: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China
\qquad General Description
The MAX4998/MAX14998 high-speed passive switches route DisplayPort ${ }^{T M}$ between two possible destinations or vice versa in laptops or desktop PCs. The MAX4998/ MAX14998 are intended to be used where ultra-highspeed performance and minimal input capacitance is required.
The MAX4998 has three double-pole/double-throw (DPDT) switches and one single-pole/double-throw (SPDT) switch. Two DPDT switches are for high-frequency switching, one DPDT switch is for AUX, and the one SPDT switch is for HPD. The two high-frequency switches are selected by SEL1, and the AUX and HPD are selected by SEL2. This part is suitable for two-lane DisplayPort switching.
The MAX14998 has six double-pole/double-throw (DPDT) switches. Four DPDT switches are for high-frequency switching, and two DPDT switches are for AUX and HPD. The four high-frequency switches are selected by SEL1, and the AUX and HPD are selected by SEL2. This part is suitable for four-lane DisplayPort switching.
The MAX4998/MAX14998 are fully specified to operate from a single $+3.3 V$ (typ) power supply. The MAX4998 is available in a $3.5 \mathrm{~mm} \times 5.5 \mathrm{~mm}, 28$-pin TQFN package with exposed pad, and the MAX14998 is available in a $3.5 \mathrm{~mm} \times 9 \mathrm{~mm}$, 42-pin TQFN package with exposed pad. Both devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications
Notebook PCs
Desktop PCs

Features

- Single 3.3V Power-Supply Voltage
- 8.5GHz (typ) Bandwidth
- Support 1.6/5.4Gbps DisplayPort Signals

Handles DisplayPort v1.1 Signals
Handles DisplayPort v1.2 Signals

- Excellent Return Loss -13dB at 2.7GHz
- Independent High Frequency: AUX Select
- Designed for AC-Coupled Circuits
- Pass Throughs Are Maintained
- Low 850 A (max) Supply Current
- Small Packages
$3.5 \mathrm{~mm} \times 5.5 \mathrm{~mm}$, 28-Pin TQFN Package with Exposed Pad
$3.5 \mathrm{~mm} \times 9 \mathrm{~mm}$, 42-Pin TQFN Package with Exposed Pad
- Flow-Through Layout for Easy Board Layout
- ESD Protection for All I/O Pins: Human Body Model (HBM) $\pm 4 \mathrm{kV}$

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4998ETI +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TQFN-EP*
MAX14998ETO +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	42 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.
$T=$ Tape and reel.
*EP = Exposed pad.
Typical Operating Circuit appears at end of data sheet.

Two-Lane and Four-Lane DisplayPort Passive Switches with Separate AUX/HPD Control

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)
VDD..-0.3V to +4 V
SEL1, SEL2, COM_, NO_, NC_ (Note 1).....-0.3V to +(VDD + 0.3)V
IVCOM_ - VNO_I, IVCOM_ - VNCI (Note 1)..................... 0 to +2V
Continuous Current (COM_ to NO_/NC_) $\pm 70 \mathrm{~mA}$
Peak Current (COM_ to NO_/NC_)
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)................................. $\pm 70 \mathrm{~mA}$
Continuous Current (SEL1, SEL2) $\pm 30 \mathrm{~mA}$
Peak Current (SEL1, SEL2)
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)................................. $\pm 70 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
28-Pin TQFN (derate $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....... 2285 mW
42-Pin TQFN (derate $34.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....... 2758 mW

