: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

3．5－and 4．5－Digit，Single－Chip ADCs with LCD Drivers

Abstract

General Description The MAX1491／MAX1493／MAX1495 low－power，3．5－and 4．5－digit，analog－to－digital converters（ADCs）with inte－ grated liquid crystal display（LCD）drivers operate from a single 2.7 V to 5.25 V power supply．They include an inter－ nal reference，a high－accuracy on－chip oscillator，and a triplexed LCD driver．An internal charge pump generates the negative supply needed to power the integrated input buffer for single supply operation．The ADC is config－ urable for either $\mathrm{a} \pm 2 \mathrm{~V}$ or $\pm 200 \mathrm{mV}$ input range and it out－ puts its conversion results to an LCD．The MAX1491 is a 3．5－digit（ ± 1999 count）device，and the MAX1493／ MAX1495 are 4．5－digit（ $\pm 19,999$ count）devices．

The MAX1491／MAX1493／MAX1495 do not require exter－ nal－precision integrating or auto－zero capacitors，crystal oscillators，charge pumps，or other circuitry required with dual slope ADCs（commonly used in panel meter circuits）．These devices also feature on－chip buffers for the differential signal and reference inputs，allowing direct interface with high－impedance signal sources．In addition，the MAX1491／MAX1493／MAX1495 use continu－ ous internal offset calibration，and offer $>100 \mathrm{~dB}$ rejec－ tion of 50 Hz and 60 Hz line noise．The MAX1493／ MAX1495 perform enhanced offset calibration at power－ up．The MAX1495 also performs enhanced calibration on demand．Other features include data hold and peak hold，and a user programmable low－battery monitor． The MAX1493／MAX1495 come in a 32－pin $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ TQFP package，and the MAX1491 comes in 28 －pin SSOP and 28－pin DIP packages．All devices in this fam－ ily operate over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ commercial tempera－ ture range

Applications
Digital Panel Meters
Hand－Held Meters
Digital Voltmeters
Digital Multimeters

Ordering Information

PART	TEMP RANGE	PIN－ PACKAGE	RESOLUTION （DIGITS）
MAX1491CAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP	3.5
MAX1491CNI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 DIP	3.5
MAX1493CCJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	32 TQFP	4.5
MAX1495CCJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	32 TQFP	4.5

Features
－High Resolution MAX1495：4．5 Digits（ $\pm 19,999$ Count） MAX1493：4．5 Digits（ $\pm 19,999$ Count） MAX1491：3．5 Digits（ ± 1999 Count）
－Sigma－Delta ADC Architecture
No Integrating Capacitors Required No Autozeroing Capacitors Required $>100 \mathrm{~dB}$ of Simultaneous 50 Hz and 60 Hz Rejection
－Operate from a Single 2．7V or 5．25V Supply
－Selectable Input Range of $\pm 200 \mathrm{mV}$ or $\pm 2 \mathrm{~V}$
－Selectable Voltage Reference：Internal 2．048V or External
－Internal High－Accuracy Oscillator Needs No External Components
－Automatic Offset Calibration
－Low Power：Maximum 980 1 A Operating Current
－Small 32－Pin 7mm \times 7mm TQFP Package（4．5 Digits），28－Pin SSOP Package（3．5 Digits），and 28－ Pin DIP Package（3．5 Digits）
－Triplexed LCD Driver
－Evaluation Kit Available（Order MAX1494EVKIT）
Pin Configurations

Pin Configurations continued at end of data sheet．

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$32-Pin TQFP (derate $20.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+700^{\circ} \mathrm{C}\right) \ldots . .1652 .9 \mathrm{~mW}$28-Pin SSOP (derate $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots \ldots . .762 \mathrm{~mW}$28-Pin DIP (derate $14.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots . .1142 .9 \mathrm{~mW}$Operating Temperature Range..................... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$Junction Temperature............................... $150^{\circ} \mathrm{C}$Storage Temperature Range

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(A V_{D D}=D V_{D D}=+2.7 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, G N D=0, V_{R E F+}-V_{R E F-}=2.048 \mathrm{~V}$ (external reference), $C_{N E G}=0.1 \mu \mathrm{~F}$. All specifications are $T_{M I N}$ to TMAX, unless otherwise noted. Typical values are at $+25^{\circ} \mathrm{C}$, unless otherwise noted.)

