## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

General Description
The MAX152 high-speed, microprocessor ( $\mu \mathrm{P}$ )-compatible, 8-bit analog-to-digital converter (ADC) uses a half-flash technique to achieve a $1.8 \mu \mathrm{~s}$ conversion time, and digitizes at a rate of 400 k samples per second (ksps). It operates with single +3 V or dual $\pm 3 \mathrm{~V}$ supplies and accepts either unipolar or bipolar inputs. A POWERDOWN pin reduces current consumption to a typical value of $1 \mu \mathrm{~A}$. The part returns from powerdown and acquires an input signal in less than 900 ns , providing large reductions in supply current in applications with burst-mode input signals.
The MAX152 is DC and dynamically tested. Its $\mu \mathrm{P}$ interface appears as a memory location or input/output port that requires no external interface logic. The data outputs use latched, three-state buffered circuitry for direct connection to a $\mu \mathrm{P}$ data bus or system input port. The ADC's input/reference arrangement enables ratiometric operation. A fullyassembled evaluation kit provides a proven PC board layout to speed prototyping and design.

Applications
Cellular Telephones
Portable Radios
Battery-Powered Systems
Burst-Mode Data Acquisition
Digital Signal Processing
Telecommunications
High-Speed Servo Loops
Functional Diagram


|  | Features |
| :--- | :--- |
| Single +3.0V to +3.6V Supply | Power-Up in 900ns |
| Internal Track/Hold | 400ksps Throughput |

## +3V, 8-Bit ADC with $1 \mu A$ Power-Down





Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

## ELECTRICAL CHARACTERISTICS

(Unipolar input range, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{VREF}+=3.0 \mathrm{~V}, \mathrm{VREF}-=\mathrm{GND}$, specifications are given for RD mode ( $\operatorname{pin} 7=G N D$ ), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACCURACY (Note 1) |  |  |  |  |  |  |
| Resolution | N |  | 8 |  |  | Bits |
| Total Unadjusted Error | TUE | Unipolar range |  |  | $\pm 1$ | LSB |
| Differential Nonlinearity | DNL | No-missing-codes guaranteed |  |  | $\pm 1$ | LSB |
| Zero-Code Error (Note 2) |  | Unipolar and bipolar modes |  |  | $\pm 1$ | LSB |
| Full-Scale Error (Note 2) |  | Unipolar and bipolar modes |  |  | $\pm 1$ | LSB |
| DYNAMIC PERFORMANCE (Note 3) |  |  |  |  |  |  |
| Signal-to-Noise Plus Distortion Ratio | $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ | MAX152C/E, fsAMPLE = 400 kHz , $\mathrm{f} \mathrm{IN}=30.273 \mathrm{kHz}$ | 45 |  |  | dB |
|  |  | $\begin{aligned} & \text { MAX152M, fSAMPLE }=340 \mathrm{kHz} \text {, } \\ & \mathrm{f} \mathrm{IN}=30.725 \mathrm{kHz} \end{aligned}$ | 45 |  |  |  |
| Total Harmonic Distortion | THD | MAX152C/E, f $\mathrm{f}_{\text {SAMPLE }}=$ $400 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN}}=30.273 \mathrm{kHz}$ |  |  | -50 | dB |
|  |  | $\begin{aligned} & \text { MAX152M, fSAMPLE }=340 \mathrm{kHz} \text {, } \\ & \mathrm{fIN}=30.725 \mathrm{kHz} \end{aligned}$ |  |  | -50 |  |
| Spurious-Free Dynamic Range |  | $\begin{aligned} & \text { MAX152C/E, fSAMPLE }= \\ & 400 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN}}=30.273 \mathrm{kHz} \end{aligned}$ | 50 |  |  | dB |
|  |  | $\begin{aligned} & \text { MAX152M, } \mathrm{f}_{\text {SAMPLE }}=340 \mathrm{kHz}, \\ & \mathrm{f}_{\mathrm{IN}}=30.725 \mathrm{kHz} \end{aligned}$ | 50 |  |  |  |
| Input Full-Power Bandwidth |  | V IN $=3.0 \mathrm{~V}_{\mathrm{p} \text {-p }}$ |  | 0.3 |  | MHz |
| Maximum Input Slew Rate, Tracking |  |  | 0.28 | 0.5 |  | V/ $/ \mathrm{s}$ |
| ANALOG INPUT |  |  |  |  |  |  |
| Input Voltage Range | $\mathrm{V}_{\text {IN }}$ |  | VREF- |  | VREF+ | V |
| Input Leakage Current | $\mathrm{I}_{\text {IN }}$ | $\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{DD}}$ |  |  | $\pm 3$ | $\mu \mathrm{A}$ |
| Input Capacitance | $\mathrm{C}_{\text {IN }}$ |  |  | 22 |  | pF |
| REFERENCE INPUT |  |  |  |  |  |  |
| Reference Resistance | RREF |  | 1 | 2 | 4 | k $\Omega$ |
| VREF+ Input Voltage Range |  |  | VREF- |  | $V_{D D}$ | V |
| VREF- Input Voltage Range |  |  | $\mathrm{V}_{\text {SS }}$ |  | VREF+ | V |

