: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Abstract

General Description The MAX1533A/MAX1537A are dual step-down, switchmode power-supply (SMPS) controllers with synchronous rectification, intended for main $5 \mathrm{~V} / 3.3 \mathrm{~V}$ power generation in battery-powered systems. Fixed-frequency operation with optimal interleaving minimizes input ripple current from the lowest input voltages up to the 26V maximum input. Optimal 40/60 interleaving allows the input voltage to go down to 8.3 V before duty-cycle overlap occurs, compared to 180° out-of-phase regulators where the duty-cycle overlap occurs when the input drops below 10V. Output current sensing provides accurate current limit using a sense resistor. Alternatively, power dissipation can be reduced using lossless inductor current sensing. Internal 5V and 3.3V linear regulators power the MAX1533A/MAX1537A and their gate drivers, as well as external keep-alive loads, up to a total of 100 mA . When the main PWM regulators are in regulation, automatic bootstrap switches bypass the internal linear regulators, providing currents up to 200mA from each linear output. An additional 5 V to 23 V adjustable internal 150 mA linear regulator is typically used with a secondary winding to provide a 12V supply. The MAX1533A/MAX1537A include on-board power-up sequencing, a power-good (PGOOD) output, digital soft-start, and internal soft-shutdown output discharge that prevents negative voltages on shutdown. The MAX1533A is available in a 32-pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ thin QFN package, and the MAX1537A is available in a 36pin $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ thin QFN package. The exposed backside pad improves thermal characteristics for demanding linear keep-alive applications.

Applications

2 to $4 \mathrm{Li}+$ Cells Battery-Powered Devices
Notebook and Subnotebook Computers
PDAs and Mobile Communicators
Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1533AETJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN $5 \mathrm{~mm} \times 5 \mathrm{~mm}$
MAX1533AETJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN $5 \mathrm{~mm} \times 5 \mathrm{~mm}$
MAX1537AETX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN $6 \mathrm{~mm} \times 6 \mathrm{~mm}$
MAX1537AETX +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN $6 \mathrm{~mm} \times 6 \mathrm{~mm}$

+Denotes lead-free package.

Dual Mode is a trademark of Maxim Integrated Products, Inc.
Fixed-Frequency, Current-Mode Control
40/60 Optimal Interleaving
Accurate Differential Current-Sense Inputs
Internal 5V and 3.3V Linear Regulators with
100mA Load Capability
Auxiliary 12V or Adjustable 150mA Linear
Regulator (MAX1537A Only)
Dual Mode
Adjustable Output (Dual Mode) Voltages
200kHz/300kHz/500kHz Switching Frequency
Versatile Power-Up Sequencing
Adjustable Overvoltage and Undervoltage
Protection
6V to 26V Input Range
2V $\pm 0.75 \%$ Reference Output

- Power-Good Output
- Soft-Shutdown
- $5 \mu \mathrm{~A}$ (typ) Shutdown Current

Pin Configurations

Pin Configurations continued at end of data sheet.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ABSOLUTE MAXIMUM RATINGS

SHDN, INA, LDOA to GND	$.-0.3 \mathrm{~V} \text { to }+30 \mathrm{~V}$
GND to PGND	-0.3V to +0.3V
LDO5, LDO3, $\mathrm{V}_{\text {cc }}$ to GND	-0.3V to +6V
ILIM3, ILIM5, PGDLY to GND.	-0.3V to +6V
CSL3, CSH3, CSL5, CSH5 to GND	-0.3V to +6V
ON3, ON5, FB3, FB5 to GND	-0.3V to +6V
SKIP, OVP, UVP to GND	-0.3V to +6V
PGOOD, FSEL, ADJA, ONA to GND	-0.3V to +6V
REF to GND	-0.3V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
DL3, DL5 to PGND.	-0.3V to (VLDO5 + 0.3V)
BST3, BST5 to PGN	-0.3V to +36V
LX3 to BST3	-6V to +0.3V
DH3 to LX3	-0.3V to ($\mathrm{V}_{\mathrm{BST} 3}+0.3 \mathrm{~V}$)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Circuit of Figure 1, $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{FSEL}=\mathrm{REF}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{V}_{\text {ILIM }}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{\mathrm{INA}}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, $I_{\text {LDO5 }}=$ ILDO3 $^{\prime}=I_{\text {LDOA }}=$ no load, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT SUPPLIES (Note 1)						
VIN Input Voltage Range	VIN	LDO5 in regulation	6		26	V
		IN = LDO5, V OUT5 < 4.43V	4.5		5.5	
VIN Operating Supply Current	IIN	LDO5 switched over to CSL5		15	35	$\mu \mathrm{A}$
VIN Standby Supply Current	IIN(STBY)	$\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}$ to 26 V , both SMPS off, includes ISHDN		100	170	$\mu \mathrm{A}$
VIN Shutdown Supply Current	I IN(SHDN)	$\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}$ to 26V, $\overline{\text { SHDN }}=\mathrm{GND}$		5	17	$\mu \mathrm{A}$
Quiescent Power Consumption	PQ	Both SMPS on, FB3 $=$ FB5 $=\overline{\text { SKIP }}=$ GND, $\mathrm{V}_{\text {CSL3 }}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {CSL }}=5.3 \mathrm{~V}, \mathrm{~V}_{\text {INA }}=15 \mathrm{~V}$, ILDOA $=0$, PIN + PCSL3 + PCSL5 + PInA		3.5	4.5	mW
Vcc Quiescent Supply Current	IcC	Both SMPS on, FB3 $=$ FB5 $=$ GND, $\mathrm{V}_{\text {CSL3 }}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {CSL5 }}=5.3 \mathrm{~V}$		1.1	2.1	mA
MAIN SMPS CONTROLLERS						
3.3V Output Voltage in Fixed Mode	Vout3	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ to 26V, $\overline{\text { SKIP }}=\mathrm{V}_{\text {cc }}($ Note 2)	3.280	3.33	3.380	V
5 V Output Voltage in Fixed Mode	Vouts	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ to 26V, $\overline{\text { SKIP }}=\mathrm{V}_{\text {CC }}($ Note 2)	4.975	5.05	5.125	V
Feedback Voltage in Adjustable Mode	$\mathrm{V}_{\text {FB_ }}$	$\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}$ to 26 V , FB3 or FB5, duty factor $=20 \%$ to 80% (Note 2)	0.990	1.005	1.020	V
Output-Voltage Adjust Range		Either SMPS	1.0		5.5	V
FB3, FB5 Dual-Mode Threshold			0.1		0.2	V
Feedback Input Leakage Current		$\mathrm{V}_{\mathrm{FB} 3}=\mathrm{V}_{\mathrm{FB} 5}=1.1 \mathrm{~V}$	-0.1		+0.1	$\mu \mathrm{A}$
DC Load Regulation		Either SMPS, $\overline{\text { SKIP }}=V_{C C}$, ILOAD $=0$ to full load		-0.1		\%