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

ELECTRICAL CHARACTERISTICS (continued)

$\left(A V_{D D}=\operatorname{DVDD}=+2.7 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, G N D=0, \mathrm{~V}_{\text {REF }}-\mathrm{V}_{\text {REF }}=2.048 \mathrm{~V}$ (external reference), $\mathrm{CNEG}_{\mathrm{N}}=0.1 \mu \mathrm{~F}$. All specifications are $\mathrm{T}_{\mathrm{MIN}}$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOW-BATTERY VOLTAGE MONITOR (LOWBATT)						
LOWBATT Trip Threshold				2.048		V
LOWBATT Leakage Current				10		pA
Hysteresis				20		mV
INTERNAL REFERENCE (REF- = GND, INTREF = DV ${ }_{\text {DD }}$, bypass REF+ to GND with 4.7 $\boldsymbol{\mu}$ F capacitors)						
REF Output Voltage	$V_{\text {REF }}$	$\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2.007	2.048	2.089	V
REF Output Short-Circuit Current		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1		mA
REF Output Temperature Coefficient	TCVreF	$A V_{D D}=5 \mathrm{~V}$		40		ppm/ ${ }^{\circ} \mathrm{C}$
Load Regulation		$\begin{aligned} & \text { ISOURCE }=0 \mu \mathrm{~A} \text { to } 300 \mu \mathrm{~A}, \\ & \text { ISINK }=0 \mu \mathrm{~A} \text { to } 30 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}(\text { Note } 6) \end{aligned}$		6		$\mathrm{mV} / \mu \mathrm{A}$
Line Regulation				50		$\mu \mathrm{V} / \mathrm{V}$
Noise Voltage		0.1 Hz to 10 Hz		25		$\mu \vee p-p$
		10 Hz to 10 kHz		400		
EXTERNAL REFERENCE (INTREF = GND, bypass REF+ and REF- to GND with $0.1 \mu \mathrm{~F}$ or greater capacitors)						
REF Input Voltage		Differential ($\mathrm{V}_{\text {REF }+}-\mathrm{V}_{\text {REF-- }}$)		2.048		V
		Absolute GND referenced	-2.2		+2.2	
Normal-Mode 50Hz and 60Hz Rejection (Simultaneously)		50 Hz and $60 \mathrm{~Hz} \pm 2 \%$		100		dB
Common-Mode 50 Hz and 60 Hz Rejection (Simultaneously)	CMR	For $50 \mathrm{~Hz} \pm 2 \%$ and $60 \mathrm{~Hz} \pm 2 \%$, RSOURCE $<10 \mathrm{k} \Omega$		150		dB
Common-Mode Rejection	CMR	At DC		100		dB
Input Leakage Current		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10		nA
Input Capacitance				10		pF
Dynamic Input Current		(Note 5)	-20		+20	nA
CHARGE PUMP						
Output Voltage	$V_{\text {NEG }}$		-2.6	-2.42	-2.3	V
DIGITAL INPUTS (INTREF, RANGE, PEAK, HOLD, DPSET1, DPSET2, DPON)						
Input Current	IIN	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{DV}_{\text {DD }}$	-10		+10	$\mu \mathrm{A}$
Input Low Voltage	VINL				$\begin{aligned} & 0.3 x \\ & D V_{D D} \end{aligned}$	V
Input High Voltage	VINH		$\begin{aligned} & 0.7 \times \\ & D V_{D D} \end{aligned}$			V
Input Hysteresis	VHYS	$D V_{\text {DD }}=3.0 \mathrm{~V}$		200		mV

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

ELECTRICAL CHARACTERISTICS (continued)

$\left(A V_{D D}=\operatorname{DVDD}=+2.7 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, G N D=0, \mathrm{~V}_{\text {REF }}-\mathrm{V}_{\text {REF }}=2.048 \mathrm{~V}$ (external reference), $\mathrm{CNEG}_{\mathrm{N}}=0.1 \mu \mathrm{~F}$. All specifications are $\mathrm{T}_{\mathrm{MIN}}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
AV ${ }_{\text {DD }}$ Voltage	AVDD		2.70		5.25	V
DV DD Voltage	DVDD		2.70		5.25	V
Power-Supply Rejection AVDD	$\mathrm{PSRR}_{\text {A }}$	(Note 7)		80		dB
Power-Supply Rejection DVDD	$\mathrm{PSRR}_{\mathrm{D}}$	(Note 7)		100		dB
AVDD Current	IAVDD	(Note 8)			660	$\mu \mathrm{A}$
DVDD Current	IDVDD	DV ${ }_{\text {DD }}=5 \mathrm{~V}$			320	$\mu \mathrm{A}$
		$D V_{D D}=3.3 \mathrm{~V}$			180	
LCD DRIVER						
RMS Segment-On Voltage				$\begin{aligned} & 1.92 x \\ & \text { DVDD } \end{aligned}$		V
RMS Segment-Off Voltage				$\begin{aligned} & 1 / 3 x \\ & D V_{D D} \end{aligned}$		V
Display Multiplex Rate				107		Hz
LCD Data-Update Rate				2.5		Hz

Note 1: Integral nonlinearity is the derivation of the analog values at any code from its theoretical value after nulling the gain error and offset error.
Note 2: Offset calibrated.
Note 3: Offset nulled.
Note 4: The input voltage range for the analog inputs is given with respect to the voltage on the negative input of the differential pair.
Note 5: For the range of $\mathrm{V}_{\text {AIN }}+$ or $\mathrm{V}_{\text {AIN }}=-2.2 \mathrm{~V}$ to +2.2 V and $\mathrm{V}_{\text {REF }}+$ or $\mathrm{V}_{\text {REF }}=-2.2 \mathrm{~V}$ to +2.2 V .
Note 6: External load must be constant during conversion for specified accuracy. Guaranteed specification of $2 \mathrm{mV} / \mathrm{mA}$ is a result of production test limitations.
Note 7: Measured at DC by changing the power-supply voltage from 2.7V to 5.25 V and measuring its effect on the conversion error. PSRR at 50 Hz and 60 Hz exceeds 120 dB with filter notches of $10,20,30,40,50$, or 60 Hz .
Note 8: Analog power-supply currents are measured with all digital inputs at either GND or DVDD. Digital power-supply currents measured with all digital inputs at either GND or DVDD.