# +3V, 8-Bit ADC with $1 \mu A$ Power-Down 

## ELECTRICAL CHARACTERISTICS (continued)

(Unipolar input range, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}$, $\mathrm{VREF}+=3.0 \mathrm{~V}$, VREF- $=\mathrm{GND}$, specifications are given for RD mode (pin $7=G N D$ ), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)


Note 1: Accuracy measurements performed at $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, unipolar mode. Operation over supply range is guaranteed by powersupply rejection test
Note 2: Bipolar tests are performed with VREF $+=+1.5 \mathrm{~V}$, $\mathrm{VREF}-=-1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.0 \mathrm{~V}$.
Note 3: Unipolar input range, $\mathrm{V}_{\mathbb{I N}}=3.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{WR}$-RD mode, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
Note 4: Guaranteed by design.
Note 5: Power-down current increases if control inputs are not driven to ground or $V_{D D}$.

## +3V, 8-Bit ADC with $1 \mu A$ Power-Down

MAX152

## TIMING CHARACTERISTICS

(Unipolar input range, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 6)

| PARAMETER | SYMBOL | CONDITIONS | $\begin{array}{r} \text { AI } \\ \text { MIN } \end{array}$ | $\begin{aligned} & \text { L GRADES } \\ & \mathrm{A}=+25^{\circ} \mathrm{C} \\ & \text { TYP MAX } \end{aligned}$ | $\begin{gathered} \text { MAX152C/E } \\ \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ \text { MIN } \quad \text { MAX } \end{gathered}$ | $\begin{gathered} \text { MAX152M } \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{gathered}$ MIN MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conversion Time (WR-RD Mode) | towr | $\begin{aligned} & \mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\mathrm{INT}} \mathrm{~L}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{p} \mathrm{~F} \end{aligned}$ |  | 1.8 | 2.06 | 2.4 | $\mu \mathrm{s}$ |
| Conversion Time (RD Mode) | $t_{\text {CRD }}$ |  |  | 2.0 | 2.3 | 2.6 | $\mu \mathrm{s}$ |
| Power-Up Time | tup |  |  | 0.9 | 1.2 | 1.4 | $\mu \mathrm{s}$ |
| $\overline{\mathrm{CS}}$ to RD,WR Setup Time | tcss |  | 0 |  | 0 | 0 | ns |
| $\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Hold Time | tcSH |  | 0 |  | 0 | 0 | ns |
| $\begin{aligned} & \hline \text { CS to RDY } \\ & \text { Delay } \end{aligned}$ | $t_{\text {RDY }}$ | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$ |  | 100 | 120 | 140 | ns |
| Data Access Time (RD Mode) (Note 7) | $\mathrm{t}_{\text {ACCO }}$ | $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ |  | $\begin{aligned} & \text { tCRD } \\ & +100 \end{aligned}$ | $\begin{aligned} & \hline \text { tCRD } \\ & +130 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { tCRD } \\ & +150 \end{aligned}$ | ns |
| RD to INT Delay (RD Mode) | $\mathrm{t}_{\text {INTH }}$ | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 100160 | 170 | 180 | ns |
| Data Hold Time (Note 8) | $t_{\text {DH }}$ |  |  | 100 | 130 | 150 | ns |
| Delay Time Between Conversions | $t_{P}$ |  | 450 |  | 600 | 700 | ns |
| WR Pulse Width | twR |  | 0.6 | 10 | 0.6610 | 0.810 | $\mu \mathrm{s}$ |
| Delay Time Between WR and RD Pulses | $t_{\text {RD }}$ |  | 0.8 |  | 0.9 | 1.0 | $\mu \mathrm{s}$ |
| RD Pulse Width | $\mathrm{t}_{\text {READ1 }}$ | WR-RD mode, determined by $\mathrm{t}_{\mathrm{ACC}}$ (Figure 6) | 400 |  | 500 | 600 | ns |
| Data Access Time (Note 7) | $\mathrm{t}_{\mathrm{ACC} 1}$ | WR-RD mode, $t_{R D}<t_{\mathrm{INT}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 6) |  | 400 | 500 | 600 | ns |
| $\overline{\mathrm{RD}}$ to INT Delay | $\mathrm{t}_{\mathrm{RI}}$ |  |  | 300 | 340 | 400 | ns |
| WR to INT Delay | tintL | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 0.71 .45 | 1.6 | 1.8 | $\mu \mathrm{s}$ |
| RD Pulse Width | $\mathrm{t}_{\text {READ2 }}$ | WR-RD mode, $t_{R D}>t_{\text {INTL }}$, determined by $\mathrm{t}_{\mathrm{ACC}}$ (Figure 5) | 180 |  | 220 | 250 | ns |
| Data Access Time (Note 7) | $\mathrm{t}_{\text {ACC2 }}$ | WR-RD mode, $\mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\mathrm{NTL}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 5) |  | 180 | 220 | 250 | ns |
| WR to INT Delay | $t_{\text {IHWR }}$ | Stand-alone mode, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 180 | 200 | 240 | ns |
| Data Access Time After INT (Note 7) | $t_{\text {ID }}$ | Stand-alone mode, $C_{L}=100 \mathrm{pF}$ |  | 100 | 130 | 150 | ns |