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $\mathrm{V}_{I N}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, FSEL $=$ REF, $\overline{\text { SKIP }}=$ GND, $\mathrm{V}_{\text {ILIM }}=\mathrm{V}_{\mathrm{LDO}}$, $\mathrm{V}_{I N A}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, $I_{\text {LDO5 }}=$ I LDO3 $=I_{\text {LDOA }}=$ no load, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Line-Regulation Error		Either SMPS, duty cycle $=10 \%$ to 90%		1			\%
Operating Frequency (Note 1)	fosc	FSEL = GND		170	200	230	kHz
		FSEL $=$ GNDFSEL $=$ REF		270	300	330	
		FSEL $=$ VCC		425	500	575	
Maximum Duty Factor (Note 1)	Dmax	FSEL = GND		91	93		\%
		FSEL = REF		91	93		
		FSEL $=$ VCC		91	93		
Minimum On-Time	ton(MIN)	(Note 3)				200	ns
SMPS3 to SMPS5 Phase Shift		SMPS5 starts after SMPS3			40		\%
					144		Deg
CURRENT LIMIT							
ILIM_Adjustment Range				0.5		$V_{\text {REF }}$	V
Current-Sense Input Range		CSH_, CSL_		0		5.5	V
Current-Sense Input Leakage Current		$\mathrm{CSH}_{-}, \mathrm{V}_{\mathrm{CSH}}^{-}$= $=5.5 \mathrm{~V}$		-1		+1	$\mu \mathrm{A}$
Current-Limit Threshold (Fixed)	VLIMIT-	$\mathrm{V}_{\text {CSH_- }}-\mathrm{V}_{\text {CSL_ }}$, ILIM ${ }_{-}=\mathrm{V}_{\text {CC }}$		70	75	80	mV
Current-Limit Threshold (Adjustable)	VLIMIT_	VCSH_ - VCSL	$\mathrm{V}_{\text {IIIM }}=2.00 \mathrm{~V}$	170	200	230	mV
			VIIIM_ $=1.00 \mathrm{~V}$	91	100	109	
			$\mathrm{V}_{\text {IIIM }}=0.50 \mathrm{~V}$	42	50	58	
Current-Limit Threshold (Negative)	$\mathrm{V}_{\text {NEG }}$	$V_{C S H}-V_{C S L}, \overline{\text { SKIP }}=V_{C C}$, percent of current limit			-120		\%
Current-Limit Threshold (Zero Crossing)	VZX	$V_{P G N D}-V_{L X}, \overline{S K I P}=G N D, I L I M_{-}=V_{C C}$			3		mV
Idle Mode ${ }^{\text {TM }}$ Threshold	Vidle	VCSH_ - VCSL_	ILIM_ = VCC	10	16	22	mV
			With respect to currentlimit threshold (VLIMIT)	20			\%
ILIM_ Leakage Current		ILIM3 = ILIM5 = GND or VCC		-0.1		+0.1	$\mu \mathrm{A}$
Soft-Start Ramp Time	tss	Measured from the rising edge of ON_ to full scale			$\begin{array}{r} 512 / \\ \text { fose } \end{array}$		s
INTERNAL FIXED LINEAR REGULATORS							
LDO5 Output Voltage	VLDO5	$\begin{aligned} & \text { ON3 = ON5 = GND, 6V }<\mathrm{V}_{\mathrm{IN}}<26 \mathrm{~V}, \\ & 0<\text { ILDO5 }<100 \mathrm{~mA} \end{aligned}$		4.80	4.95	5.10	V
LDO5 Undervoltage-Lockout Fault Threshold		Rising edge, hysteresis $=1 \%$		3.75	4.0	4.25	V
LDO5 Bootstrap Switch Threshold		Rising edge of CSL5, hysteresis $=1 \%$		4.41		4.75	V
LDO5 Bootstrap Switch Resistance		$\begin{aligned} & \mathrm{LDO5} \text { to CSL5, VCSL5 }=5 \mathrm{~V} \text {, } \\ & \text { ILDO5 }=50 \mathrm{~mA} \end{aligned}$			0.75	3	Ω

Idle Mode is a trademark of Maxim Integrated Products, Inc.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{FSEL}=\mathrm{REF}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{V}_{\text {IIIM }}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{\mathrm{INA}}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, ILDO5 $=$ ILDO3 $^{\prime}$ I $_{\text {LDOA }}=$ no load, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LDO3 Output Voltage	VLDO3	Standby mode, $6 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<26 \mathrm{~V}$, $0<\text { LOAD }<100 \mathrm{~mA}$	3.20	3.35	3.42	V
LDO3 Bootstrap Switch Threshold		Rising edge of CSL3, hysteresis $=1 \%$	2.83		3.10	V
LDO3 Bootstrap Switch Resistance		$\begin{aligned} & \mathrm{LDO3} \text { to CSL3, } \mathrm{V} \text { CSL3 }=3.2 \mathrm{~V}, \\ & \mathrm{LLDO3}=50 \mathrm{~mA} \end{aligned}$		1	3	Ω
Short-Circuit Current		$\begin{aligned} & \mathrm{LDO3}=\mathrm{LDO5}=\mathrm{GND}, \\ & \mathrm{CSL} 3=\mathrm{CSL5}=\mathrm{GND} \end{aligned}$		150	220	mA
Short-Circuit Current (Switched Over to CSL_)		$\begin{aligned} & \mathrm{LDO} 3=\mathrm{LDO5}=\mathrm{GND}, \mathrm{~V}_{\mathrm{CSL}} 3>3.1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CSL} 5}>4.7 \mathrm{~V} \end{aligned}$	250			mA
AUXILIARY LINEAR REGULATOR (MAX1537A ONLY)						
LDOA Voltage Range	VLDOA		5		23	V
INA Voltage Range	VINA		6		24	V
LDOA Regulation Threshold, Internal Feedback		$\begin{aligned} & \text { ADJA }=\text { GND, } 0<\operatorname{ILDOA}<120 \mathrm{~mA}, \\ & \text { VINA }>13 \mathrm{~V} \end{aligned}$	11.4	12.0	12.4	V
ADJA Regulation Threshold, External Feedback	VADJA	$0<$ ILDOA $<120 \mathrm{~mA}$, VLDOA $>5.0 \mathrm{~V}$ and $\mathrm{V}_{\text {INA }}>\mathrm{V}_{\mathrm{LDOA}}+1 \mathrm{~V}$	1.94	2.00	2.06	V
ADJA Dual-Mode Threshold			0.1	0.15	0.2	V
ADJA Leakage Current		$\mathrm{V}_{\text {ADJA }}=2.1 \mathrm{~V}$	-0.1		+0.1	$\mu \mathrm{A}$
LDOA Current Limit		$\mathrm{V}_{\text {LDOA }}$ forced to $\mathrm{V}_{\text {INA }}-1 \mathrm{~V}, \mathrm{~V}_{\text {ADJA }}=1.9 \mathrm{~V}$, $V_{\text {INA }}>6 \mathrm{~V}$	150			mA
Secondary Feedback Regulation Threshold		VINA - VLDOA	0.65	0.8	0.95	V
DL Duty Factor		VINA - VLDOA $<0.7 \mathrm{~V}$, pulse width with respect to switching period		33		\%
INA Quiescent Current	IINA	$\mathrm{V}_{\text {INA }}=24 \mathrm{~V}$, ILDOA $=$ no load		50	165	$\mu \mathrm{A}$
INA Shunt Sink Current		$\mathrm{V}_{\text {INA }}=28 \mathrm{~V}$	10			mA
INA Leakage Current	IINA(SHDN)	VINA $=5 \mathrm{~V}$, LDOA disabled			30	$\mu \mathrm{A}$
REFERENCE (REF)						
Reference Voltage	VREF	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{I} \mathrm{IREF}=0$	1.985	2.00	2.015	V
Reference Load Regulation		IREF $=-10 \mu \mathrm{~A}$ to $+100 \mu \mathrm{~A}$	1.980		2.020	V
REF Lockout Voltage	VREF(UVLO)	Rising edge, hysteresis $=350 \mathrm{mV}$		1.95		V
FAULT DETECTION						
Output Overvoltage Trip Threshold		$\overline{\mathrm{OVP}}=\mathrm{GND}$, with respect to errorcomparator threshold	8	11	15	\%
Output Overvoltage FaultPropagation Delay	tovp	50 mV overdrive		10		$\mu \mathrm{s}$