3．5－and 4．5－Digit，Single－Chip ADCs with LCD Drivers

Typical Operating Characteristics
$\left(A V_{D D}=D V_{D D}=5 V, G N D=0, R E F+=2.048 V, R E F-=G N D, R A N G E=D V_{D D}, T_{A}=+25^{\circ} \mathrm{C}.\right)$

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

Typical Operating Characteristics (continued)
$\left(A V_{D D}=D V_{D D}=5 V, G N D=0, R E F+=2.048 V, R E F-=G N D, R A N G E=D V_{D D}, T_{A}=+25^{\circ} \mathrm{C}.\right)$

INTERNAL REFERENCE VOLTAGE
vs. TEMPERATURE

CHARGE-PUMP OUTPUT VOLTAGE vs. ANALOG SUPPLY VOLTAGE

INTERNAL REFERENCE VOLTAGE
vs. ANALOG SUPPLY VOLTAGE

OFFSET ERROR
SUPPLY CURRENT vs. TEMPERATURE vs. COMMON-MODE VOLTAGE

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

Pin Description

PIN		NAME	FUNCTION
MAX1491	MAX1493 MAX1495		
1	30	INTREF	Internal Reference Logic Input. Connect to GND to select external reference mode. Connect to $\mathrm{DV}_{\mathrm{DD}}$ to select the internal reference mode.
2	31	DV ${ }_{\text {DD }}$	Digital Power Input. Connect DVDD to a 2.7 V to 5.25 V power supply. Bypass DVDD to GND with a $0.1 \mu \mathrm{~F}$ and a $4.7 \mu \mathrm{~F}$ capacitor.
3	32	GND	Ground
4	1	$A V_{D D}$	Analog Power Input. Connect $A V_{D D}$ to a 2.7 V to 5.25 V power supply. Bypass $A V_{D D}$ to $G N D$ with a $0.1 \mu \mathrm{~F}$ and a $4.7 \mu \mathrm{~F}$ capacitor.
5	2	AlN+	Positive Analog Input. Positive side of fully differential analog input. Bypass AIN+ to GND with a $0.1 \mu \mathrm{~F}$ or greater capacitor.
6	3	AIN-	Negative Analog Input. Negative side of fully differential analog input. Bypass AIN- to GND with a $0.1 \mu \mathrm{~F}$ or greater capacitor.
7	4	REF-	Negative Reference Input. For internal reference operation, connect REF- to GND. For external reference operation, bypass REF- to GND with a $0.1 \mu \mathrm{~F}$ capacitor and set $\mathrm{V}_{\text {REF- }}$ from -2.2 V to +2.2 V , provided $\mathrm{V}_{\text {REF }}>\mathrm{V}_{\text {REF-. }}$
8	5	REF+	Positive Reference Input. For internal reference operation, connect a $4.7 \mu \mathrm{~F}$ capacitor from REF+ to GND. For external reference operation, bypass REF+ to GND with a $0.1 \mu \mathrm{~F}$ capacitor and set $\mathrm{V}_{\text {REF }}$ from -2.2 V to +2.2 V , provided $\mathrm{V}_{\text {REF }}>\mathrm{V}_{\text {REF- }}$
9	6	LOWBATT	Low Battery Input. When VLOWBATT < 2.048V (typ), the LOWBATT symbol on the LCD turns on.
10	7	RANGE	Range Logic Input. RANGE controls the fully differential analog input range. Connect to GND for the $\pm 2 \mathrm{~V}$ input range. Connect to DVDD for the $\pm 200 \mathrm{mV}$ input range.
11	8	DPSET1	Decimal Point Logic Input 1. Controls the decimal point of the LCD. See the Decimal Point Control section.
12	9	DPSET2	Decimal Point Logic Input 2. Controls the decimal point of the LCD. See the Decimal Point Control section.
13	10	PEAK	Peak Logic Input. Connect to DV ${ }_{\text {DD }}$ to display the highest ADC value on the LCD. Connect to GND to disable the peak function.
14	11	HOLD	Hold Logic Input. Connect to DV ${ }_{\text {DD }}$ to hold the current ADC value on the LCD. Connect to GND to update the LCD at a rate of 2.5 Hz and disable the hold function. For the MAX1495, placing the device into hold mode initiates an enhanced offset calibration. Assert HOLD high for a minimum of 2 s to ensure the completion of enhanced offset calibration.
15	12	SEG1	LCD Segment 1 Driver
16	13	SEG2	LCD Segment 2 Driver
17	14	SEG3	LCD Segment 3 Driver
18	15	SEG4	LCD Segment 4 Driver
19	16	SEG5	LCD Segment 5 Driver
20	17	SEG6	LCD Segment 6 Driver