Note 6: Input control signals are specified with $t_{r}=t_{f}=5 \mathrm{~ns}, 10 \%$ to $90 \%$ of +3.0 V , and timed from a voltage level of 1.3 V . Timing delays get shorter at higher supply voltages. See the Converson Time vs. Supply Voltage graph in the Typical Operating Characteristics to extrapolate timing delays at other power-supply voltages.
Note 7: See Figure 1 for load circuit. Parameter defined as the time required for the output to cross 0.66 V or 2.0 V .
Note 8: See Figure 2 for load circuit. Parameter defined as the time required for the data lines to change 0.5 V .

## +3V, 8-Bit ADC with $1 \mu A$ Power-Down



## +3V, 8-Bit ADC with $1 \mu A$ Power-Down

MAX152


Figure 1. Load Circuits for Data-Access Time Test
Pin Description

| PIN | NAME | FUNCTION |
| :---: | :---: | :---: |
| 1 | $\mathrm{V}_{\mathrm{IN}}$ | Analog Input. Range is VREF- $\leq \mathrm{V}_{\text {IN }} \leq$ VREF + . |
| 2 | D0 | Three-State Data Output (LSB) |
| 3-5 | D1-D3 | Three-State Data Outputs |
| 6 | WR/RDY | Write Control Input/Ready Status Output* |
| 7 | MODE | Mode Selection Input is internally pulled low with a $15 \mu \mathrm{~A}$ current source. MODE $=0$ activates read mode MODE = 1 activates write-read mode* |
| 8 | $\overline{\mathrm{RD}}$ | Read Input must be low to access data.* |
| 9 | INT | Interrupt Output goes low to indicate end of conversion.* |
| 10 | GND | Ground |
| 11 | VREF- | Lower limit of reference span. Sets the zero-code voltage. Range is $\mathrm{V}_{\mathrm{SS}} \leq$ VREF- < VREF+ |
| 12 | VREF+ | Upper limit to reference span. Sets the full-scale input voltage. Range is VREF- < VREF $+\leq$ VDD $_{\text {D }}$. |
| 13 | CS | Chip-Select Input must be low for the device recognize WR or RD inputs. |
| 14-16 | D4-D6 | Three-State Data Outputs |
| 17 | D7 | Three-State Data Output (MSB) |
| 18 | PWRDN | Powerdown Input reduces supply current when low. |
| 19 | $\mathrm{V}_{\text {SS }}$ | Negative Supply. Unipolar: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$, Bipolar: $\mathrm{V}_{\mathrm{SS}}=-3 \mathrm{~V}$. |
| 20 | $V_{D D}$ | Positive Supply, +3V. |

*See Digital Inferface Section.