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $\mathrm{V}_{I N}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, FSEL $=$ REF, $\overline{\text { SKIP }}=$ GND, $\mathrm{V}_{\text {ILIM }}=\mathrm{V}_{\mathrm{LDO}}$, $\mathrm{V}_{I N A}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, $l_{\text {LDO5 }}=$ ILDO3 $^{\prime}=l_{\text {LDOA }}=$ no load, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Undervoltage-Protection Trip Threshold		With respect to error-comparator threshold		65	70	75	\%
Output Undervoltage FaultPropagation Delay	tuvp	50 mV overdrive			10		$\mu \mathrm{s}$
Output Undervoltage-Protection Blanking Time	tBLANK	From rising edge of ON_{-}		$\begin{aligned} & 6144 / \\ & \text { fosc } \end{aligned}$			S
PGOOD Lower Trip Threshold		With respect to error-comparator threshold, hysteresis = 1\%		-14	-10	-7.5	\%
PGOOD Propagation Delay	tPGOOD_	Falling edge, 50 mV overdrive			10		$\mu \mathrm{s}$
PGOOD Output Low Voltage		ISINK $=4 \mathrm{~mA}$				0.4	V
PGOOD Leakage Current	IPGOOD_	High state, PGOOD forced to 5.5V				1	$\mu \mathrm{A}$
PGDLY Pullup Current		PGDLY = GND		4	5	6	$\mu \mathrm{A}$
PGDLY Pulldown Resistance					10	25	Ω
PGDLY Trip Threshold				$\begin{gathered} \text { REF- } \\ 0.2 \end{gathered}$	REF	$\begin{gathered} \text { REF+ } \\ 0.2 \end{gathered}$	V
Thermal-Shutdown Threshold	TSHDN	Hysteresis $=15^{\circ} \mathrm{C}$			+160		${ }^{\circ} \mathrm{C}$
GATE DRIVERS							
DH_ Gate-Driver On-Resistance	RDH	BST_ - LX_ forced to 5V			1.5	5	Ω
DL_ Gate-Driver On-Resistance	RDL	DL_, high state			1.7	5	Ω
		DL_, low state			0.6	3	
DH_ Gate-Driver Source/Sink Current	IDH	DH_ forced to 2.5 V , BST_ - LX_ forced to 5 V			2		A
DL_ Gate-Driver Source Current	IDL	DL_ forced to 2.5 V			1.7		A
DL_ Gate-Driver Sink Current	IDL (SINK)	DL_ forced to 2.5 V			3.3		A
Dead Time	tDEAD	DL_ rising			35		ns
		DH_rising		26			
LX_, BST_ Leakage Current		$\mathrm{V}_{\text {BST- }}=\mathrm{V}_{\text {LX }}=26 \mathrm{~V}$			<2	20	$\mu \mathrm{A}$
INPUTS AND OUTPUTS							
Logic Input Voltage		$\overline{\text { SKIP }}$, hysteresis $=600 \mathrm{mV}$	High	2.4			V
			Low			0.8	
Fault Enable Logic Input Voltage		$\overline{\text { OVP, }}$ UVP, ONA	High	$\begin{aligned} & 0.7 x \\ & V_{C C} \end{aligned}$			V
			Low			0.4	
Logic Input Current		OVP, UVP, $\overline{\text { SKIP, ONA }}$		-1		+1	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Input Trip Level		Rising trip level		1.10	1.6	2.20	V
		Falling trip level		0.96	1	1.04	
ON_ Input Voltage		Clear fault level/SMPS off level				0.8	V
		Delay start level (REF)		1.9		2.1	
		SMPS on level		2.4			

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $\mathrm{V}_{I N}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, FSEL $=$ REF, $\overline{\text { SKIP }}=\mathrm{GND}, \mathrm{V}_{\text {ILIM }}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{I N A}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, $I_{\text {LDO5 }}=$ I LDO3 $=I_{\text {LDOA }}=$ no load, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FSEL Three-Level Input Logic		High	VCC - 0.2			V
		REF	1.7		2.3	
		GND			0.4	
Input Leakage Current		$\overline{\mathrm{OVP}}, \overline{\mathrm{UVP}}, \overline{\mathrm{SKIP}}, \mathrm{ONA}, \mathrm{ON} 3$, ON5 = GND or V_{Cc}	-1		+1	$\mu \mathrm{A}$
		$\overline{\text { SHDN, }}$ OV or 26V	-1		+1	
		FSEL = GND or VCC	-3		+3	
CSL_ Discharge-Mode On-Resistance	RDISCHARGE			10	25	Ω
CSL_ Synchronous-Rectifier Discharge-Mode Turn-On Level			0.2	0.3	0.4	V

ELECTRICAL CHARACTERISTICS

(Circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{FSEL}=\mathrm{REF}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{V}_{\mathrm{ILIM}}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{\mathrm{INA}}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, $l_{\text {LDO5 }}=$ l $_{\text {LDO3 }}=I_{\text {LDOA }}=$ no load, $\mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
INPUT SUPPLIES (Note 1)					
VIN Input Voltage Range	VIN	LDO5 in regulation	6	26	V
		IN = LDO5, VOUT5 < 4.4V	4.5	5.5	
VIN Operating Supply Current	IIN	LDO5 switched over to CSL5, either SMPS on		35	$\mu \mathrm{A}$
VIN Standby Supply Current	IIN(STBY)	$\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}$ to 26 V , both SMPS off, includes ISHDN		170	$\mu \mathrm{A}$
VIN Shutdown Supply Current	IIN(SHDN)	V IN $=6 \mathrm{~V}$ to 26 V		17	$\mu \mathrm{A}$
Quiescent Power Consumption	PQ	Both SMPS on, FB3 $=\mathrm{FB} 5=\overline{\mathrm{SKIP}}=\mathrm{GND}$, $\mathrm{V}_{\text {CSL3 }}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {CSL5 }}=5.3 \mathrm{~V}, \mathrm{~V}_{\text {INA }}=15 \mathrm{~V}$, ILDOA $=0$, PIN + PCSL3 + PCSL5 + PINA		4.5	mW
V ${ }_{\text {CC }}$ Quiescent Supply Current	IcC	Both SMPS on, $\mathrm{FB} 3=\mathrm{FB} 5=$ GND, $\mathrm{V}_{\text {CSL }}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {CSL5 }}=5.3 \mathrm{~V}$		2.5	mA
MAIN SMPS CONTROLLERS					
3.3V Output Voltage in Fixed Mode	Vout3	VIN $=6 \mathrm{~V}$ to 26V, $\overline{\text { SKIP }}=\mathrm{V}_{\text {CC }}($ (Note 2)	3.28	3.38	V
5V Output Voltage in Fixed Mode	Vouts	VIN $=6 \mathrm{~V}$ to 26V, $\overline{\text { SKIP }}=\mathrm{V}_{\text {CC }}($ (Note 2)	4.975	5.125	V
Feedback Voltage in Adjustable Mode	$V_{\text {FB3, }} \mathrm{V}_{\text {FB5 }}$	$\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}$ to 26 V , FB 3 or FB5, duty factor $=20 \%$ to 80% (Note 2)	0.982	1.018	V
Output-Voltage Adjust Range		Either SMPS	1.0	5.5	V
FB3, FB5 Adjustable-Mode Threshold Voltage		Dual-mode comparator	0.1	0.2	V