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range............................ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$) (Note 2) 28-Pin TQFN... $35^{\circ} \mathrm{C} / \mathrm{W}$
42-Pin TQFN.. $29^{\circ} \mathrm{C} / \mathrm{W}$
Package Junction-to-Case Thermal Resistance (OJC) (Note 2)
28-Pin TQFN... $2.7^{\circ} \mathrm{C} / \mathrm{W}$
42-Pin TQFN.. $2^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Note 1: Signals on COM_, NO_, NC_, SEL1, and SEL2 exceeding VDD or GND are clamped by internal diodes. Limit forwarddiode current to the maximum current rating.
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ANALOG SWITCH						
Analog Signal Range	VCOM_, VNO_{-}, VNC_				$\begin{gathered} \left(V_{D D}-\right. \\ 1.8) \end{gathered}$	V
Voltage Between COM_ and NO_/NC_	IVCOM_ - VNO_I, IVCOM_ - VNC_I		0		1.8	V
On-Resistance	Ron	$\begin{aligned} & \text { ICOM_= } 15 \mathrm{~mA} ; \\ & \mathrm{VNO}_{-}, \mathrm{VNC}_{\mathrm{NC}}=0 \mathrm{~V},+1.2 \mathrm{~V} \end{aligned}$		7		Ω
On-Resistance Match Between Pairs of Same Channel	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V} ; \mathrm{ICOM}_{-}=15 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}}^{-}, \\ & \mathrm{V}_{\text {NC_ }}=0 \mathrm{~V}(\text { Notes } 4,5) \end{aligned}$		0.1	2	Ω
On-Resistance Match Between Channels	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V} \text {; } \mathrm{ICOM}_{-}=15 \mathrm{~mA} ; \mathrm{V}_{\text {NO_ }}, \\ & \mathrm{VNC}_{-}=0 \mathrm{~V}(\text { Notes 4, 5) } \end{aligned}$		1.0	4	Ω
On-Resistance Flatness	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V} ; \mathrm{I}^{\mathrm{COM}}=15 \mathrm{~mA} ; \mathrm{V}_{\text {NO_ }} \\ & \mathrm{V}_{\text {NC_ }}=0 \mathrm{~V},+1.2 \mathrm{~V}(\text { Notes } 5,6) \end{aligned}$		0.3	1.5	Ω
NO_ or NC_ Off-Leakage Current	$\begin{aligned} & \text { INO_(OFF) } \\ & \text { INC_(OFF) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V},+1.2 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { o or } \mathrm{V}_{\mathrm{NC}}=1 \end{aligned}$	-1		1	$\mu \mathrm{A}$
COM_ On-Leakage Current	ICOM_(ON)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=+3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V},+1.2 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=\mathrm{V}_{\mathrm{COM}} \text { or or unconnected } \end{aligned}$	-1		1	$\mu \mathrm{A}$
DIGITAL SIGNALS						
SEL1 and SEL2 to Switch Turn-On Time	ton_SEL	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+1.0 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF} \text { (Figure 1) } \end{aligned}$		45	120	ns

Two-Lane and Four-Lane DisplayPort Passive Switches with Separate AUX/HPD Control

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{A}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SEL1 and SEL2 to Switch Turn-Off Time	toFF_SEL	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+1.0 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \text { (Figure 1) } \end{aligned}$		5	50	ns
Differential Insertion Loss	SDD21	$\mathrm{f}=0.8 \mathrm{GHz}$ (Figure 2)		-0.67		dB
		$\mathrm{f}=1.35 \mathrm{GHz}$ (Figure 2)		-0.95		
Differential Crosstalk	SDDCTK	$\mathrm{f}=0.8 \mathrm{GHz}$ (Figure 2)		-37		dB
		$\mathrm{f}=1.35 \mathrm{GHz}$ (Figure 2)		-34		
Differential Return Loss	SDD11	$\mathrm{f}=0.8 \mathrm{GHz}$ (Figure 2)		-20		dB
		$\mathrm{f}=1.35 \mathrm{GHz}$ (Figure 2)		-14		
Signal Data Rate	BR	RS $=$ RL $=100 \Omega$ balanced		17		Gbps
Differential -3dB Bandwidth	f-3BW	$R S=R L=100 \Omega$ balanced		8.5		GHz
Differential Off-Isolation	SDD21_OFF	$\mathrm{f}=1.35 \mathrm{GHz}$ (Figure 2)		-28		dB
LOGIC INPUT (SEL1, SEL2)						
Input Logic-High	V_{IH}		1.4			V
Input Logic-Low	VIL				0.5	V
Input Logic Hysteresis	VHYST			100		mV
Input Leakage Current	IIN	$V_{S E L}=0 \mathrm{~V}$ or V_{DD}	-1		+1	$\mu \mathrm{A}$
POWER SUPPLY						
Power-Supply Range	VDD		3.0		3.6	V
VDD Supply Current	IDD	VSEL_ $=0 \mathrm{~V}$ or VDD		500	850	$\mu \mathrm{A}$

Note 3: All units are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization and are not production tested.
Note 4: $\Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 5: Guaranteed by design. Not production tested
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Two-Lane and Four-Lane DisplayPort Passive Switches with Separate AUX/HPD Control

Figure 2. Differential On-Loss, Differential Off-Isolation, and Differential Crosstalk
\qquad

Two-Lane and Four-Lane DisplayPort Passive Switches with Separate AUX/HPD Control

Typical Operating Characteristics
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOGIC THRESHOLD vs. SUPPLY VOLTAGE

ON-RESISTANCE vs. COM_ VOLTAGE

TURN-ON/OFF TIME vs. SUPPLY VOLTAGE

DIFFERENTIAL CROSSTALK

DIFFERENTIAL RETURN LOSS

Two-Lane and Four-Lane DisplayPort Passive Switches with Separate AUX/HPD Control

Pin Configurations

*CONNECT EXPOSED PAD TO GROUND.

