal 13 |
| 20, 21 | SW12 | Analog Switch Terminal 12 |
| 22, 23 | SW11 | Analog Switch Terminal 11 |
| 25, 26 | SW10 | Analog Switch Terminal 10 |
| 27, 28 | SW9  | Analog Switch Terminal 9  |
| 29, 30 | SW8  | Analog Switch Terminal 8  |
| 31, 32 | SW7  | Analog Switch Terminal 7  |
| 33, 34 | SW6  | Analog Switch Terminal 6  |
| 35, 36 | SW5  | Analog Switch Terminal 5  |
| 37, 39 | SW4  | Analog Switch Terminal 4  |
| 41, 42 | SW3  | Analog Switch Terminal 3  |
| 43, 44 | SW2  | Analog Switch Terminal 2  |
| 45, 46 | SW1  | Analog Switch Terminal 1  |
| 47, 48 | SW0  | Analog Switch Terminal 0  |

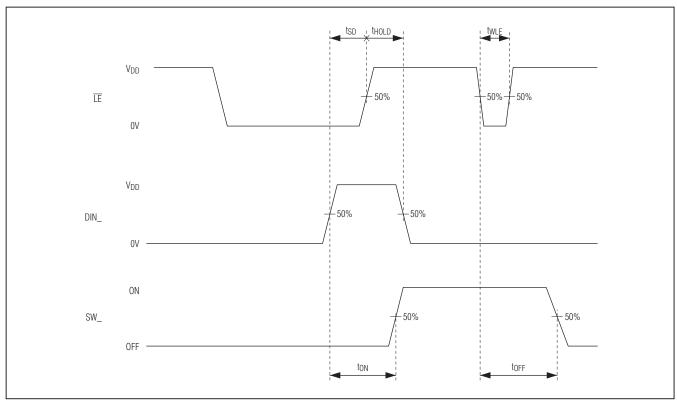



Figure 2. Digital Control (DIN1/DIN2/LE) Timing

**Table 1. Truth Table** 

| CONTROL |         |      | ANALOG SWITCH       |          |  |  |
|---------|---------|------|---------------------|----------|--|--|
| DIN1    | DIN2 LE |      | SW0-SW7             | SW8-SW15 |  |  |
| Low     | Low     | Low  | Off                 | Off      |  |  |
| High    | Low     | Low  | On                  | Off      |  |  |
| Low     | High    | Low  | Off                 | On       |  |  |
| High    | High    | Low  | On                  | On       |  |  |
| X       | X       | High | Hold Previous State |          |  |  |

X = Don't care.

### **Detailed Description**

The MAX14805/MAX14806 provide high-voltage switching on 16 channels for ultrasonic imaging. Both devices are ideal for the following applications: bank selection in biplane or triplane ultrasound probes and relays replacement in medical ultrasound systems. The devices utilize 200V process technology to provide 16 high-voltage, low-charge injection SPST switches, controlled by a digital interface.

The MAX14805/MAX14806's output switches are configured as two sets of eight SPST analog switches. The switches are controlled by two input logic controls, DIN1 and DIN2 (respectively for switch 0 to 7 and switch 8 to 15). The MAX14806 features integrated  $40k\Omega$  bleed resistors on each switch terminal that help to reduce voltage buildup in capacitive loads such as piezoelectric elements.

The MAX14805/MAX14806 operate with a wide range of high-voltage supplies, including VPP/VNN = +100V/-100V, +200V/0V, and +40V/-160V. The digital interface operates from a separate VDD supply from +2.7V to +5.5V. Digital inputs DIN1, DIN2, and  $\overline{\text{LE}}$  operate on the VDD supply voltage.

The MAX14805CCM+ is a drop-in replacement for the Supertex HV2631. The MAX14806CCM+ is a drop-in replacement for the Supertex HV2731.

#### **Analog Switch**

The MAX14805/MAX14806 allow a peak-to-peak analog signal range from  $V_{NN}$  to ( $V_{PP}$  - 10V). During power-up and power-down, all analog switch inputs (SW\_) must be unconnected or satisfy  $V_{NN} \leq V_{SW} \leq V_{PP}$ .

#### **High-Voltage Supplies**

The MAX14805/MAX14806 allow a wide range of high-voltage supplies. The devices operate with V<sub>NN</sub> from -160V to 0V and V<sub>PP</sub> from +40V to (V<sub>NN</sub> + 220V). When V<sub>NN</sub> is connected to GND (single-supply applications), the devices operate with V<sub>PP</sub> up to +200V. The V<sub>PP</sub> and V<sub>NN</sub> high-voltage supplies are not required to be symmetrical, but the voltage difference (V<sub>PP</sub> - V<sub>NN</sub>) must not exceed 230V.

### **Bleed Resistors (MAX14806)**

The MAX14806 features integrated  $40k\Omega$  bleed resistors to discharge capacitive loads such as piezoelectric transducers. Each analog switch terminal is connected to GND with a bleed resistor.

#### Data Input (DIN1/DIN2)

DIN1/DIN2 control the on/off state of the analog switches. DIN1 controls SW0–SW7 and DIN2 controls SW8–SW15 (see Table 1 and Figure 2). DIN1 and DIN2 operate on the V<sub>DD</sub> supply voltage.