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

 lLDO5 $=$ LLDO3 $=$ lLDOA $=$ no load, $\mathbf{T}_{\mathbf{A}}=-\mathbf{4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS		MIN	MAX	UNITS
Operating Frequency (Note 1)	fosc	FSEL = GND		170	230	kHz
		FSEL = REF		240	330	
		FSEL $=$ VCC		375	575	
Maximum Duty Factor (Note 1)	Dmax	FSEL = GND		91		\%
		FSEL = REF		91		
		FSEL $=$ VCC		91		
Minimum On-Time	ton(MIN)				250	ns
CURRENT LIMIT						
ILIM_Adjustment Range				0.5	$V_{\text {REF }}$	V
Current-Limit Threshold (Fixed)	VLIMIT_	$\mathrm{V}_{\text {CSH_ }}-\mathrm{V}_{\text {CSL_ }}$, ILIM ${ }_{-}=\mathrm{V}_{\text {CC }}$		67	83	mV
Current-Limit Threshold (Adjustable)	VLIMIT_	VCSH_ - VCSL_	$\mathrm{V}_{\text {ILIM }}=2.00 \mathrm{~V}$	170	230	mV
			VILIM_ $=1.00 \mathrm{~V}$	90	110	
			$\mathrm{V}_{\text {IIII }}$	40	60	
INTERNAL FIXED LINEAR REGULATORS						
LDO5 Output Voltage	VLDO5	$\begin{aligned} & \text { ON3 }=\mathrm{ON} 5=\mathrm{GND}, 6 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<26 \mathrm{~V}, \\ & 0<\mathrm{I}_{\text {LDO }}<100 \mathrm{~mA} \end{aligned}$		4.8	5.1	V
LDO5 Undervoltage-Lockout Fault Threshold		Rising edge, hysteresis = 1\%		3.75	4.30	V
LDO3 Output Voltage	VLDO3	$\begin{aligned} & \text { Standby mode, } 6 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<28 \mathrm{~V} \text {, } \\ & 0<\text { ILOAD }<100 \mathrm{~mA} \end{aligned}$		3.20	3.43	V
AUXILIARY LINEAR REGULATOR (MAX1537A ONLY)						
LDOA Voltage Range	VLODA			5	23	V
INA Voltage Range	VINA			6	24	V
LDOA Regulation Threshold, Internal Feedback		$\begin{aligned} & \text { ADJA }=\text { GND, } 0<\operatorname{lDOA}<120 \mathrm{~mA}, \\ & V_{\text {INA }}>13 \mathrm{~V} \end{aligned}$		11.40	12.55	V
ADJA Regulation Threshold, External Feedback	$V_{\text {ADJA }}$	$\begin{aligned} & 0<I_{\text {LDOA }}<120 \mathrm{~mA}, \text { V }_{\text {LDOA }}>5.0 \mathrm{~V} \text { and } \\ & \text { VINA }>\text { V LDOA }^{2} 1 \mathrm{~V} \end{aligned}$		1.94	2.08	V
ADJA Dual-Mode Threshold		ADJA		0.10	0.25	V
Secondary Feedback Regulation Threshold		VINA - VLDoA		0.63	0.97	V
INA Quiescent Current	IINA	VINA $=24 \mathrm{~V}, \mathrm{ILDOA}=$ no load			165	$\mu \mathrm{A}$
REFERENCE (REF)						
Reference Voltage	VREF	$\mathrm{VCC}=4.5 \mathrm{~V}$ to 5	IREF $=0$	1.97	2.03	V

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{FSEL}=\mathrm{REF}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{V}_{\text {ILIM }}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{\text {INA }}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$,

PARAMETER	SYMBOL	CONDITIONS		MIN	MAX	UNITS
FAULT DETECTION						
Output Overvoltage Trip Threshold		$\overline{\mathrm{OVP}}=\mathrm{GND}$, with respect to errorcomparator threshold		+8	+15	\%
Output Undervoltage-Protection Trip Threshold		With respect to error-comparator threshold		+65	+75	\%
PGOOD Lower Trip Threshold		With respect to error-comparator threshold, hysteresis $=1 \%$		-14.0	-7.0	\%
PGOOD Output Low Voltage		$\mathrm{ISINK}=4 \mathrm{~mA}$			0.4	V
PGDLY Pulldown Resistance					25	Ω
PGDLY Trip Threshold				$\begin{gathered} \text { REF- } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { REF+ } \\ 0.2 \end{gathered}$	V
GATE DRIVERS						
DH_ Gate-Driver On-Resistance	RDH	BST_ - LX_ forced to 5V			5	Ω
DL_ Gate-Driver On-Resistance	RDL	DL_, high state			5	,
		DL_, low state			3	
INPUTS AND OUTPUTS						
Logic Input Voltage		$\overline{\text { SKIP, }}$, hysteresis $=600 \mathrm{mV}$	High	2.4		V
			Low		0.8	
Fault Enable Logic Input Voltage		$\overline{\text { OVP, }}$ UVP, ONA	High	$\begin{aligned} & 0.7 x \\ & V_{C C} \end{aligned}$		V
			Low		0.4	
$\overline{\text { SHDN }}$ Input Trip Level		Rising trip level		1.1	2.2	V
		Falling trip level		0.95	1.05	
ON_ Input Voltage		Clear fault level			0.8	V
		SMPS off level			1.6	
		Delay start level (REF)		1.9	2.1	
		SMPS on level		2.4		
FSEL Three-Level Input Logic		High		VCC - 0		V
		REF		1.7	2.3	
		GND			0.4	

Note 1: The MAX1533A/MAX1537A cannot operate over all combinations of frequency, input voltage (VIN), and output voltage. For large input-to-output differentials and high-switching frequency settings, the required on-time may be too short to maintain the regulation specifications. Under these conditions, a lower operating frequency must be selected. The minimum on-time must be greater than 150ns, regardless of the selected switching frequency. On-time and off-time specifications are measured from 50% point to 50% point at the DH_{-}pin with LX_ $=$GND, $\mathrm{V}_{B S T} \mathrm{C}_{-}=5 \mathrm{~V}$, and a 250 pF capacitor connected from DH_ to LX_. Actual in-circuit times may differ due to MOSFET switching speeds.
Note 2: When the inductor is in continuous conduction, the output voltage has a DC regulation level lower than the error-comparator threshold by 50% of the ripple. In discontinuous conduction $(\overline{\mathrm{SKIP}}=\mathrm{GND}$, light load), the output voltage has a DC regulation level higher than the trip level by approximately 1% due to slope compensation.
Note 3: Specifications are guaranteed by design, not production tested.
Note 4: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Typical Operating Characteristics

(MAX1537A circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{LDO5}=\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{FSEL}=\mathrm{REF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PWM3 EFFICIENCY vs. LOAD CURRENT (Vout3 = 3.3V)

NO-LOAD SUPPLY CURRENT vs. INPUT VOLTAGE (FULLY ENABLED)

5V OUTPUT VOLTAGE (OUT5)
vs. LOAD CURRENT

3.3V OUTPUT VOLTAGE (OUT3) vs. LOAD CURRENT

NO-LOAD SUPPLY CURRENT
vs. INPUT VOLTAGE (STANDBY MODE)

5V OUTPUT VOLTAGE (OUT5)
vs. INPUT VOLTAGE

3.3V OUTPUT VOLTAGE (OUT3) vs. INPUT VOLTAGE

SHUTDOWN SUPPLY CURRENT
vs. INPUT VOLTAGE

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Typical Operating Characteristics (continued)
(MAX1537A circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{LDO5}=\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{FSEL}=\mathrm{REF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

