: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

General Description

The MAX14978 high-performance, passive analog switch is ideal for switching Hi-Speed USB and SuperSpeed USB data between one source and two loads, or vice versa. The device can be used in desktop and notebook applications where SuperSpeed USB ports are in limited supply. The device consists of two sets of analog switches with one set used for USB low-speed, full-speed, and Hi-Speed signals and the second set used for USB SuperSpeed. The device operates from a single +3.3 V supply.
The device features low insertion loss for all speeds. It has $\pm 6 \mathrm{kV}$ Human Body Model (HBM) ESD protection on all I/O pins. In addition, the low/full/Hi-Speed COM_ ports have ESD protection to $\pm 15 \mathrm{kV}$ HBM and $\pm 8 \mathrm{kV}$ IEC 61000-4-2 contact.

The device is available in a small, $3.5 \mathrm{~mm} \times 9.0 \mathrm{~mm}$, 42-pin TQFN package and is specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

Desktop PCs
Laptop PCs
Industrial USB Switching

Features

- Designed for SuperSpeed USB Applications: Low/Full/Hi-Speed (1.5/12/480Mbps) SuperSpeed (5.0Gbps)
- Superior Return Loss and Insertion Loss for SuperSpeed Analog Switches
- Low Quiescent Current: 36 A (typ)
- All Link Training is Preserved (SuperSpeed)
- LVCMOS Control ($1.4 \mathrm{~V} \leq \mathrm{VIH}^{\prime} \leq 3.6 \mathrm{~V}$)
- Operation from a Single +3.3V Power Supply
- Small, 3.5mm x 9.0mm, 42-Pin TQFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX14978ETO +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	42 TQFN-EP ${ }^{*}$

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

Typical Operating Circuit

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)
VCC
-0.3 V to +6.0 V
VDD.
-0.3 V to +4.0 V

SEL1, EN, COMD_, NOD_
NCD_ (Note 1) -0.3 V to (VCC $+0.3 \mathrm{~V})$
SEL2, COMO_, COM1_, NCO_
NC1_, NO0_, NO1_ (Note 1) -0.3V to (VDD + 0.3V) ICOMO_ - NOO_I, ICOMO_ - NCO_I,
ICOMO _ - NO1 _I, ICOMO _ - NC1_I (Note 1) 0 to +2.0V Continuous Current (COMO_, COM1_ to NOO_, NO1_, NCO_, NC1_) \qquad $\pm 70 \mathrm{~mA}$

Peak Current (COMO_, COM1_ to NOO_, NO1_, NCO_, NC1_) (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)................................ $\pm 70 \mathrm{~mA}$
Continuous Current into Any Terminal $\pm 30 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
TQFN (derate $35.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots2857 m W ~$
Operating Temperature Range $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range......................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)

Note 1: Signals on SEL_, NO_, NC_, or COM_ exceeding VCC, VDD, or VGND are clamped by internal diodes. Limit forward-diode current to maximum current rating