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

PIN			FUNCTION Description (continued)
MAX1491	MAX1493 MAX1495	NAME	
	18	SEG7	LCD Segment 7 Driver
22	19	SEG8	LCD Segment 8 Driver
23	20	SEG9	LCD Segment 9 Driver
24	21	SEG10	LCD Segment 10 Driver
25	25	BP3	LCD Backplane 3 Driver
26	26	BP2	LCD Backplane 2 Driver
27	27	BP1	LCD Backplane 1 Driver
28	29	VNEG	-2.5V Charge-Pump Voltage Output. Connect a 0.1 14F capacitor from VNEG to GND.
-	22	SEG11	LCD Segment 11 Driver
-	23	SEG12	LCD Segment 12 Driver
-	24	SEG13	LCD Segment 13 Driver
-	28	DPON	Decimal Point Enable Input. Controls the decimal point of the LCD. See the Decimal Point Control section. Connect to DVDD to enable the decimal point.

Figure 1. MAX1493/MAX1495 Functional Diagram

3．5－and 4．5－Digit，Single－Chip ADCs with LCD Drivers

Detailed Description

The MAX1491／MAX1493／MAX1495 low－power，highly integrated ADCs with LCD drivers convert a $\pm 2 \mathrm{~V}$ differ－ ential input voltage（one count is equal to $100 \mu \mathrm{~V}$ for the MAX1493／MAX1495 and 1mV for the MAX1491）with a sigma－delta ADC and output the result to an LCD．An additional $\pm 200 \mathrm{mV}$ input range（one count is equal to $10 \mu \mathrm{~V}$ for the MAX1493／MAX1495 and $100 \mu \mathrm{~V}$ for the MAX1491）is available to measure small signals with increased resolution．
These devices operate from a single 2.7 V to 5.25 V power supply and offer 3．5－digit（MAX1491）or 4．5－digit （MAX1493／MAX1495）conversion results．An internal 2.048 V reference，internal charge pump and a high－accu－ racy on－chip oscillator eliminate external components．
These devices also feature on－chip buffers for the dif－ ferential input signal and external reference inputs， allowing direct interface with high－impedance signal sources．In addition，they use continuous internal offset calibration，and offer $>100 \mathrm{~dB}$ of 50 Hz and 60 Hz line noise rejection．Other features include data hold and peak hold，and a low－battery monitor．The MAX1495 also performs enhanced offset calibration on demand．

Analog Input Protection

Internal protection diodes limit the analog input range from $V_{N E G}$ to（ $A V_{D D}+0.3 V$ ）．If the analog input exceeds this range，limit the input current to 10 mA ．

Internal Analog Input／ Reference Buffers

The MAX1491／MAX1493／MAX1495 analog input／refer－ ence buffers allow the use of high－impedance signal sources．The input buffers＇common－mode input range allows the analog inputs and reference to range from -2.2 V to +2.2 V ．

Modulator

The MAX1491／MAX1493／MAX1495 perform analog－to－ digital conversions using a single－bit，3rd－order，sigma－ delta modulator．The sigma－delta modulation converts the input signal into a digital pulse train whose average duty cycle represents the digitized signal information． The modulator quantizes the input signal at a much higher sample rate than the bandwidth of the input．
The MAX1491／MAX1493／MAX1495 modulator provides $3 r d$－order frequency shaping of the quantization noise resulting from the single－bit quantizer．The modulator is fully differential for maximum signal－to－noise ratio and minimum susceptibility to power－supply noise．A single－ bit data stream is then presented to the digital filter for processing，to remove the frequency－shaped quantiza－ tion noise．

Digital Filtering

The MAX1491／MAX1493／MAX1495 contain an on－chip digital lowpass filter that processes the data stream from the modulator using a SINC4 $(\sin x / x)^{4}$ response． The SINC 4 filter has a settling time of four output data periods（ $4 \times 200 \mathrm{~ms}$ ）．
The MAX1491／MAX1493／MAX1495 have 25\％overrange capability built into the modulator and digital filter：

$$
\begin{gathered}
H(f)=\left[\frac{1}{N} \frac{\sin \left(N \pi \frac{f}{f_{m}}\right)}{\sin \left(\pi \frac{f}{f_{m}}\right)}\right]^{4} \\
H(z)=\left[\frac{1}{N} \frac{\left(1-z^{-N}\right)}{\left(1-z^{-1}\right)}\right]^{4}
\end{gathered}
$$