A. LX5, 10V/div
B. 5 V OUTPUT, $100 \mathrm{mV} / \mathrm{div}$
C. PWM5 INDUCTOR CURRENT, 5A/div
D. LX3, 10V/div
E. 3.3V OUTPUT, $100 \mathrm{mV} / \mathrm{div}$
F. PWM3 INDUCTOR CURRENT, 5A/div

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Typical Operating Characteristics (continued)
(MAX1537A circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{LDO5}=\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{FSEL}=\mathrm{REF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

A. $0 \mathrm{~N} 5,5 \mathrm{~V} / \mathrm{div}$
B. 5 V OUTPUT, $2 \mathrm{~V} / \mathrm{div}$
C. INDUCTOR CURRENT, 5A/div
D. LD05, 1V/div
E. DL5, 5V/div
1.0Ω LOAD

5V OUTPUT LOAD TRANSIENT
(FORCED-PWM)

A. $I_{\text {OUT } 5}=0.2 \mathrm{~A} \mathrm{TO} \mathrm{4A,5A/div}$
B. $\mathrm{V}_{\text {OUT5 }}=5.0 \mathrm{~V}, 100 \mathrm{mV} / \mathrm{div}$
C. INDUCTOR CURRENT, 5A/div
D. LX5, 10V/div
$\overline{S K I P}=V_{C C}$
3.3V OUTPUT LOAD TRANSIENT
(FORCED-PWM)

A. IOUT3 $=0.2 \mathrm{~A} \mathrm{TO} \mathrm{4A,5A/div}$
B. $V_{\text {OUT }}=3.3 \mathrm{~V}, 100 \mathrm{mV} / \mathrm{div}$
C. INDUCTOR CURRENT, 5A/div
D. LX3, 10V/div
$\overline{S K I P}=V_{C C}$

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Typical Operating Characteristics (continued)
(MAX1537A circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{LDO5}=\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{FSEL}=\mathrm{REF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

A. INPUT VOLTAGE (VIN $=7 \mathrm{~V}$ TO 20V), 5V/div B. LD05 OUTPUT VOLTAGE, $50 \mathrm{mV} / \mathrm{div}$ ON3 $=0 \mathrm{~N} 5=$ GND, LLDO5 $=20 \mathrm{~mA}$

100 $\mu \mathrm{s} / \mathrm{div}$
A. $I_{\text {LDOA }}=10 \mathrm{~mA}$ TO $100 \mathrm{~mA}, 100 \mathrm{~mA} /$ div
B. INA, 1V/div
C. LDOA, $50 \mathrm{mV} / \mathrm{div}$

INA = VOLTAGE GENERATED BY SECONDARY
TRANSFORMER WINDING

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Pin Description

| PIN | | NAME | |
| :---: | :---: | :---: | :--- | :--- |
| MAX1533A | MAX1537A | | |

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

PIN		NAME				
MAX1533A	MAX1537A			$	$	Open-Drain Power-Good Output. PGOOD is low if either output is more than 10\%
:---						
10						

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Pin Description (continued)

PIN		NAME	
25	27		Negative Current-Sense Input for 5V SMPS. Connect to the negative terminal of the current-sense element. Figure 9 describes two different current-sensing options. CSL5 also serves as the bootstrap input for LDO5.
26	28	CSH5	Positive Current-Sense Input for 5V SMPS. Connect to the positive terminal of the current-sense element. Figure 9 describes two different current-sensing options.
27	29	IN	Input of the Startup Circuitry and the LDO5 Internal 5V Linear Regulator. Bypass to PGND with 0.22
28	30	LX5 close to the IC.	

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Table 1. Component Selection for Standard Applications

COMPONENT	5A/300kHz	5A/500kHz
Input Voltage	V IN $=7 \mathrm{~V}$ to 24 V	V IN $=7 \mathrm{~V}$ to 24 V
CIN_, Input Capacitor	(2) $10 \mu \mathrm{~F}, 25 \mathrm{~V}$ Taiyo Yuden TMK432BJ106KM	(2) $10 \mu \mathrm{~F}, 25 \mathrm{~V}$ Taiyo Yuden TMK432BJ106KM
Cout5, Output Capacitor	$150 \mu \mathrm{~F}, 6.3 \mathrm{~V}, 40 \mathrm{~m} \Omega$, low-ESR capacitor Sanyo 6TPB150ML	$150 \mu \mathrm{~F}, 6.3 \mathrm{~V}, 40 \mathrm{~m} \Omega$, low-ESR capacitor Sanyo 6TPB150ML
Couts, Output Capacitor	$220 \mu \mathrm{~F}, 4 \mathrm{~V}, 40 \mathrm{~m} \Omega$, low-ESR capacitor Sanyo 4TPB220ML	$220 \mu \mathrm{~F}, 4 \mathrm{~V}, 40 \mathrm{~m} \Omega$, low-ESR capacitor Sanyo 4TPB220ML
NH_ High-Side MOSFET	Fairchild Semiconductor FDS6612A International Rectifier IRF7807V	Fairchild Semiconductor FDS6612A International Rectifier IRF7807V
NL_ Low-Side MOSFET	Fairchild Semiconductor FDS6670S International Rectifier IRF7807VD1	Fairchild Semiconductor FDS6670S International Rectifier IRF7807VD1
DL_Schottky Rectifier (if needed)	$2 \mathrm{~A}, 30 \mathrm{~V}, 0.45 \mathrm{~V}_{f}$ Nihon EC21QS03L	$2 \mathrm{~A}, 30 \mathrm{~V}, 0.45 \mathrm{~V}_{f}$ Nihon EC21QS03L
Inductor/Transformer	T1 $=6.8 \mu \mathrm{H}, 1: 2$ turns Sumida 4749-T132 L1 $=5.8 \mu \mathrm{H}, 8.6 \mathrm{~A}$ Sumida CDRH127-5R8NC	$3.9 \mu \mathrm{H}$ Sumida CDRH124-3R9NC
Rcs	$10 \mathrm{~m} \Omega \pm 1 \%, 0.5 \mathrm{~W}$ resistor IRC LR2010-01-R010F or Dale WSL-2010-R010F	$10 \mathrm{~m} \Omega \pm 1 \%, 0.5 \mathrm{~W}$ resistor IRC LR2010-01-R010F or Dale WSL-2010-R010F

Table 2. Component Suppliers

SUPPLIER	WEBSITE
AVX	www.avx.com
Central Semiconductor	www.centralsemi.com
Coilcraft	www.coilcraft.com
Coiltronics	www.coiltronics.com
Fairchild Semiconductor	www.fairchildsemi.com
International Rectifier	www.irf.com
Kemet	www.kemet.com

Detailed Description

The MAX1533A/MAX1537A standard application circuit (Figure 1) generates the $5 \mathrm{~V} / 5 \mathrm{~A}$ and $3.3 \mathrm{~V} / 5 \mathrm{~A}$ typical of the main supplies in a notebook computer. The input supply range is 7 V to 24 V . See Table 1 for component selections and Table 2 for component manufacturers.
The MAX1533A/MAX1537A contain two interleaved fixed-frequency step-down controllers designed for lowvoltage power supplies. The optimal interleaved architecture guarantees out-of-phase operation, reducing the input capacitor ripple. Two internal LDOs generate the keep-alive 5 V and 3.3 V power. The MAX1537A has an auxiliary LDO that can be configured to the preset 12 V output or an adjustable output.