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=+3.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{VDD}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{VCC}=\mathrm{VDD}=+3.3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Power-Supply Range	VCC			3.0		5.5	V
	VDD			3.0		3.6	
Supply Current	ICC	VSEL1 $=0 \mathrm{~V}$ or $\mathrm{VCC}, \mathrm{VEN}=0 \mathrm{~V}$	$V C C=3.0 \mathrm{~V}$		0.6	1.5	$\mu \mathrm{A}$
	IDD	VSEL2 $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD }}$	$V D D=3.3 \mathrm{~V}$			60	
Shutdown Supply Current, ICC	ISHDN	Hi-Speed USB switches, switch disabled$\left(V_{E N}=V_{C C}\right)$		0.1			$\mu \mathrm{A}$
Increase in Supply Current, Icc, with VSEL1, VEN Voltage		Hi-Speed USB switches, $0 \mathrm{~V} \leq \mathrm{V}_{\text {SEL }} \leq \mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }} \leq \mathrm{V}_{\text {SEL }} \leq \mathrm{V}_{\text {CC }}$ or $0 \mathrm{~V} \leq \mathrm{V}_{\text {EN }} \leq \mathrm{V}_{\text {IL }}$ or $V_{I H} \leq V_{E N} \leq V_{C C}$				1	$\mu \mathrm{A}$
Analog Signal Range	VCOM VNO_, VNC_	Hi-Speed USB switches, $V_{E N}=0 \mathrm{~V}$ (Note 3)		0		VCC	V
		SuperSpeed USB switches		-0.3		$\begin{gathered} V_{D D} \\ 12 \end{gathered}$	
Fault-Protection Trip Threshold	VFP	Hi-Speed USB switches, COM $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	D_only,	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.6 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.8 \\ \hline \end{gathered}$	$\begin{aligned} & V_{C C} \\ & +1 \\ & \hline \end{aligned}$	V
On-Resistance	Ron	Hi-Speed USB switches, $\mathrm{V}_{\mathrm{COMD}}=0 \mathrm{~V}$ to V_{CC}			5	10	Ω
		Hi-Speed USB switches, VCC $=3.0 \mathrm{~V}$, VCOMD_ $=3.6 \mathrm{~V}$		5.5			
		SuperSpeed USB switches, VDD $=3.0 \mathrm{~V}$, $\mathrm{ICOM}_{-}=15 \mathrm{~mA}, \mathrm{~V}_{\text {NO_ }}=\mathrm{V}_{\mathrm{NC}}^{-}=0 \mathrm{~V}, 1.8 \mathrm{~V}$		7			

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
On-Resistance Match Between Channels	$\triangle \mathrm{RON}$	Hi-Speed USB switches, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$, $\mathrm{V}_{\text {COMD }}=2.0 \mathrm{~V}$ (Notes 4, 5)			0.1	1	
		SuperSpeed USB switches, VDD $=3.0 \mathrm{~V}$, $\mathrm{ICOM}=15 \mathrm{~mA}, \mathrm{VNO}_{-}$or $\mathrm{VNC}_{-}=0 \mathrm{~V}$ (Notes 4, 5)			0.6	2	Ω
On-Resistance Match Between Pairs of Same Channels	$\triangle \mathrm{RON}$	SuperSpeed USB switche ICOM_ = 15mA, VNO_ or V (Notes 4, 5)	$\begin{aligned} & V D D=3.0 \mathrm{~V}, \\ & \mathrm{VC}_{-}=0 \mathrm{~V} \end{aligned}$		0.1	1	Ω
On-Resistance Flatness	RFLAT	Hi-Speed USB switches, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$, $V_{C O M D}=0 V$ to $\mathrm{VCC}_{\text {C }}$ (Note 6)			0.1		
		SuperSpeed USB switches, VDD $=3.0 \mathrm{~V}$, ICOM_ $=15 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}^{-}$or $\mathrm{VNC}_{-}=0 \mathrm{~V}$ (Notes 5, 6)			0.06	2	Ω
Off-Leakage Current	ICOM(OFF)	Hi-Speed USB switches, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, VCOMD_ $=0 \mathrm{~V}$ or 5.5 V , VNOD_, $\mathrm{V}_{\text {NCD_ }}=5.5 \mathrm{~V}$ or 0 V		-250		+250	nA
		SuperSpeed USB switches, $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$, $\mathrm{VCOM}_{-}=0 \mathrm{~V}, 1.8 \mathrm{~V}$; V_{NO} or $\mathrm{V}_{\mathrm{NC}}^{-},=1.8 \mathrm{~V}$, OV		-1		+1	$\mu \mathrm{A}$
On-Leakage Current	ICOM(ON)	Hi-Speed USB switches, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, $\mathrm{V}_{\text {COMD_ }}=0 \mathrm{~V}$ or 5.5 V , $\mathrm{V}_{\text {NOD_ }}$, $\mathrm{V}_{\text {NCD_ }}=$ unconnected		-250		+250	nA
		SuperSpeed USB switches, $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$, $\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, 1.8 \mathrm{~V}$; V_{NO} or $\mathrm{V}_{\mathrm{NC}}{ }_{-}=\mathrm{V}_{\mathrm{COM}}$ or unconnected		-1		+1	$\mu \mathrm{A}$
AC PERFORMANCE							
On-Channel -3dB Bandwidth	BW	Hi-Speed USB switches, signal $=0 \mathrm{dBm}$	$=R S=50 \Omega \text {, }$		950		MHz
On-Loss	GLOSS	SuperSpeed USB switches, RL = RS $=50 \Omega$, unbalanced	$\begin{aligned} & 1 \mathrm{MHz}<\mathrm{f}< \\ & 100 \mathrm{MHz} \end{aligned}$		-0.5		dB
			$\begin{aligned} & 500 \mathrm{MHz}<\mathrm{f}< \\ & 1.25 \mathrm{GHz} \end{aligned}$		-1.4		
Off-Isolation	VISO	Hi-Speed USB switches, $\mathrm{V}_{\mathrm{NOD}}, \mathrm{V}_{\mathrm{NCD}} \mathrm{N}_{-}=0 \mathrm{dBm}$, $R_{L}=R_{S}=50 \Omega$, Figure 1	$\mathrm{f}=10 \mathrm{MHz}$		-48		dB
			$\mathrm{f}=250 \mathrm{MHz}$		-20		
			$\mathrm{f}=500 \mathrm{MHz}$		-17		
		SuperSpeed USB switches, signal $=0 d B m$, $R S=R L=50 \Omega$	$\mathrm{f}=10 \mathrm{MHz}$		-56		
			$\mathrm{f}=1.25 \mathrm{GHz}$		-26		