Filter Characteristics
Figure 2 shows the filter frequency response．The SINC ${ }^{4}$ characteristic -3 dB cutoff frequency is 0.228 times the first notch frequency $(5 \mathrm{~Hz})$ ．The oversampling ratio （OSR）for the MAX1491 is 128 and the OSR for the MAX1493／MAX1495 is 1024.
The output data rate for the digital filter corresponds with the positioning of the first notch of the filter＇s fre－ quency response．The notches of the SINC ${ }^{4}$ filter are repeated at multiples of the first notch frequency．The SINC ${ }^{4}$ filter provides an attenuation of better than 100 dB at these notches．For example， 50 Hz is equal to 10 times the first notch frequency and 60 Hz is equal to 12 times the first notch frequency．

Figure 2．Frequency Response of the SINC ${ }^{4}$ Filter（Notch at 60Hz）

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

Abstract

Internal Clock The MAX1491/MAX1493/MAX1495 contain an internal oscillator. Using the internal oscillator saves board space by removing the need for an external clock source. The oscillator is optimized to give 50 Hz and 60 Hz power supply and common-mode rejection.

Charge Pump
The MAX1491/MAX1493/MAX1495 contain an internal charge pump to provide the negative supply voltage for the internal analog input/reference buffers. The bipolar input range of the analog input/reference buffers allows the devices to accept negative inputs with high source impedances. For the charge pump to operate correctly, connect a $0.1 \mu \mathrm{~F}$ capacitor from VNEG to GND.

LCD Driver
The MAX1491/MAX1493/MAX1495 contain the necessary backplane and segment driver outputs to drive 3.5-digit (MAX1491) and 4.5 -digit (MAX1493/MAX1495) LCDs. The LCD update rate is 2.5 Hz . Figures $4-7$ show the connection schemes for a standard LCD. The MAX1491/MAX1493/MAX1495 automatically display the results of the ADC.

Triplexing
An internal resistor string of three equal-value resistors ($52 \mathrm{k} \Omega, 1 \%$ matching) is used to generate the display drive voltages. One end of the string is connected to DVDD and the other end is connected to GND. Note that VLCD (VLCD = DVDD - GND) should be three times the threshold voltage for the liquid-crystal material used.
The connection diagram for a typical 7 -segment display font with two annunciators is illustrated in Figure 3 and Figure 8. The MAX1491/MAX1493/MAX1495 numeric display drivers (4.5 digits, 3.5 digits) use this configuration to drive a triplexed LCD with three backplanes and 13 segment driver lines (10 for 3.5 digits). Figures 4 and 5 show the assignment of the 4.5-digit display segments and Figures 6 and 7 show the assignment of the 3.5 digit display segments.
The voltage waveforms of the backplane lines and y segment line (Figure 3) have been chosen as an example. This line intersects with BP1 to form the a segment,

Figure 3. Connection Diagrams for Typical Seven-Segment Displays
with BP2 to form the g segment, and with BP3 to form the d segment. Eight different ON/OFF combinations of the a, g, and d segments and their corresponding waveforms of the y segment line are illustrated in Figures 9 and 10. The schematic diagram in Figure 8 shows that each intersection acts as a capacitance from segment line to common line. Figure 11 illustrates the voltage across the g segment.
The RMS voltage across the segment determines the degree of polarization for the liquid-crystal material and thus the contrast of the segment. The RMS OFF voltage is always VLCD / 3, whereas the RMS ON voltage is always 1.92 V LCD $/ 3$. This is illustrated in Figure 11. The ratio of RMS ON to OFF voltage is fixed at 1.92 for a triplexed LCD.
Figure 12 illustrates contrast vs. applied RMS voltage with a VLCD of 3.1 V . The RMS ON voltage is 2.1 V and the RMS OFF voltage is 1.1 V . The OFF segment has a contrast of less than 5%, while the ON segments have greater than 85% contrast.

Table 1. List of LCD Manufacturers

MANUFACTURER	WEBSITE	PART NUMBER	DESCRIPTION
DCI, Inc.		$04-0924-00$	3.5 digit, 5 V
		$04-0924-01$	3.5 digit, 3V
		$04-0925-00$	4.5 digit, 5 V
		$04-0925-01$	4.5 digit, 3 V
The following site has links to other custom LCD manufacturers: www.earthlcd.com/mfr.htm			

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

Figure 4. Backplane Connection for the MAX1493/MAX1495 (4.5 Digits)

Figure 5. Segment Connection for the MAX1493/MAX1495 (4.5 Digits)

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

MAX1491/MAX1493/MAX1495

Figure 6. Backplane Connection for the MAX1491 (3.5 Digits)

Figure 7. Segment Connection for the MAX1491 (3.5 Digits)

Figure 8. Schematic of Display Digit

3．5－and 4．5－Digit，Single－Chip ADCs with LCD Drivers

Figure 9．LCD Voltage Waveform－Combinations 1－4（BP1／2／3，SEGa／d／g）

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

Figure 10. LCD Voltage Waveform-Combinations 5-8 (BP1/2/3, SEGa/d/g)