SUPPLIER	WEBSITE
Panasonic	www.panasonic.com/industrial
Sanyo	www.semiconductor-sanyo.com
Sumida	www.sumida.com
Taiyo Yuden	www.t-yuden.com
TDK	www.component.tdk.com
TOKO	www.tokoam.com
Vishay (Dale, Siliconix)	www.vishay.com

Fixed Linear Regulators (LDO5 and LDO3) Two internal linear regulators produce preset 5V (LDO5) and 3.3V (LDO3) low-power outputs. LDO5 powers LDO3, the gate drivers for the external MOSFETs, and provides the bias supply (VCC) required for the SMPS analog control, reference, and logic blocks. LDO5 supplies at least 100 mA for external and internal loads, including the MOSFET gate drive, which typically varies from 5 mA to 50 mA , depending on the switching frequency and external MOSFETs selected. LDO3 also supplies at least 100 mA for external loads. Bypass LDO5 and LDO3 with a $2.2 \mu \mathrm{~F}$ or greater output capacitor, using an additional $1.0 \mu \mathrm{~F}$ per 20 mA of internal and external load.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Abstract

SMPS to LDO Bootstrap Switchover When the 5 V main output voltage is above the LDO5 bootstrap-switchover threshold, an internal 0.75Ω (typ) p-channel MOSFET shorts CSL5 to LDO5 while simultaneously shutting down the LDO5 linear regulator. Similarly, when the 3.3 V main output voltage is above the LDO3 bootstrap-switchover threshold, an internal 1Ω (typ) p-channel MOSFET shorts CSL3 to LDO3 while simultaneously shutting down the LDO3 linear regulator. These actions bootstrap the device, powering the internal circuitry and external loads from the output SMPS voltages, rather than through linear regulators from the battery. Bootstrapping reduces power dissipation due to gate charge and quiescent losses by providing power from a 90\%-efficient switch-mode source, rather than from a much-less-efficient linear regulator. The output current limit increases to 200 mA when the LDO_ outputs are switched over.

SMPS 5V Bias Supply (LDO5 and Vcc) The A switch-mode power supplies (SMPS) require a 5 V bias supply in addition to the high-power input supply (battery or AC adapter). This 5V bias supply is generated by the MAX1533A/MAX1537As' internal 5V linear regulator (LDO5). This bootstrapped LDO allows the MAX1533A/MAX1537A to power-up independently. The gate-driver input supply is connected to the fixed 5 V linear-regulator output (LDO5). Therefore, the 5V LDO supply must provide VCC (PWM controller) and the gate-drive power, so the maximum supply current required is:

$$
\begin{aligned}
\mathrm{IBIAS} & =\mathrm{ICC}+\mathrm{fSW}\left(\mathrm{QG}_{\left.\mathrm{G}(\mathrm{LOW})+\mathrm{QG}_{\mathrm{G}(\mathrm{HIGH}))}\right)}\right. \\
& =5 \mathrm{~mA} \text { to } 50 \mathrm{~mA}(\text { typ })
\end{aligned}
$$

where ICC is 1 mA (typ), fsw is the switching frequency, and $Q_{G(L O W)}$ and $Q_{G(H I G H)}$ are the MOSFET data sheet's total gate-charge specification limits at $\mathrm{VGS}=5 \mathrm{~V}$.

Reference (REF)
The 2 V reference is accurate to $\pm 1 \%$ over temperature and load, making REF useful as a precision system reference. Bypass REF to GND with a $0.22 \mu \mathrm{~F}$ or greater ceramic capacitor. The reference sources up to $100 \mu \mathrm{~A}$ and sinks $10 \mu \mathrm{~A}$ to support external loads. If highly accurate specifications ($\pm 0.5 \%$) are required for the main SMPS output voltages, the reference should not be loaded. Loading the reference reduces the LDO5, LDO3, OUT5, and OUT3 output voltages slightly because of the reference load-regulation error.

System Enable/Shutdown (SHDN)

Drive $\overline{\text { SHDN }}$ below the precise $\overline{\text { SHDN }}$ input falling-edge trip level to place the MAX1533A/MAX1537A in their low-power shutdown state. The MAX1533A/MAX1537A consume only $5 \mu \mathrm{~A}$ of quiescent current while in shutdown mode. When shutdown mode activates, the reference turns off, making the threshold to exit shutdown less accurate. To guarantee startup, drive $\overline{\text { SHDN }}$ above 2.2V ($\overline{\text { SHDN }}$ input rising-edge trip level). For automatic shutdown and startup, connect SHDN to VIN. The accurate 1 V falling-edge threshold on $\overline{\mathrm{SHDN}}$ can be used to detect a specific input-voltage level and shut the device down. Once in shutdown, the 1.6 V rising-edge threshold activates, providing sufficient hysteresis for most applications.

SMPS Detailed Description

SMPS POR, UVLO, and Soft-Start Power-on reset (POR) occurs when VCC rises above approximately 1 V , resetting the undervoltage, overvoltage, and thermal-shutdown fault latches. The POR circuit also ensures that the low-side drivers are pulled low if OVP is disabled ($\overline{\mathrm{OVP}}=\mathrm{VCC}$), or driven high if OVP is enabled $(\overline{O V P}=$ GND $)$ until the SMPS controllers are activated.
The VCC input undervoltage-lockout (UVLO) circuitry inhibits switching if the 5V bias supply (LDO5) is below the 4 V input UVLO threshold. Once the 5 V bias supply (LDO5) rises above this input UVLO threshold and the controllers are enabled, the SMPS controllers start switching and the output voltages begin to ramp up using soft-start.
The internal digital soft-start gradually increases the internal current-limit level during startup to reduce the input surge currents. The MAX1533A/MAX1537A divide the soft-start period into five phases. During the first phase, each controller limits its current limit to only 20\% of its full current limit. If the output does not reach regulation within 128 clock cycles (1/fOSC), soft-start enters the second phase and the current limit is increased by another 20%. This process repeats until the maximum current limit is reached after 512 clock cycles (1/foSC) or when the output reaches the nominal regulation voltage, whichever occurs first (see the startup waveforms in the Typical Operating Characteristics).

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Figure 2. MAX1533A/MAX1537A Functional Diagram
\qquad

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Table 3. Operating Modes

MODE	INPUTS* *			OUTPUTS			
	SHDN	ON5	ON3	LDO5	LDO3	5V SMPS	3V SMPS
Shutdown Mode	LOW	X	X	OFF	OFF	OFF	OFF
Standby Mode	HIGH	LOW	LOW	ON	ON	OFF	OFF
Normal Operation	HIGH	HIGH	HIGH	ON	ON	ON	ON
3.3V SMPS Active	HIGH	LOW	HIGH	ON	ON	OFF	ON
5V SMPS Active	HIGH	HIGH	LOW	ON	ON	ON	OFF
Normal Operation (Delayed 5V SMPS Startup)	HIGH	REF	HIGH	ON	ON	Power-up after $3.3 V ~ S M P S ~ i s ~ i n ~$ regulation	ON
Normal Operation (Delayed 3.3V SMPS Startup)	HIGH	HIGH	REF	ON	ON	ON	ON Power-up after $5 V ~ S M P S ~ i s ~ i n ~$ regulation

* $\overline{S H D N}$ is an accurate, low-voltage logic input with 1 V falling-edge threshold voltage and 1.6 V rising-edge threshold voltage. ON3 and ON5 are 3-level CMOS logic inputs, a logic-low voltage is less than 0.8 V , a logic-high voltage is greater than 2.4 V , and the middle logic level is between 1.9 V and 2.1V (see the Electrical Characteristics table).

SMPS Enable Controls (ON3, ON5)
ON3 and ON5 control SMPS power-up sequencing. ON3 or ON5 rising above 2.4 V enables the respective outputs. ON3 or ON5 falling below 1.6 V disables the respective outputs. Driving ON_ below 0.8 V clears the overvoltage, undervoltage, and thermal fault latches.

