: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

Abstract

General Description The MAX1602 DC power-switching IC contains a network of low-resistance MOSFET switches that deliver selectable VCC and VPP voltages to a single CardBus or PC Card host socket. Key features include lowresistance switches, small packaging, soft-switching action, and compliance with PCMCIA specifications for $3 \mathrm{~V} / 5 \mathrm{~V}$ switching. 3.3V-only power switching for fast, 32-bit CardBus applications is supported in two ways: low-resistance 3.3 V switches allow high 3.3 V load currents (up to 1A); and completely independent internal charge pumps let the 3.3 V switch operate normally, even if the +5 V and +12 V supplies are disconnected or turned off to conserve power. The internal charge pumps are regulating types that draw reduced input current when the VCC switches are static. Power consumption is automatically reduced to $11 \mu \mathrm{~A}$ max when the outputs are high-Z or GND. Other key features include guaranteed specifications for output current limit level, and guaranteed specifications for output rise/fall times (in compliance with PCMCIA specifications). Reliability is enhanced by thermal-overload protection, accurate current limiting, an overcurrent-fault flag output, and undervoltage lockouts. The CMOS/TTL-logic interface is flexible, and can tolerate logic input levels in excess of the positive supply rail. The MAX1602 fits a complete CardBus/PCMCIA switch into a space-saving, 16-pin QSOP package.

Applications
Data Loggers
Handy-Terminals
Docking Stations
PCMCIA Read/Write Drives

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1602EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP

Features

- Supports a Single PC Card/CardBus Socket
- 1A, 0.25Ω Max 3.3V VCC Switch

1A, 0.25Ω Max 5V VCC Switch

- Soft Switching for Low Inrush Surge Current
- Overcurrent Protection
- Overcurrent/Thermal-Fault Flag Output
- Thermal Shutdown at $\mathrm{T}_{\mathrm{j}}=\boldsymbol{+ 1 5 0}{ }^{\circ} \mathrm{C}$
- Independent Internal Charge Pumps
- Break-Before-Make Switching Action
- 11~A Max Standby Supply Current
-5V and 12V Not Required for Low-RDS(ON) 3.3V Switching
- Complies with PCMCIA 3V/5V Switching Specifications
- Super-Small 16-Pin QSOP Package
- Code Compatible with:

Cirrus CL-PD67XX Family
Databook DB86184
Intel 82365SL (industry-standard coding)

Simplified Block Diagram

Pin Configuration appears on last page.

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

ABSOLUTE MAXIMUM RATINGS

Inputs/Outputs to GND (VX, VY, VCC) (Note 1) $-0.3 \mathrm{~V},+6 \mathrm{~V}$
VPP Input/Output to GND
(12IN, VPP) (Note 1)
$-0.3 \mathrm{~V},+15 \mathrm{~V}$
Logic Inputs to GND (A0VCC, A1VCC,
A0VPP, A1VPP) (Note 1).
$-0.3 \mathrm{~V},+6 \mathrm{~V}$
CODE Input to GND $-0.3 \mathrm{~V},(\mathrm{VY}+0.3 \mathrm{~V})$
VCC Output Current (Note 2) \qquad
VPP Output Current (Note 2).
.260mA

Note 1: There are no parasitic diodes between any of these pins, so there are no power-up sequencing restrictions (for example, logic input signals can be applied even if all of the supply voltage inputs are grounded).
Note 2: VCC and VPP outputs are internally current limited. See the Electrical Characteristics.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VY}=3.3 \mathrm{~V}, \mathrm{VX}=5 \mathrm{~V}, 12 \mathrm{~N}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
POWER-SUPPLY SECTION					
Input Voltage Range	VX, VY	3.0		5.5	V
	12IN	11		13	
Undervoltage Lockout Threshold	VY falling edge	2.4	2.6	2.8	V
	12IN falling edge	1.8	3.0		
	12IN rising edge	5.0	8.0	10.0	
	VX falling edge	1.4	1.9	2.8	
VY Standby Supply Current	All switches 0 V or high-Z, control inputs $=0 \mathrm{~V}$ or $\mathrm{VY}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	11	$\mu \mathrm{A}$
VX Standby Supply Current	VX all switches 0 V or high-Z, control inputs $=0 \mathrm{~V}$ or $\mathrm{VY}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
12IN Standby Supply Current	All switches OV or high-Z, control inputs $=0 \mathrm{~V}$ or $\mathrm{VY}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
VY Quiescent Supply Current	Any combination of VY switches on, control inputs = OV or VY, no VCC loads		20	200	$\mu \mathrm{A}$
VX Quiescent Supply Current	Control inputs = OV or VY, no VCC loads		10	50	$\mu \mathrm{A}$
12IN Quiescent Supply Current	VPP 12 V switches on, control inputs $=0 \mathrm{~V}$ or VY, no VPP loads		5	100	$\mu \mathrm{A}$
VCC SWITCHES					
Operating Output Current Range	$\mathrm{VCC}, \mathrm{VX}=\mathrm{VY}=3 \mathrm{~V}$ to 5.5 V	0		1	A
On-Resistance, VY Switches	$\begin{aligned} & 12 \mathrm{IN}=0 \mathrm{~V} \text { to } 13 \mathrm{~V}, \mathrm{VY}=3 \mathrm{~V}, \mathrm{VX}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text {, } \\ & \text { ISWITCH }=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		0.09	0.25	Ω
On-Resistance, VX Switches	$\begin{aligned} & 12 \mathrm{IN}=0 \mathrm{~V} \text { to } 13 \mathrm{~V}, \mathrm{VX}=4.5 \mathrm{~V}, \mathrm{VY}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text {, } \\ & \text { Iswitch }=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		0.09	0.25	Ω
Output Current Limit	VCC	1.2		4	A