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{C}} \mathrm{C}=\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Crosstalk (Note 7)	VCT	Hi-Speed USB switches, $\mathrm{V}_{\mathrm{NOD}}, \mathrm{V}_{\mathrm{NCD}}=0 \mathrm{dBm}$, $R L=R S=50 \Omega$, Figure 1	$\mathrm{f}=10 \mathrm{MHz}$		-73		dB
			$\mathrm{f}=250 \mathrm{MHz}$		-54		
			$f=500 \mathrm{MHz}$		-33		
		SuperSpeed USB switches, crosstalk between any two pairs, $R S=R L=50 \Omega$, unbalanced, Figure 1	$f=50 \mathrm{MHz}$	-53			
			$\mathrm{f}=1.25 \mathrm{GHz}$	-32			
Signaling Data Rate	BR	SuperSpeed USB switches, $R_{S}=R_{L}=50 \Omega$		5.0			Gbps
LOGIC INPUT							
Input Logic-High	V_{IH}			1.4			V
Input Logic-Low	VIL					0.5	V
Input Leakage Current	IIN	Hi-Speed USB switches		-250		+250	nA
		SuperSpeed USB switches, VSEL2 $=0 \mathrm{~V}$ or VDD		-1		+1	$\mu \mathrm{A}$
Input Logic Hysteresis	VHYST	SuperSpeed USB switches		100			mV
DYNAMIC PERFORMANCE							
Turn-On Time	ton	Hi-Speed USB switches, $\mathrm{V}_{\text {NOD_ }}$ or $\mathrm{V}_{\mathrm{NCD}}=1.5 \mathrm{~V}$, $\mathrm{RL}=300 \Omega$, $C_{L}=35 p F, V_{E N}=V_{C C}$ to $0 V$, Figure 2			20	100	$\mu \mathrm{s}$
		SuperSpeed USB switches, V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}, \mathrm{RL}=50 \Omega$, Figure 2			90	250	ns
Turn-Off Time	toff	$\mathrm{V}_{\text {NOD_ }}$ or $\mathrm{VNCD}_{-}=1.5 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=300 \Omega$, $C L=35 p F, V_{E N}=0 V$ to VCC , Figure 2			1	5	$\mu \mathrm{s}$
		SuperSpeed USB switches, V_{NO} or $\mathrm{V}_{\mathrm{NC}}^{-}=1.0 \mathrm{~V}, \mathrm{RL}=50 \Omega$, Figure 2			10	50	ns
Propagation Delay	tPLH, tPHL	Hi-Speed USB switches, RL=RS $=50 \Omega$, Figure 3			100		ps
		SuperSpeed USB switches, RL=RS $=50 \Omega$		50			
Output Skew Between Switches	tSK	Hi-Speed USB switches, skew between switch 1 and $2, R_{L}=R S=50 \Omega$, Figure 3		40			ps
Output Skew Between Pairs	tSK1	SuperSpeed USB switches, RS $=R L=50 \Omega$, unbalanced; skew between any two pairs, Figure 3		50			ps
Output Skew Between Same Pair	tSK2	SuperSpeed USB switches, Rs $=R L=50 \Omega$, unbalanced; skew between two lines on same pair, Figure 3		10			ps
Fault-Protection Response Time	tFP	Hi-Speed USB switches, VCOMD_ $^{=}=0 \mathrm{~V}$ to 5 V step, $\mathrm{RL}=\mathrm{RS}=50 \Omega$, $V_{C C}=3.3 \mathrm{~V}$, Figure 4		0.5		5.0	$\mu \mathrm{S}$