SMPS Power-Up Sequencing

Connecting ON3 or ON5 to REF forces the respective outputs off while the other output is below regulation and starts after that output regulates. The second SMPS remains on until the first SMPS turns off, the device shuts down, a fault occurs, or LDO5 goes into undervoltage lockout. Both supplies begin their power-down sequence immediately when the first supply turns off.

Output Discharge (Soft-Shutdown)
When output discharge is enabled (OVP pulled low) and the switching regulators are disabled-by transitions into standby or shutdown mode, or when an output undervoltage fault occurs-the controller discharges both outputs through internal 12Ω switches, until the output voltages decrease to 0.3 V . This slowly discharges the output capacitance, providing a softdamped shutdown response. This eliminates the slightly negative output voltages caused by quickly discharging the output through the inductor and lowside MOSFET. When an SMPS output discharges to
0.3V, its low-side driver (DL_) is forced high, clamping the respective SMPS output to GND. The reference remains active to provide an accurate threshold and to provide overvoltage protection. Both SMPS controllers contain separate soft-shutdown circuits.
When output discharge is disabled ($\overline{\mathrm{OVP}}=\mathrm{V}_{\mathrm{CC}}$), the lowside drivers (DL_) and high-side drivers (DH_) are both pulled low, forcing LX into a high-impedance state. Since the outputs are not actively discharged by the SMPS controllers, the output-voltage discharge rate is determined only by the output capacitance and load current.

Fixed-Frequency, Current-Mode PWM Controller

The heart of each current-mode PWM controller is a multiinput, open-loop comparator that sums two signals: the output-voltage error signal with respect to the reference voltage and the slope-compensation ramp (Figure 3). The MAX1533A/MAX1537A use a direct-summing configuration, approaching ideal cycle-to-cycle control over the output voltage without a traditional error amplifier and the phase shift associated with it. The MAX1533A/ MAX1537A use a relatively low loop gain, allowing the use of low-cost output capacitors. The low loop gain results in the -0.1% typical load-regulation error and helps reduce the output capacitor size and cost by shifting the unity-gain crossover frequency to a lower level.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

VLESमXVW/VEEGमXVW

Figure 3: PWM-Controller Functional Diagram

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Abstract

Frequency Selection (FSEL) The FSEL input selects the PWM-mode switching frequency. Table 4 shows the switching frequency based on FSEL connection. High-frequency (500 kHz) operation optimizes the application for the smallest component size, trading off efficiency due to higher switching losses. This may be acceptable in ultra-portable devices where the load currents are lower. Low-frequency (200 kHz) operation offers the best overall efficiency at the expense of component size and board space.

Forced-PWM Mode

The low-noise forced-PWM mode disables the zerocrossing comparator, which controls the low-side switch on-time. This forces the low-side gate-drive waveform to constantly be the complement of the high-side gatedrive waveform, so the inductor current reverses at light loads while DH_ maintains a duty factor of VOUTNIN. The benefit of forced-PWM mode is to keep the switching frequency fairly constant. However, forced-PWM operation comes at a cost: the no-load 5 V supply current remains between 15 mA and 50 mA , depending on the external MOSFETs and switching frequency.
Forced-PWM mode is most useful for avoiding audiofrequency noise and improving load-transient response. Since forced-PWM operation disables the zero-crossing comparator, the inductor current reverses under light loads.

Light-Load Operation Control ($\overline{\text { SKIP }}$)

The MAX1533A/MAX1537A include a light-load operat-ing-mode control input (SKIP) used to independently enable or disable the zero-crossing comparator for both controllers. When the zero-crossing comparator is enabled, the controller forces DL_ low when the cur-rent-sense inputs detect zero inductor current. This keeps the inductor from discharging the output capacitors and forces the controller to skip pulses under lightload conditions to avoid overcharging the output. When the zero-crossing comparator is disabled, the controller is forced to maintain PWM operation under light-load conditions (forced-PWM).

Table 4. FSEL Configuration Table

FSEL	SWITCHING FREQUENCY
VCC $^{\text {REF }}$	500 kHz
GND	300 kHz

Idle-Mode Current-Sense Threshold

The on-time of the step-down controller terminates when the output voltage exceeds the feedback threshold and when the current-sense voltage exceeds the idle-mode current-sense threshold. Under light-load conditions, the on-time duration depends solely on the idle-mode current-sense threshold, which is approximately 20% of the full-load current-limit threshold set by ILIM_. This forces the controller to source a minimum amount of power with each cycle. To avoid overcharging the output, another on-time cannot begin until the output voltage drops below the feedback threshold. Since the zero-crossing comparator prevents the switching regulator from sinking current, the controller must skip pulses. Therefore, the controller regulates the valley of the output ripple under light-load conditions.

Automatic Pulse-Skipping Crossover

In skip mode, an inherent automatic switchover to PFM takes place at light loads (Figure 4). This switchover is affected by a comparator that truncates the low-side switch on-time at the inductor current's zero crossing. The zero-crossing comparator senses the inductor current across the low-side MOSFET (PGND to LX_). Once VPGND - VLX_ drops below the 3 mV zero-crossing cur-rent-sense threshold, the comparator forces DL_ low (Figure 3). This mechanism causes the threshold between pulse-skipping PFM and nonskipping PWM operation to coincide with the boundary between continuous and discontinuous inductor-current operation (also known as the "critical conduction" point). The load-current level at which PFM/PWM crossover occurs, ILOAD(SKIP), is given by:

$$
\mathrm{I}_{\mathrm{LOAD}(S K I P)}=\frac{\mathrm{V}_{\text {OUT }}\left(\mathrm{V}_{\text {IN }}-V_{\text {OUT }}\right)}{2 \times \mathrm{V}_{\text {IN }} \times \mathrm{f}_{S W} \times \mathrm{L}}
$$

The switching waveforms may appear noisy and asynchronous when light loading causes pulse-skipping operation, but this is a normal operating condition that results in high light-load efficiency. Trade-offs in PFM noise vs. light-load efficiency are made by varying the inductor value. Generally, low inductor values produce a broader efficiency vs. load curve, while higher values result in higher full-load efficiency (assuming that the coil resistance remains fixed) and less output voltage ripple. Penalties for using higher inductor values include larger physical size and degraded load-transient response (especially at low input-voltage levels).

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Figure 4. Pulse-Skipping/Discontinuous Crossover Point

Output Voltage

DC output accuracy specifications in the Electrical Characteristics table refer to the error-comparator's threshold. When the inductor continuously conducts, the MAX1533A/MAX1537A regulate the peak of the output ripple, so the actual DC output voltage is lower than the slope-compensated trip level by 50% of the output ripple voltage. For PWM operation (continuous conduction), the output voltage is accurately defined by the following equation:

$$
V_{\text {OUT(PWM })}=V_{\text {NOM }}\left(1-\frac{A_{\text {SLOPE }} V_{\text {NOM }}}{V_{\text {IN }}}\right)-\left(\frac{V_{\text {RIPPLE }}}{2}\right)
$$

where $\mathrm{V}_{\text {NOM }}$ is the nominal output voltage, AsLOPE equals 1%, and VRIPPLE is the output ripple voltage (VRIPPLE $=$ ESR $\times \Delta$ IINDUCTOR as described in the Output Capacitor Selection section).
In discontinuous conduction (IOUT < ILOAD(SKIP)), the MAX1533A/MAX1537A regulate the valley of the output ripple, so the output voltage has a DC regulation level higher than the error-comparator threshold. For PFM operation (discontinuous conduction), the output voltage is approximately defined by the following equation:

Figure 5. Dual-Mode Feedback Decoder

$$
\mathrm{V}_{\mathrm{OUT}(\mathrm{PFM})}=\mathrm{V}_{\mathrm{NOM}}+\frac{1}{2}\left(\frac{\mathrm{f}_{\mathrm{SW}}}{f_{\mathrm{OSC}}}\right) \mathrm{I}_{\mathrm{IDLE}} \times \mathrm{ESR}
$$

where $\mathrm{V}_{\text {NOM }}$ is the nominal output voltage, fOSC is the maximum switching frequency set by the internal oscillator, fSW is the actual switching frequency, and lidLE is the idle-mode inductor current when pulse skipping.