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

Figure 11. Voltage Waveforms on the g Segment

3.5- and 4.5-Digit, Single-Chip
 ADCs with LCD Drivers

Figure 12. Contrast vs. Applied RMS Voltage

3．5－and 4．5－Digit，Single－Chip ADCs with LCD Drivers

If ghosting is present on the LCD，the RMS OFF voltage is too high．Choose an LCD with a higher RMS OFF voltage or decrease DVDD．

Decimal Point Control

The MAX1491／MAX1493／MAX1495 allow for full deci－ mal－point control and feature leading－zero suppression． Use DPON，DPSET1，and DPSET2 to set the value of the decimal point．Tables 2 and 3 show the truth tables of the DPON，DPSET1，and DPSET2 that determine which decimal point is used．

Reference
The MAX1491／MAX1493／MAX1495 reference sets the full－scale range of the ADC transfer function．With a nominal 2.048 V reference，the ADC full－scale range is $\pm 2 \mathrm{~V}$ with RANGE equal to GND．With RANGE equal to $D V_{D D}$ ，the full－scale range is $\pm 200 \mathrm{mV}$ ．A decreased ref－ erence voltage decreases full－scale range（see the Transfer Functions section）．
The MAX1491／MAX1493／MAX1495 accept either an external reference or an internal reference．The INTREF input selects the reference mode．
For internal reference operation，connect INTREF to DVDD，connect REF－to GND，and bypass REF＋to GND with a $4.7 \mu \mathrm{~F}$ capacitor．The internal reference pro－ vides a nominal 2.048 V source between REF＋and GND．The internal reference temperature coefficient is typically $40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．

Connect INTREF to GND to use the external reference． The external reference inputs，REF＋and REF－，are fully differential．For a valid external reference input，VREF＋ must be greater than VREF－．Bypass REF＋and REF－ with a $0.1 \mu \mathrm{~F}$ or greater capacitor to GND in external ref－ erence mode．
Figure 13 shows the MAX1493／MAX1495 operating with an external differential reference．In this mode，REF－is connected to the top of the strain gauge and REF＋is connected to the midpoint of the resistor－divider on the supply．

Applications Information

Power－On
At power－on，the digital filter and modulator circuits reset．The MAX1493／MAX1495 allow 6s for the refer－ ence to stabilize before performing enhanced offset calibration．During these 6s，the MAX1493／MAX1495 display 1.2 V to 1.5 V when a stable reference is detect－ ed．If a valid reference is not found，the MAX1493／ MAX1495 time out after 6s and begin enhanced offset calibration．Enhanced offset calibration typically lasts 2s．The MAX1493／MAX1495 begin converting after enhanced offset calibration．

Offset Calibration
The MAX1491／MAX1493／MAX1495 offer on－chip offset calibration．The MAX1491／MAX1493／MAX1495 calibrate offset during every conversion cycle．The MAX1495

Table 2．Decimal－Point Control Table（MAX1493／MAX1495）

DPON	DPSET1	DPSET2	DISPLAY OUTPUT	ZERO INPUT READING
0	0	0	18888	0
0	0	1	18888	0
0	1	0	18888	0
0	1	1	18888	0
1	0	0	1888.8	0.0
1	0	1	188.88	0.00
1	1	0	18.888	0.000
1	1	1	1.8888	0.0000

Table 3．Decimal－Point Control Table（MAX1491）

DPSET1	DPSET2	DISPLAY OUTPUT	ZERO INPUT READING
0	0	188.8	0.0
0	1	18.88	0.00
1	0	1.888	0.000
1	1	1888	000

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

offers enhanced offset calibration on demand. Connect HOLD to DVDD for 2 s to perform enhanced offset calibration.

Peak

The MAX1491/MAX1493/MAX1495 feature peak detection circuitry. When activated (PEAK connected to DVDD), the devices display only the highest voltage measured to the LCD. First, the current ADC result is displayed. Then the new ADC conversion result is compared to this value. If the new value is larger than the previous peak value, the new value is displayed. If the new value is less than the previous peak value, the display remains unchanged. Connect PEAK to GND to clear the peak value and disable the peak function. The peak function is only valid for the $-19,487$ to $+19,999$ range for the MAX1493/ MAX1495 and -1217 to +1999 for the MAX1491.

Hold

The MAX1491/MAX1493/MAX1495 feature data HOLD circuitry. When activated (HOLD connected to DVDD), the devices hold the current reading on the LCD.

Low Battery

The MAX1491/MAX1493/MAX1495 feature a low-battery detection input. When the voltage at LOWBATT drops below 2.048 V (typ), the LOWBATT segment of the LCD turns on.

Strain Gauge Measurement

Connect the differential inputs of the MAX1491/ MAX1493/MAX1495 to the bridge network of the strain gauge. In Figure 13, the analog supply voltage powers the bridge network and the MAX1491/MAX1493/ MAX1495 along with its reference voltage. The MAX1491/MAX1493/MAX1495 handle an analog input voltage range of $\pm 200 \mathrm{mV}$ or $\pm 2 \mathrm{~V}$ full scale. The analog/reference inputs of the part allow the analog input range to have an absolute value anywhere between -2.2 V and +2.2 V .