Figure 2. Load Circuits for Data-Hold Tlme Test

## Detailed Description

Converter Operation
The MAX152 uses a half-flash conversion technique (see Functional Diagram) in which two 4-bit flash ADC sections achieve an 8 -bit result. Using 15 comparators, the flash ADC compares the unknown input voltage to the reference ladder and provides the upper 4 data bits.
An internal digital-to-analog converter (DAC) uses the 4 most significant bits (MSBs) to generate the analog result from the first flash conversion and a residue voltage that is the difference between the unknown input and the DAC voltage. The residue is then compared again with the flash comparators to obtain the lower 4 data bits (LSBs).
The MAX152 is characterized for operation between +3.0 V and +3.6 V . Conversion times decrease as the supply voltage increases. The supply current decreases rapidly with decreasing supply voltage. (See Typical Operating Characteristics.)

## Power-Down Mode

In burst-mode or low sample-rate applications, the MAX152 can be shut down between conversions, reducing supply current to microamp levels (see Typical Operating Characteristics). A logic low on the PWRDN pin shuts the device down, reducing supply current to typically $1 \mu \mathrm{~A}$ when powered from a single 3V supply. A logic high on PWRDN wakes up the MAX152. A new conversion can be started within 900 ns of the PWRDN pin being driven high (this includes both the power-up delay and the track/hold acquisition time). If power-down mode is not required, connect $\overline{P W R D N}$ to $\mathrm{V}_{\mathrm{DD}}$.

## +3V, 8-Bit ADC with $1 \mu A$ Power-Down

Once the MAX152 is in power-down mode, lowest supply current is drawn with MODE low (RD mode) due to an internal pull-down resistor at this pin. In addition, for minimum current consumption, other digital inputs should remain high in power-down. Refer to the Reference section for information on reducing reference current during power-down.

## Digital Interface

The MAX152 has two basic interface modes set by the status of the MODE input pin. When MODE is low, the converter is in the RD mode; when MODE is high, the converter is set up for the WR-RD mode.

Read Mode $(M O D E=0)$
In RD mode, conversion control and data access are controlled by the $\overline{\mathrm{RD}}$ input (Figure 3). The comparator inputs track the analog input voltage for the duration of tP . A conversion is initiated by driving RD low. With $\mu \mathrm{Ps}$ that can be forced into a wait state, hold RD low until output data appears. The $\mu \mathrm{P}$ starts the conversion, waits, and then reads data with a single read instruction.
$\overline{W R} / R D Y$ is configured as a status output (RDY) in RD mode, where it can drive the ready or wait input of a $\mu \mathrm{P}$. RDY is an open-collector output (with no internal pull-up) that goes low after the falling edge of $\overline{C S}$ and goes high at the end of the conversion. If not used, the WR/RDY pin can be left unconnected. The INT output goes low at the end of the conversion and returns high on the rising edge of $\overline{C S}$ or $\overline{R D}$.


Figure 3. RD Mode Timing (MODE $=0$ )

## Write-Read Mode (MODE = 1)

Figures 4 and 5 show the operating sequence for the write-read (WR-RD) mode. The comparator inputs track the analog input voltage for the duration of tp. The conversion is initiated by a falling edge of WR. When WR returns high, the 4 MSBs ' flash result is latched into the output buffers and the 4 LSBs' conversion begins. INT goes low, indicating conversion end, and the lower 4 data bits are latched into the output buffers. The data is then accessible after RD goes low (see Timing Characteristics).


Figure 4. WR-RD Mode Timing $\left(t_{R D}>t_{I N T L}\right)(M O D E=1)$


Figure 5. WR-RD Mode Timing ( $t_{R D}<t_{I N T L}$ ), Fastest Operating Mode $(M O D E=1)$

## +3V, 8-Bit ADC with $1 \mu A$ Power-Down

MAX152


Figure 6. Stand-Alone Mode Timing $(\overline{C S}=\overline{R D}=0)(M O D E=1)$

A minimum acquisition time (tP) is required from INT going low to the start of another conversion (WR going low).
Options for reading data from the converter include the following:

Using Internal Delay
The $\mu \mathrm{P}$ waits for the INT output to go low before reading the data (Figure 4). INT goes low after the rising edge of WR, indicating that the conversion is complete and the result is available in the output latch. With $\overline{C S}$ low, data outputs DO-D7 can be accessed by pulling $\overline{\mathrm{RD}}$ low. $\overline{\mathrm{NT}}$ is then reset by the rising edge of $\overline{\mathrm{CS}}$ or RD.