Adjustable/Fixed Output Voltages

(Dual-Mode Feedback)
Connect FB3 and FB5 to GND to enable the fixed SMPS output voltages (3.3V and 5 V , respectively), set by a preset, internal resistive voltage-divider connected between CSL_ and analog ground. Connect a resistive voltage-divider at FB_ between CSL_ and GND to adjust the respective output voltage between 1 V and 5.5V (Figure 5). Choose R2 (resistance from FB to GND) to be about $10 \mathrm{k} \Omega$ and solve for R1 (resistance from OUT to FB) using the equation:

$$
\mathrm{R} 1=\mathrm{R} 2\left(\frac{\mathrm{~V}_{\mathrm{OUT}_{-}}}{\mathrm{V}_{\mathrm{FB}}}-1\right)
$$

where $\mathrm{V}_{\text {FB }}=1 \mathrm{~V}$ nominal.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

When adjusting both output voltages, set the 3.3 V SMPS lower than the 5V SMPS. LDO5 connects to the 5V output (CSL5) through an internal switch only when CSL5 is above the LDO5 bootstrap threshold (4.56V). Similarly, LDO3 connects to the 3.3V output (CSL3) through an internal switch only when CSL3 is above the LDO3 bootstrap threshold (2.91V). Bootstrapping works most effectively when the fixed output voltages are used. Once LDO_ is bootstrapped from CSL_, the internal linear regulator turns off. This reduces internal power dissipation and improves efficiency at higher input voltage.

Current-Limit Protection (ILIM_)
The current-limit circuit uses differential current-sense inputs (CSH_ and CSL_) to limit the peak inductor current. If the magnitude of the current-sense signal exceeds the current-limit threshold, the PWM controller turns off the high-side MOSFET (Figure 3). At the next rising edge of the internal oscillator, the PWM controller does not initiate a new cycle unless the current-sense signal drops below the current-limit threshold. The actual maximum load current is less than the peak cur-rent-limit threshold by an amount equal to half of the inductor ripple current. Therefore, the maximum load capability is a function of the current-sense resistance, inductor value, switching frequency, and duty cycle (Vout/Vin).
In forced-PWM mode, the MAX1533A/MAX1537A also implement a negative current limit to prevent excessive reverse inductor currents when VOUT is sinking current. The negative current-limit threshold is set to approximately 120% of the positive current limit and tracks the positive current limit when ILIM_ is adjusted.
Connect ILIM_ to VCC for the 75 mV default threshold, or adjust the current-limit threshold with an external resis-tor-divider at ILIM_. Use a $2 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$ divider current for accuracy and noise immunity. The current-limit threshold adjustment range is from 50 mV to 200 mV . In the adjustable mode, the current-limit threshold voltage equals precisely $1 / 10$ th the voltage seen at ILIM_. The logic threshold for switchover to the 75 mV default value is approximately $\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$.
Carefully observe the PC board layout guidelines to ensure that noise and DC errors do not corrupt the differential current-sense signals seen by CSH_ and CSL_. Place the IC close to the sense resistor with short, direct traces, making a Kelvin-sense connection to the current-sense resistor.

MOSFET Gate Drivers (DH_, DL_) The DH_ and DL_ drivers are optimized for driving moderate-sized high-side and larger low-side power MOSFETs. This is consistent with the low duty factor seen in notebook applications, where a large VIN VOUT differential exists. The high-side gate drivers (DH_) source and sink 2A, and the low-side gate drivers (DL_) source 1.7A and sink 3.3A. This ensures robust gate drive for high-current applications. The DH_ floating high-side MOSFET drivers are powered by diode-capacitor charge pumps at BST_ (Figure 6) while the DL_ synchronous-rectifier drivers are powered directly by the fixed 5 V linear regulator (LDO5).
Adaptive dead-time circuits monitor the DL_{-}and DH_{-} drivers and prevent either FET from turning on until the other is fully off. The adaptive driver dead time allows operation without shoot-through with a wide range of MOSFETs, minimizing delays and maintaining efficiency. There must be a low-resistance, low-inductance path from the DL_ and DH_ drivers to the MOSFET gates for the adaptive dead-time circuits to work properly; otherwise, the sense circuitry in the MAX1533A/ MAX1537A interprets the MOSFET gates as "off" while charge actually remains. Use very short, wide traces (50 to 100 mils wide if the MOSFET is 1 inch from the driver).
The internal pulldown transistor that drives DL_ low is robust, with a 0.6Ω (typ) on-resistance. This helps prevent DL_ from being pulled up due to capacitive coupling from the drain to the gate of the low-side MOSFETs when the inductor node (LX_) quickly switches from ground to VIN. Applications with high input voltages and long inductive driver traces may require additional gate-to-source capacitance to ensure fastrising LX_ edges do not pull up the low-side MOSFETs' gate, causing shoot-through currents. The capacitive coupling between LX_ and DL_ created by the MOSFET's gate-to-drain capacitance (CRSS), gate-tosource capacitance (CISS - CRSS), and additional board parasitics should not exceed the following minimum threshold:

$$
\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}>\mathrm{V}_{\mathrm{IN}}\left(\frac{\mathrm{C}_{\mathrm{RSS}}}{\mathrm{C}_{\mathrm{ISS}}}\right)
$$

Lot-to-lot variation of the threshold voltage may cause problems in marginal designs. Alternatively, adding a resistor less than 10Ω in series with BST_ may remedy the problem by increasing the turn-on time of the highside MOSFET without degrading the turn-off time (Figure 6).

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

(RBST)* OPTIONAL—THE RESISTOR LOWERS EMI BY DECREASING THE SWITCHING-NODE RISE TIME.
$\left(C_{\text {nl }}\right)^{*}$ OPTIONAL—THE CAPACITOR REDUCES LX TO DL CAPACITIVE COUPLING THAT CAN CAUSE SHOOT-THROUGH CURRENTS.

Power-Good Output (PGOOD)

PGOOD is the open-drain output of a comparator that continuously monitors both SMPS output voltages for undervoltage conditions. PGOOD is actively held low in shutdown (SHDN or ON3 or ON5 = GND), soft-start, and soft-shutdown. Once the digital soft-start terminates, PGOOD becomes high impedance as long as both outputs are above 90\% of the nominal regulation voltage set by FB_. PGOOD goes low once either SMPS output drops 10% below its nominal regulation point, an output overvoltage fault occurs, or either SMPS controller is shut down. For a logic-level PGOOD output voltage, connect an external pullup resistor between PGOOD and VCC. A $100 \mathrm{k} \Omega$ pullup resistor works well in most applications.
PGOOD is independent of the fault protection states $\overline{O V P}$ and UVP.

Fault Protection
Output Overvoltage Protection (OVP)
If the output voltage of either SMPS rises above 111\% of its nominal regulation voltage and the OVP protection is enabled $(\overline{\mathrm{OVP}}=\mathrm{GND})$, the controller sets the fault latch, pulls PGOOD low, shuts down both SMPS controllers, and immediately pulls DH_ low and forces DL_

Figure 6. Optional Gate-Driver Circuitry

Figure 7. Power-Good and Fault Protection