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC}=+3.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{VDD}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{VCC}=\mathrm{VDD}=+3.3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Fault-Protection Recovery Time	tFPR	Hi-Speed USB switches, $\mathrm{VCOMD}_{-}=5 \mathrm{~V}$ to 0 V step, $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, Figure 4			100	$\mu \mathrm{s}$
NO_ or NC_ Off-Capacitance	CNO(OFF) or CNC(OFF)	Hi-Speed USB switches, $\mathrm{f}=1 \mathrm{MHz}$, Figure 5		2		pF
		SuperSpeed USB switches, Figure 5		1		
COM_ Off-Capacitance	CCOM(OFF)	Hi-Speed USB switches, $f=1 \mathrm{MHz}$, Figure 5		5.5		pF
		Hi-Speed USB switches, $f=240 \mathrm{MHz}$, Figure 5		4.8		
COM_ On-Capacitance	CCOM(ON)	Hi-Speed USB switches, $f=1 \mathrm{MHz}$, Figure 5		6.5		pF
		Hi-Speed USB switches, $f=240 \mathrm{MHz}$, Figure 5		5.5		
		SuperSpeed USB switches, Figure 5		2		
Total Harmonic Distortion Plus Noise	THD + N	Hi-Speed USB switches, VCOMD_ $=1 \mathrm{VP}-\mathrm{P}$, $V_{B I A S}=1 V, R L=R S=50 \Omega$, $\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz		0.03		\%
ESD PROTECTION						
COMD+, COMD-		Human Body Model		± 15		kV
		IEC 61000-4-2 Air Gap Discharge		± 15		
		IEC 61000-4-2 Contact Discharge		± 8		
COMO_, COM1_		Human Body Model		± 6		kV
All Pins		Human Body Model		± 2		kV

Note 2: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 3: The switch turns off for voltages above VFP, protecting downstream circuits in case of a fault condition.
Note 4: $\Delta \operatorname{Ron}(M A X)=\operatorname{IRON}(C H 1)-\operatorname{RON}(C H 2)$ |.
Note 5: Guaranteed by design. Not production tested.
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over specified analog-signal ranges.
Note 7: Between any two switches.

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

Figure 1. Off-Isolation, On-Loss, and Crosstalk

Figure 2. Switching Time

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

Test Circuits/Timing Diagrams (continued)

Figure 3. Propagation Delay, Output Skew

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

Typical Operating Characteristics $\overline{\left(V_{C C}\right.}=V_{D D}=3.3 V^{2}, T_{A}=+25^{\circ} \mathrm{C}$, unless othervise noted. $)$

EYE DIAGRAM

SUPERSPEED SWITCHES
ON-RESISTANCE vs. VCOM_

SUPERSPEED SWITCHES ON-RESISTANCE vs. VCOM_ $_{-}$(VCC $=+\mathbf{3 . 3 V}$)

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

LOW/FULL/HI-SPEED SWITCHES TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