4-20mA Measurement

To measure $4-20 \mathrm{~mA}$ signals, connect a shunt resistor across AIN+ and AIN- to create the $\pm 2 \mathrm{~V}$ or $\pm 200 \mathrm{mV}$ input voltage (see Figure 14).

Table 4. LCD Priority Table

HOLD	PEAK	DISPLAYS
DVDD	X	Current value
GND	DVDD	Peak value
GND	GND	Latest ADC result

Figure 13. Strain-Gauge Application with the MAX1491/MAX1493/ MAX1495

Figure 14. 4-20mA Measurement

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

Transfer Functions

Figures 15-18 show the MAX1491/MAX1493s' transfer functions. The transfer function for the MAX1493/ MAX1495 with AIN+ - AIN $-\geq 0$ and RANGE $=$ GND is:

$$
\text { Counts }=1.024 \times\left(\frac{V_{\text {AIN }+}-V_{\text {AIN }-}}{V_{\text {REF }+}-V_{\text {REF- }}}\right) \times 20,000
$$

The transfer function for the MAX1493 with AIN+ - AIN<0 and RANGE $=$ GND is:

$$
\text { Counts }=1.024 \times\left(\frac{V_{\text {AIN }+}-V_{\text {AIN }-}}{V_{\text {REF }+}-V_{\text {REF- }}} \times 20,000\right)+1
$$

The transfer function for the MAX1491 with AIN+ - AIN≥ 0 and RANGE $=$ GND is:

$$
\text { Counts }=1.024 \times\left(\frac{V_{\text {AIN }+}-V_{\text {AIN- }}}{V_{\text {REF }+}-V_{\text {REF- }}}\right) \times 2000
$$

The transfer function for the MAX1491 with AIN+ - AIN<0 and RANGE $=$ GND is:

$$
\text { Counts }=1.024 \times\left(\frac{V_{\text {AIN }+}-V_{\text {AIN }-}}{V_{\text {REF }+}-V_{\text {REF- }}} \times 2000\right)+1
$$

Figure 15. MAX1493/MAX1495 Transfer Function $\pm 2 V$ Range
The transfer function for the MAX1493/MAX1495 with AIN + - AIN $-\geq 0$ and RANGE $=$ DVDD is:

$$
\text { Counts }=1.024 \times\left(\frac{V_{\text {AIN }+}-V_{\text {AIN }-}}{}\right) \times 20,000 \times 10
$$

The transfer function for the MAX1493 with AIN+ - AIN<0 and RANGE $=$ DVDD is:

$$
\text { Counts }=1.024 \times\left(\frac{V_{\text {AIN }+}-V_{\text {AIN }-}}{V_{\text {REF }+}-V_{\text {REF- }}} \times 20,000\right) \times 10+1
$$

The transfer function for the MAX1491 with AIN+ - AIN≥ 0 and RANGE $=$ DVDD is:

$$
\text { Counts }=1.024 \times\left(\frac{V_{\text {AIN }+}-V_{\text {AIN- }}}{V_{\text {REF }+}-V_{\text {REF- }}}\right) \times 2000 \times 10
$$

The transfer function for the MAX1491 with AIN+ - AIN<0 and RANGE $=$ DVDD is:

$$
\text { Counts }=1.024 \times\left(\frac{V_{\text {AIN }+}-V_{\text {AIN- }}}{V_{\text {REF+ }}-V_{\text {REF- }}} \times 2000\right) \times 10+1
$$

Figure 16. MAX1493/MAX1495 Transfer Function $\pm 200 \mathrm{mV}$ Range

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

Figure 17. MAX1491 Transfer Function $\pm 200 \mathrm{mV}$ Range
Supplies, Layout, and Bypassing
Power up AVDD and DVDD before applying an analog input and external reference voltage to the device. If this is not possible, limit the current into these inputs to 50 mA . Isolate the digital supply from the analog supply with a low-value resistor (10Ω) or ferrite bead when the analog and digital supplies come from the same source. For best performance, ground the MAX1491/ MAX1493/MAX1495 to the analog ground plane of the circuit board.
Avoid running digital lines under the device, because these may couple noise onto the die. Run the analog ground plane under the MAX1491/MAX1493/MAX1495 to minimize coupling of digital noise. Make the powersupply lines to the MAX1491/MAX1493/MAX1495 as wide as possible to provide low-impedance paths and reduce the effects of glitches on the power-supply line.
Shield fast-switching signals, such as clocks, with digital ground to avoid radiating noise to other sections of the board. Avoid running clock signals near the analog inputs. Avoid crossover of digital and analog signals. Running traces that are on opposite sides of the board at right angles to each other reduces feedthrough effects.
Good decoupling is important when using high-resolution ADCs. Decouple the supplies with $4.7 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ ceramic capacitors to GND. Place these components as close to the device as possible to achieve the best decoupling.
Refer to the MAX1494 evaluation kit manual for the recommended layout. The evaluation board package includes a fully assembled and tested evaluation board.