### Latch Enable (LE)

Drive  $\overline{\text{LE}}$  logic-low to latch DIN1/DIN2 data input (see Figure 2). Drive  $\overline{\text{LE}}$  logic-high to hold data. The  $\overline{\text{LE}}$  input operates on the V<sub>DD</sub> supply voltage.

### \_Applications Information

For medical ultrasound applications, see Figures 3 and 4.

#### **Supply Sequencing and Bypassing**

The MAX14805/MAX14806 do not require special sequencing of the VDD, VPP, and VNN supply voltages; however, analog switch inputs must be unconnected or satisfy VNN  $\leq$  VSW\_  $\leq$  VPP during power-up and power-down. Bypass VDD, VPP, and VNN to GND with a 0.1µF ceramic capacitor as close as possible to the device.

## **Application Diagram**

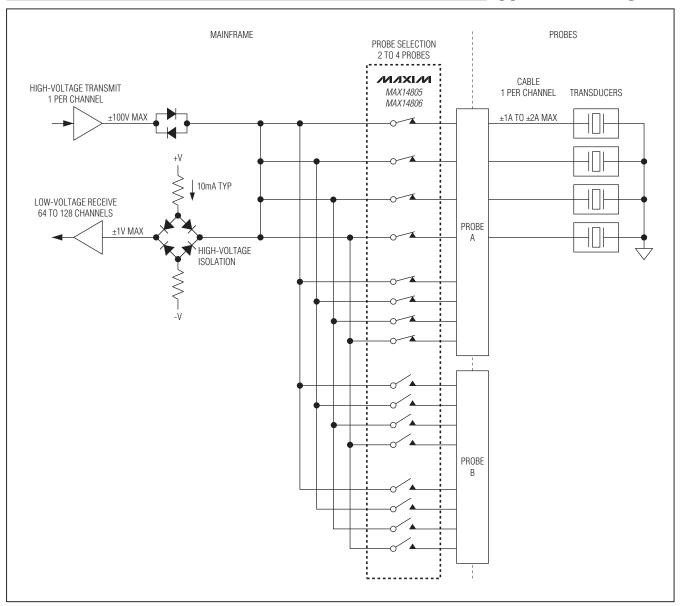



Figure 3. Relay Replacement Application in Medical System

## **Application Diagram (continued)**

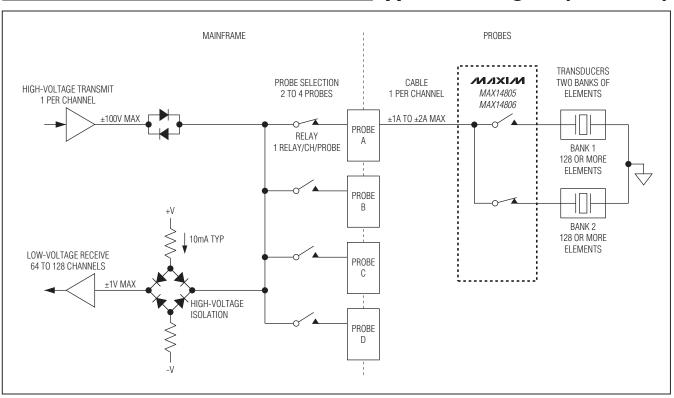
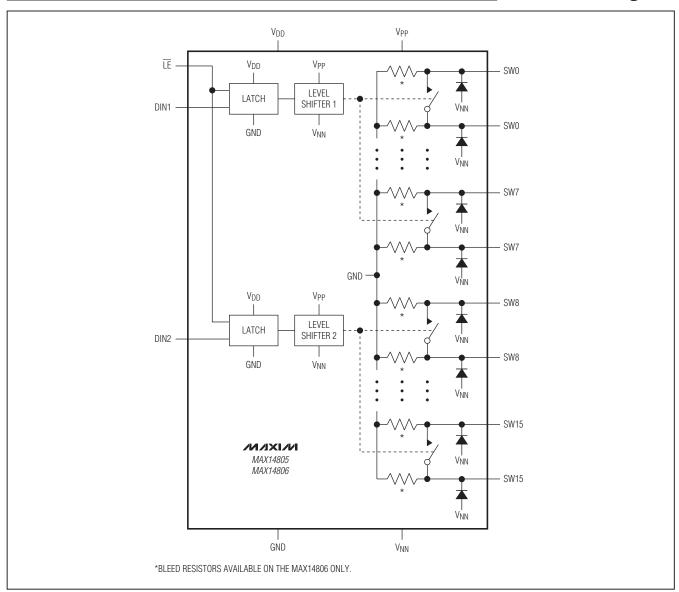




Figure 4. Probe Banks Selection in Biplane or Triplane Probe

## **Functional Diagram**



### **Chip Information**

### **Package Information**

PROCESS: BICMOS

For the latest package outline information and land patterns, go to <a href="www.maxim-ic.com/packages">www.maxim-ic.com/packages</a>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE TYPE | PACKAGE CODE | DOCUMENT NO.   |
|--------------|--------------|----------------|
| 48 TQFP      | C48-6        | <u>21-0054</u> |

## **Revision History**

| REVISION<br>NUMBER | REVISION DATE | DESCRIPTION     | PAGES<br>CHANGED |
|--------------------|---------------|-----------------|------------------|
| 0                  | 4/10          | Initial release | _                |

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.