Pin Description

PIN	NAME	
$1,2,3,6$, 8,36, $39-42$	N.C.	FUNCTION
4	COMD +	Hi-Speed USB Analog Switch, Common D+ Terminal
$5,10,14$, $17,19,21$	GND	Ground
7	COMD-	Hi-Speed USB Analog Switch, Common D- Terminal
9	SEL2	Digital Control Input for SuperSpeed USB Analog Switches
11	COM0+	SuperSpeed USB Analog Switch 0, Common Positive Terminal
12	COM0-	SuperSpeed USB Analog Switch 0, Common Negative Terminal
13,18, 20,30	VDD	Positive Supply Voltage Input for SuperSpeed USB Switches. Bypass VDD to GND with a 0.1 ceramic capacitor as close as possible to the device. 15
16	COM1+	SuperSpeed USB Analog Switch 1, Common Positive Terminal
22	NO1-	SuperSpeed USB Analog Switch 1, Common Negative Terminal
23	NO1+	SuperSpeed USB Analog Switch 1, Normally Open Negative Terminal
24	NO0-	SuperSpeed USB Analog Switch 1, Normally Open Positive Terminal
25	NOO+	SuperSpeed USB Analog Switch 0, Normally Open Negative Terminal Switch 0, Normally Open Positive Terminal
26	NC1-	SuperSpeed USB Analog Switch 1, Normally Closed Negative Terminal
27	NC1+	SuperSpeed USB Analog Switch 1, Normally Closed Positive Terminal
28	NC0-	SuperSpeed USB Analog Switch 0, Normally Closed Negative Terminal
29	NC0+	SuperSpeed USB Analog Switch 0, Normally Closed Positive Terminal
31	NOD-	Hi-Speed USB Analog Switch, Normally Open D- Terminal
32	NCD-	Hi-Speed USB Analog Switch, Normally Closed D- Terminal

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

Pin Description (continued)

PIN	NAME	FUNCTION
33	$\overline{E N}$	Active-Low Enable Input for Hi-Speed USB Switches. Drive $\overline{\mathrm{EN}}$ high to put Hi-Speed USB switches in high impedance. Drive $\overline{\mathrm{EN}}$ low for normal operation.
34	VCC	Positive-Supply Voltage Input for Hi-Speed USB Switches. Bypass VCC to GND with a 0.1 $\mu \mathrm{F}$ ceramic capacitor as close as possible to the device.
35	SEL1	Digital Control Input for Hi-Speed USB Analog Switches
37	NCD+	Hi-Speed USB Analog Switch, Normally Closed D+ Terminal
38	NOD+	Hi-Speed USB Analog Switch, Normally Open D+ Terminal
-	EP	Exposed Pad. EP is internally connected to GND. Connect EP to a large ground plane to maximize thermal performance. EP is not intended as an electrical connection point.

Functional Diagram/Truth Table

HI-SPEED USB SWITCHES				
$\overline{\text { EN }}$	SEL1	NOD	NCD	COMD
0	0	OFF	ON	-
0	1	ON	OFF	-
1	X	OFF	OFF	HIGH-Z

SUPERSPEED USB SWITCHES		
SEL2	NO_	NC__ $_{-}$
0	OFF	ON
1	ON	OFF

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

Detailed Description

The MAX14978 is ideal for SuperSpeed USB and low/ full/Hi-Speed (1.5/12/480Mbps) USB switching applications. The low V_{IH} threshold of the device permits it to be used with logic levels as low as 1.4 V . The device's Hi-Speed USB analog switches are based on a charge-pump-assisted n-channel architecture and operate with $36 \mu \mathrm{~A}$ (typ) quiescent current. The device features dual digital control inputs (SEL_) to switch Hi-Speed USB and SuperSpeed USB signal paths separately.

Digital Control Inputs (SEL1, SEL2) The device's provides dual digital control inputs (SEL1, SEL2) to select the signal path between the COM_ and NO_ or NC_ channels. Drive SEL1 and SEL2 rail-to-rail to minimize power consumption. See the Functional Diagram/Truth Table.