Pin Description

PIN		NAME	FUNCTION
MAX4998	MAX14998		
1	2	COM0 +	Analog Switch 1. Common positive terminal.
2	3	COM0-	Analog Switch 1. Common negative terminal.
3	4	COM1+	Analog Switch 2. Common positive terminal.
4	5	COM1-	Analog Switch 2. Common negative terminal.
5	7	COM2+	Analog Switch 3. Common positive terminal.
6	8	COM2-	Analog Switch 3. Common negative terminal.
$7,9,15,19$	$1,6,13,26$	VDD	Positive Supply Voltage Input. Connect VDD to a +3.0V to +3.6V supply voltage. Bypass VDD to GND with a 0.1 μ F ceramic capacitor placed as close to the device as possible (see the Board Layout section).
8	9	COM3+	Analog Switch 4. Common positive terminal.
10	16	SEL1	Control Signal Input. Selects high-frequency switching.
11	17	SEL2	Control Signal Input. Selects AUX/HPD.
12	28	NO3+	Analog Switch 4. Normally Open positive terminal.
13	29	NO2-	Analog Switch 3. Normally Open negative terminal.
14	30	NO2+	Analog Switch 3. Normally Open positive terminal.
16	36	NC3+	Analog Switch 4. Normally Closed positive terminal.
17	37	NC2-	Analog Switch 3. Normally Closed negative terminal.
18	38	NC2+	Analog Switch 3. Normally Closed positive terminal.
20	31	NO1-	Analog Switch 2. Normally Open negative terminal.
21	32	NO1+	Analog Switch 2. Normally Open positive terminal.
22	33	NO0-	Analog Switch 1. Normally Open negative terminal.

Two-Lane and Four-Lane DisplayPort Passive Switches with Separate AUX/HPD Control

Pin Description (continued)

PIN		NAME	FUNCTION
MAX4998	MAX14998		
23	34	NO0+	Analog Switch 1. Normally Open positive terminal.
24	-	GND	Ground
25	39	NC1-	Analog Switch 2. Normally Closed negative terminal.
26	40	NC1+	Analog Switch 2. Normally Closed positive terminal.
27	41	NC0-	Analog Switch 1. Normally Closed negative terminal.
28	42	NC0+	Analog Switch 1. Normally Closed positive terminal.
-	10	COM3-	Analog Switch 4. Common negative terminal.
-	11	COM4+	Analog Switch 5. Common positive terminal.
-	12	COM4-	Analog Switch 5. Common negative terminal.
-	14	COM5+	Analog Switch 6. Common positive terminal.
-	15	COM5-	Analog Switch 6. Common negative terminal.
-	18	NO5-	Analog Switch 6. Normally Open negative terminal.
-	19	NO5+	Analog Switch 6. Normally Open positive terminal.
-	20	NO4-	Analog Switch 5. Normally Open negative terminal.
-	21	NO4+	Analog Switch 5. Normally Open positive terminal.
-	22	NC5-	Analog Switch 6. Normally Closed negative terminal.
-	23	NC5+	Analog Switch 6. Normally Closed positive terminal.
-	24	NC4-	Analog Switch 5. Normally Closed negative terminal.
-	25	NC4+	Analog Switch 5. Normally Closed positive terminal.
-	27	NO3-	Analog Switch 4. Normally Open negative terminal.
-	35	NC3-	Analog Switch 4. Normally Closed negative terminal.
-	-	EP	Exposed Pad. Internally connected to GND. Connect to a large plane to maximize thermal performance. Not intended as an electrical part.
-			

Detailed Description

The MAX4998/MAX14998 high-speed passive switches route one DisplayPort source between two possible destinations or vice versa. The MAX4998 is used to switch two-lanes plus AUX/HPD DisplayPort, and the MAX14998 is used to switch four-lanes plus AUX/HPD DisplayPort.

The MAX4998/MAX14998 feature two digital control inputs (SEL1, SEL2) to switch signal paths.