## Fastest Conversion: Reading Before Delay

An external method of controlling the conversion time is shown in Figure 5. The internally generated delay tINTL varies slightly with temperature and supply voltage, and can be overridden with RD to achieve the fastest conversion time. $\overline{\mathrm{RD}}$ is brought low after the rising edge of $\overline{W R}$, but before $\overline{\mathrm{NT}}$ goes low. This completes the conversion and enables the output buffers (D0-D7) that contain the conversion result. INT also goes low after the falling edge of RD and is reset on the rising edge of $\overline{\mathrm{RD}}$ or $\overline{\mathrm{CS}}$. The total conversion time is therefore: $\mathrm{tCWR}=\mathrm{tWR}(600 \mathrm{~ns})+$ tRD $(800 \mathrm{~ns})+\mathrm{tACC} 1$ $(400 \mathrm{~ns})=1800 \mathrm{~ns}$.

Stand-Alone Operation
Besides the two standard WR-RD mode options, standalone operation can be achieved by connecting CS and RD low (Figure 6). A conversion is initiated by pulling WR low. Output data can be read by either edge of the next WR pulse.


Figure 7a. Power Supply as Reference


Figure 7b. External Reference, +2.5V Full Scale


Figure 7c. Input Not Referenced to GND


Figure 7d. An N-channel MOSFET switches off the reference load during power-down.

# +3V, 8-Bit ADC with $1 \mu A$ Power-Down 

## Analog Considerations

## Reference

Figures 7a-7c show some reference connections. VREF+ and VREF- inputs set the full-scale and zeroinput voltages of the ADC. The voltage at VREFdefines the input that produces an output code of all zeros, and the voltage at VREF+ defines the input that produces an output code of all ones.
The internal resistance from VREF+ to VREF- may be as low as $1 \mathrm{k} \Omega$, and current will flow through it even when the MAX152 is shut down. Figure 7d shows how an Nchannel MOSFET may be connected to VREF- to break this path during power-down. The FET should have an on resistance $<2 \Omega$ with a 3 V gate drive.
Although VREF+ is frequently connected to VDD, this circuit uses a low current, low-dropout, 2.5 V voltage reference - the MAX872. Since the MAX872 cannot continuously furnish enough current for the reference resistance, this circuit is intended for applications where the MAX152 is normally in standby and is turned on in order to make measurements at intervals greater than $20 \mu \mathrm{~s}$. The capacitor C1 connected to VREF+ is slowly charged by the MAX872 during the standby period and furnishes the reference current during the short measurement period.
The $2.2 \mu \mathrm{~F}$ value of C 1 is chosen so that its voltage drops by less than $1 / 2$ LSB during the conversion process. Larger capacitors reduce the error still further. Use ceramic or tantalum capacitors for C1.
When VREF- is switched, as in Figure 7d, a new conversion can be initiated after waiting a time equal to the power-up delay (tup) plus the turn-on time of the N -channel FET.

## Bypassing

A $4.7 \mu \mathrm{~F}$ electrolytic in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor should be used to bypass VDD to GND. These capacitors should have minimal lead length.
The reference inputs should be bypassed with $0.1 \mu \mathrm{~F}$ capacitors, as shown in Figures 7a-7c.

## Input Current

Figure 8 shows the equivalent circuit of the converter input. When the conversion starts and WR is low, VIN is connected to sixteen 0.6 pF capacitors. During this acquisition phase, the input capacitors charge to the input voltage through the resistance of the internal analog switches. In addition, about 12 pF of stray capacitance must be charged. The input can be modeled as an equivalent RC network (Figure 9). As source impedance increases, the capacitors take longer to charge.
The typical 22 pF input capacitance allows source resistance as high as $2.2 \mathrm{k} \Omega$ without setup problems. For larger resistances, the acquisition time (tp) must be increased.