Analog-Signal Levels The device's switches are bidirectional, allowing NO_, NC_, and COM_ to be configured as either inputs or outputs.
The Hi-Speed USB switches are equipped with a charge-pump-assisted n-channel architecture that allows the switch to pass analog signals that exceed VCC up to the overvoltage fault-protection threshold. This allows USB signals that exceed VCC to pass, allowing compliance with USB requirements for voltage levels.
The SuperSpeed USB switches accept signals on the COM_, NO_, and NC_ channels within a range of -0.1 V to (VDD -1.2 V). Signals on the $\mathrm{COM}_{-}+$channels are routed to either the NO_+ or NC_+ channels, and signals on the COM_- channels are routed to either the NO_{-}- or NC_- channels.

Overvoltage Fault Protection

The device features overvoltage fault protection on COMD_. Fault protection prevents these switches from being damaged due to shorts to the USB VBUS voltage rail. Fault protection protects the switch and USB transceiver from damaging voltage levels. When voltages on COMD_ exceed the fault-protection threshold (VFP), COMD_, NCD_ and NOD_ are high impedance.

Enable Input

The device features a shutdown mode for the Hi-Speed USB analog switches that reduces the VCC quiescent current to $0.1 \mu \mathrm{~A}($ typ $)$ and places COMD+ and COMDin high impedance. Drive $\overline{E N}$ high to place the Hi-Speed USB analog switches in shutdown mode, and drive EN low for normal operation.

Applications Information

USB Switching
The device's analog switches are fully compliant with the USB 2.0 and USB 3.0 specifications. The low on-resistance and low on-capacitance of these switches make them ideal for high-performance switching applications. The device is ideal for routing USB data lines and for applications that require switching between multiple USB hosts or devices. The device's Hi-Speed USB analog switches also feature overvoltage fault protection to guard systems against shorts to the USB VBUS voltage rail that is required for all Hi-Speed USB applications.

Extended ESD Protection

As with all Maxim devices, ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. COMD+ and COMD- are further protected against static electricity. Maxim's engineers have developed state-of-the-art structures to protect these pins against ESD up to $\pm 15 \mathrm{kV}$ without damage. The ESD structures withstand high ESD in normal operation and when the device is powered down. After an ESD event, the device continues to function without latchup.
The device is characterized for protection to the following limits:

- $\pm 15 \mathrm{kV}$ using Human Body Model
- $\pm 15 \mathrm{kV}$ using IEC 61000-4-2 Air Gap Discharge method
- $\pm 8 \mathrm{kV}$ using IEC 61000-4-2 Contact Discharge method

Note: High ESD performance is only applicable to the Hi-Speed USB section of the switch. The SuperSpeed USB section is rated to $\pm 6 \mathrm{kV}$ HBM.

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 6a shows the Human Body Model, and Figure 6b shows the current waveform it generates when discharged into a low-impedance state. This model consists of a 100 pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor.

IEC 61000-4-2
The main difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2. Because series resistance is lower in the IEC 61000-4-2 ESD test model (Figure 7a) the ESDwithstand voltage measured to this standard is generally

Figure 6a. Human Body ESD Test Model

Figure 6b. Human Body Current Waveform
lower than that measured using the Human Body Model. Figure 7b shows the current waveform for the $\pm 8 \mathrm{kV}$ IEC 61000-4-2 Level 4 ESD Contact Discharge test.
The Air Gap Discharge test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Keep designcontrolled impedance PCB traces as short as possible or follow impedance layouts per the SuperSpeed USB specification. Ensure that power-supply bypass capacitors are placed as close as possible to the device. Multiple bypass capacitors are recommended. Connect all grounds and the exposed pad to large ground planes where possible.

Figure 7a. IEC 61000-4-2 ESD Test Model

Figure 7b. IEC 61000-4-2 ESD Generator Current Waveform

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

Power-Supply Sequencing

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply VCC and VDD before applying analog signals, especially if the analog signals are not current limited.

Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
42 TQFN-EP	T423590M +1	$\underline{\underline{21-0181}}$	$\underline{90-0079}$

SuperSpeed USB Passive Switch (Low/Full/Hi/SuperSpeed)

Revision History

REVISION NUMBER	REVISION DATE	PAGESS CHANGED	
0	$9 / 10$	Initial release	-
1	$4 / 11$	Updated analog signal range specification in Electrical Characteristics	2