Digital Control Inputs (SEL1, SEL2)
The MAX4998/MAX14998 provide two digital control inputs (SEL1, SEL2) to select the signal path between the COM_ and NO_/NC_ channels. SEL1 selects highfrequency switching, while SEL2 selects AUX/HPD. On the MAX4998, switches 1 and 2 are high-frequency
switches and switches 3 and 4 are both low-frequency switches. On the MAX14998, switches 1, 2, 3, and 4 are high-frequency switches and switches 5 and 6 are lowfrequency switches. The truth tables for the MAX4998/ MAX14998 are depicted in the Functional Diagrams/ Truth Tables. Drive SEL_ OV to VDD to minimize power consumption.

Analog Signal Levels
The MAX4998/MAX14998 accept standard DisplayPort signals to a maximum of (VDD - 1.8V). Signals on the COM_+ channels are routed to either the NO_+ or NC_+ channels. Signals on the COM_- channels are routed to either the NO_- or NC_- channels. The MAX4998/ MAX14998 are bidirectional switches, allowing COM_, NO_, and NC_, to be used as either inputs or outputs.

Two-Lane and Four-Lane DisplayPort Passive Switches with Separate AUX/HPD Control

Functional Diagrams/Truth Tables

SEL1	EVENT	SWITCH
0	COM_TO NC_-	$1,2,3,4$
1	COM_TO NO_	$1,2,3,4$

SEL2	EVENT	SWITCH
0	COM_TO NC_-	5,6
1	COM_TO NO_ 2	5,6

SEL1	EVENT	SWITCH
0	COM_TO NC_-	1,2
1	COM_TO NO_	1,2

SEL2	EVENT	SWITCH
0	COM_TO NC_-	3,4
1	COM_TO NO_-	3,4

Two-Lane and Four-Lane DisplayPort Passive Switches with Separate AUX/HPD Control

NOTE: THE APPLICATION SHOWN IS A TWO-LANE SWITCH BETWEEN THE DOCKING STATION AND DisplayPort CONNECTOR ON A LAPTOP. SEL2 NEEDS TO BE CHANGED FIRST WHEN SWITCHING SO THAT THE AUX/HPD SIGNAL CAN ESTABLISH CONTACT AND SET PARAMETERS THROUGH DDC. THE HPD SIGNALS FROM THE DOCKING STATION AND DP CONNECTOR NEED TO BE INPUT THROUGH A LEVEL TRANSLATOR, SUCH AS A 7WZO7 OR 742G07 NONINVERTING TO THE MAX4998. EACH OUTPUT IS PULLED UP TO MATCH THE LOGIC LEVEL OF THE GMCH. THE COM SIDE OF THE MAX4998 NEEDS TO BE CONNECTED DIRECTLY TO THE GMCH, RUNNING AT LOW VOLTAGE (APPROXIMATELY 1.1V). THIS ESTABLISHES THE COMMON-MODE VOLTAGE FOR THE SWITCH AND KEEPS THE SWITCH WITHIN ITS OPTIMAL RANGE. IF A FOUR-LANE DisplayPort SWITCH IS DESIRED, THE MAX14998 SHOULD BE USED. THE CIRCUIT IS THE SAME EXCEPT THAT DPO TO DP3 IS USED WITH AUX, AND THE HPD CIRCUITRY IS THE SAME.

Two-Lane and Four-Lane DisplayPort Passive Switches with Separate AUX/HPD Control

_ Applications Information
Board Layout
High-speed switches require proper layout and design procedures for optimum performance. Keep designcontrolled impedance PCB traces as short as possible. Ensure that power-supply bypass capacitors are placed as close to the device as possible. Multiple bypass capacitors are recommended. Connect all grounds and the exposed pad to large ground planes.

Chip Information

PROCESS: CMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
28 TQFN-EP	$\mathrm{T} 283555+1$	$\underline{21-0184}$	$\underline{90-0123}$
42 TQFN-EP	$\mathrm{T} 423590+1$	$\underline{\mathbf{2 1 - 0 1 8 1}}$	$\underline{90-0078}$

Two-Lane and Four-Lane DisplayPort Passive Switches with Separate AUX/HPD Control

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$10 / 09$	Initial release	-
1	$8 / 10$	Removed future status from the MAX14998 in the Ordering Information table; changed the bandwidth to $8.5 \mathrm{GHz}(t y p)$ in the Features section; changed the return loss to $-13 d B$ at 2.7 GHz in the Features section; added sub-bullets describing the DisplayPort signals $v 1.1$ and $v 1.2$ to the Features section	1

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time