Figure 18. MAX1491 Transfer Function $\pm 2 V$ Range

Definitions

INL

Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line is either a best-straight-line fit or a line drawn between the end points of the transfer function, once offset and gain errors have been nullified. INL for the MAX1491/MAX1493/MAX1495 is measured using the end-point method.

DNL

Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of one count. A DNL error specification of less than one count guarantees no missing counts and a monotonic transfer function.

Rollover Error

Rollover error is defined as the absolute value difference between a near-positive full-scale reading and near-negative full-scale reading. Rollover error is tested by applying a full-scale positive voltage, swapping AIN+ and AIN-, and then adding the results.

Zero Input Reading

Ideally, with AIN+ connected to AIN-, the MAX1491/ MAX1493/MAX1495 display a zero. Zero input reading is the measured deviation from the ideal zero and the actual measured point.

3．5－and 4．5－Digit，Single－Chip ADCs with LCD Drivers

Gain Error
Gain error is the amount of deviation between the mea－ sured full－scale transition point and the ideal full－scale transition point．

Common－Mode Rejection

Common－mode rejection is the ability of a device to reject a signal that is common to both input terminals． The common－mode signal can be either an AC or a DC signal or a combination of the two．CMR is often expressed in decibels．

Normal－Mode 50Hz and 60Hz Rejection （Simultaneously）

Normal mode rejection is a measure of how much output changes when 50 Hz and 60 Hz signals are injected into just one of the differential inputs．The MAX1491／

MAX1493／MAX1495 sigma－delta converter uses its inter－ nal digital filter to provide normal mode rejection to both 50 Hz and 60 Hz power－line frequencies simultaneously．

Power－Supply Rejection Ratio

Power－supply rejection ratio（PSRR）is the ratio of the input supply change（in volts）to the change in the con－ verter output（in volts）．It is measured typically in decibels．

Enhanced Offset Calibration
Enhanced offset calibration is a more accurate calibra－ tion method that is needed in the case of the $\pm 200 \mathrm{mV}$ range and 4．5－digit resolution．The MAX1493／MAX1495 perform the enhanced offset calibration upon power－up． The MAX1495 also performs enhanced offset calibration on demand with the HOLD input．

3.5- and 4.5-Digit, Single-Chip

ADCs with LCD Drivers

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

JEDEC VARIATIDN				
	BC		BE	
	32 LEAD		48 LEAD	
	MIN.	MAX.	MIN.	MAX.
A	--	1.60	---	1.60
A_{1}	0.05	0.15	0.05	0.15
A_{2}	1.35	1.45	1.35	1.45
D	8.90	9.10	8.90	9.10
D_{1}	7.00 BSC.		7.00 BSC.	
E	8.90	9.10	8.90	9.10
E_{1}	7.00 BSC.		7.00 BSC.	
e	0.8 BSC.		0.5 BSC.	
L	0.45	0.75	0.45	0.75
b	0.30	0.45	0.17	0.27
c	0.09	0.20	0.09	0.20
\propto	0°	7°	0°	7°

1. ALL DIMENSIUNING AND TZLERANCING CDNFORM TD ANSI Y14.5-1982.
2. CONTRZLLING DIMENSIDN: MILLIMETER.
3. THIS GUTLINE CZNFIRMS TI JEDEC PUBLICATIUN 95 REGISTRATION MD-136, VARIATIUNS BC AND BE.

TTTLE PACKAGE \quad QUTLINE, $32 / 48 \mathrm{~L}, 7 \times 7 \times 1.4 \mathrm{MM}$ TQFP			
APPROVAL	$\begin{gathered} \hline \text { DOCUMENT CONTROL Na. } \\ 21-0054 \\ \hline \end{gathered}$	${ }_{\text {REV }}^{\text {D }}$	1/1

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
A	0.068	0.078	1.73	1.99	
A1	0.002	0.008	0.05	0.21	
B	0.010	0.015	0.25	0.38	
C	0.004	0.008	0.09	0.20	
D	SEE VARIATIONS				
E	0.205	0.212	5.20		5.38
e	0.0256	BSC	0.65		BSC
H	0.301	0.311	7.65	7.90	
L	0.025	0.037	0.63	0.95	
α	0∞	8∞	0∞	8∞	

	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	N
D	0.239	0.249	6.07	6.33	14 L
D	0.239	0.249	6.07	6.33	16 L
D	0.278	0.289	7.07	7.33	20 L
D	0.317	0.328	8.07	8.33	24 L
D	0.397	0.407	10.07	10.33	28 L

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED . 15 MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO150.
5. LEADS TO BE COPLANAR WITHIN 0.10 MM .

TTTEE:			
PACKAGE OUTLINE, SSOP, 5.3 MM			
APPROVAL	DOCOME ENT CONROL NO. $21-0056$	C	$1 / 1$

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