Figure 8. Equivalent Input Circuit


Figure 9. RC Network Equivalent Input Model

## +3V, 8-Bit ADC with $1 \mu A$ Power-Down

## Conversion Rate

The maximum sampling rate ( $f_{\max }$ ) for the MAX152 is achieved in the WR-RD mode ( tRD < tINTL ) and is calculated as follows:

$$
\begin{aligned}
\mathrm{f}_{\max } & =\frac{1}{\mathrm{t}_{\mathrm{WR}}+\mathrm{t}_{\mathrm{RD}}+\mathrm{t}_{\mathrm{RI}}+\mathrm{t}_{\mathrm{P}}} \\
\text { e.g. at } \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=+3.0 \mathrm{~V}: \\
\mathrm{f}_{\max } & =\frac{1}{600 \mathrm{~ns}+800 \mathrm{~ns}+300 \mathrm{~ns}+450 \mathrm{~ns}} \\
\mathrm{f}_{\max } & =465 \mathrm{kHz} \\
\text { where } \mathrm{t}_{\mathrm{WR}} & =\text { Write pulse width } \\
\mathrm{t}_{\mathrm{RD}} & =\text { Delay between WR and RD pulses } \\
\mathrm{t}_{\mathrm{RI}} & =\overline{\mathrm{RD}} \text { to } \overline{\mathrm{INT}} \text { delay } \\
\mathrm{t}_{\mathrm{P}} & =\text { Delay time between conversons. }
\end{aligned}
$$

## Signal-to-Noise Ratio and Effective Number of Bits

Signal-to-noise plus distortion ratio (SINAD) is the ratio of the fundamental input frequency's RMS amplitude to the RMS amplitude of all other ADC output signals. The output band is limited to frequencies above DC and below one-half the ADC sample rate.
The theoretical minimum A/D noise is caused by quantization error, and results directly from the ADC's resolution: $\mathrm{SNR}=(6.02 \mathrm{~N}+1.76) \mathrm{dB}$, where N is the number of bits of resolution. Therefore, a perfect 8 -bit ADC can do no better than 50dB.
The FFT plot (Typical Operation Characteristics) shows the result of sampling a pure 30.27 kHz sinusoid at a 400 kHz rate. This FFT plot of the output shows the output level in various spectral bands.
The effective resolution, or "effective number of bits," the ADC provides can be measured by transposing the equation that converts resolution to SNR: $\mathrm{N}=$ (SINAD 1.76)/6.02 (see Typical Operating Characteristics).

## Total Harmonic Distortion

Total harmonic distortion (THD) is the ratio of the RMS sum of all harmonics of the input signal (in the frequency band above DC and below one-half the sample rate) to the fundamental itself. This is expressed as:

where $\mathrm{V}_{1}$ is the fundamental RMS amplitude, and $\mathrm{V}_{2}$ to $\mathrm{V}_{\mathrm{N}}$ are the amplitudes of the 2nd through Nth harmonics.

## Spurious-Free Dynamic Range

Spurious-free dynamic range is the ratio of the fundamental RMS amplitude to the amplitude of the next largest spectral component (in the frequency band above DC and below one-half the sample rate). Usually the next largest spectral component occurs at some harmonic of the input frequency. However, if the ADC is exceptionally linear, it may occur only at a random peak in the ADC's noise floor. See "Signal to Noise Ratio" plot in Typical Operating Characteristics.

# +3V, 8-Bit ADC with $1 \mu A$ Power-Down 

Chip Topography
MAX152


TRANSISTOR COUNT: 1856
SUBSTRATE CONNECTED TO VDD
Package Information


| DIM | INCHES |  | MILLIMETERS |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| A | - | 0.200 | - | 5.08 |
| A1 | 0.015 | - | 0.38 | - |
| A2 | 0.125 | 0.150 | 3.18 | 3.81 |
| A3 | 0.055 | 0.080 | 1.40 | 2.03 |
| B | 0.016 | 0.022 | 0.41 | 0.56 |
| B1 | 0.050 | 0.065 | 1.27 | 1.65 |
| C | 0.008 | 0.012 | 0.20 | 0.30 |
| D | 1.015 | 1.045 | 25.78 | 26.54 |
| D1 | 0.040 | 0.070 | 1.02 | 1.78 |
| E | 0.300 | 0.325 | 7.62 | 8.26 |
| E1 | 0.240 | 0.280 | 6.10 | 7.11 |
| e | 0.100 BSC |  | 2.54 BSC |  |
| $\mathrm{e}_{\mathrm{A}}$ | 0.300 BSC |  | 7.62 BSC |  |
| $\mathrm{e}_{\mathrm{B}}$ | - | 0.400 | - | 10.16 |
| L | 0.115 | 0.150 | 2.92 | 3.81 |
| $\alpha$ | $0^{\circ}$ | $15^{\circ}$ | $0^{\circ}$ | $15^{\circ}$ |

20-PIN PLASTIC
DUAL-IN-LINE
PACKAGE

## +3V, 8-Bit ADC with $1 \mu A$ Power-Down