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VY}=3.3 \mathrm{~V}, \mathrm{VX}=5 \mathrm{~V}, 121 \mathrm{~N}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Sink Current	$\mathrm{VCC}<0.4 \mathrm{~V}$, programmed to 0 V state	10			mA
Output Leakage Current	VCC forced to 0 V , high-Z state, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	10	$\mu \mathrm{A}$
Output Propagation Delay Plus Rise Time	VCC, 0 V to VX or $\mathrm{VY}, \mathrm{C}_{\mathrm{L}}=30 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=25 \Omega$, 50% of input to 90% of output, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2	10	ms
Output Rise Time	$\begin{aligned} & \text { VCC, } 0 V \text { to } V X \text { or } V Y, C_{L}=1 \mu F, R_{L}=\text { open circuit, } \\ & 10 \% \text { to } 90 \% \text { points, } T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	100	1200		$\mu \mathrm{s}$
Output Propagation Delay Plus Fall Time	$\mathrm{VCC}, \mathrm{VX}$ or VY to $0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=$ open circuit, 50% of input to 10% of output, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		90	150	ms
Output Fall Time	$\mathrm{VCC}, \mathrm{VX}$ or VY to $0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=25 \Omega$, 90% to 10% points		6		ms
VPP SWITCHES					
Operating Output Current Range	VPP	0		120	mA
On-Resistance, 12V Switches	$12 \mathrm{IN}=11.6 \mathrm{~V}$, ISWITCH $=100 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=+25^{\circ} \mathrm{C}$		0.70	1	Ω
On-Resistance, VPP = VCC Switches	Programmed to $\mathrm{VX}(5 \mathrm{~V})$ or $\mathrm{VY}(3.3 \mathrm{~V}), \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	6	Ω
Output Current Limit	VPP programmed to 12V	130	200	260	mA
Output Sink Current	VPP < 0.4V, programmed to 0V state	10			mA
Output Leakage Current	VPP forced to 0 V , high-Z state, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	10	$\mu \mathrm{A}$
Output Propagation Delay Plus Rise Time	VPP, 0 V to $12 \mathrm{IN}, \mathrm{CL}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$, 50% of input to 90% of output, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.2	30	ms
Output Rise Time	VPP, 0 V to $12 \mathrm{IN}, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$, 10% to 90% points, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	100	600		$\mu \mathrm{s}$
Output Propagation Delay Plus Fall Time	VPP, 12 IN to $0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$, 50% of input to 10% of output, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		9	60	ms
Output Fall Time	VPP, 12 IN to $\mathrm{OV}, \mathrm{CL}=0.1 \mu \mathrm{~F}, \mathrm{RL}=100 \Omega$ 90% to 10% points		6		ms
INTERFACE AND LOGIC SECTION					
$\overline{\text { FAULT Signal Propagation Delay }}$	VCC or VPP, load step to $\overline{\text { FAULT }}$ output, 50\% point to 50\% point (Note 3)		1		$\mu \mathrm{s}$
$\overline{\text { FAULT Output Low Voltage }}$	ISINK $=1 \mathrm{~mA}$, low state			0.4	V
FAULT Output Leakage Current	$\mathrm{V}_{\text {FAULT }}=5.5 \mathrm{~V}$, high state	-0.5		0.5	$\mu \mathrm{A}$
Thermal Shutdown Threshold	Hysteresis $=20^{\circ} \mathrm{C}$ (Note 4)		150		${ }^{\circ} \mathrm{C}$
Logic Input Low Voltage	__VCC, __VPP			0.6	V
Logic Input High Voltage	_VCC, __VPP	1.5			V
Code Input Low Voltage	"Intel" code	0		0.4	V
Code Input High Voltage	"Cirrus" code	VY-0.4		VY	V
Code Input Mid-Level Voltage	"Databook" code	1.2		VY-1.2	V
Logic Input Bias Current	__VCC, __VPP, code	-1		1	$\mu \mathrm{A}$

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VY}=3.3 \mathrm{~V}, \mathrm{VX}=5 \mathrm{~V}, 12 \mathrm{~N}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
POWER-SUPPLY SECTION				
Input Voltage Range	VX, VY	3.0	5.5	V
	12IN	11	13	
Undervoltage Lockout Threshold	VY falling edge, hysteresis $=1 \%$	2.3	2.9	V
	12IN falling edge	1.8		
	12IN rising edge	5	10	
	VX, VY falling edge	1.4	2.9	
VY Standby Supply Current	All switches 0 V or high-Z, control inputs $=0 \mathrm{~V}$ or VY		30	$\mu \mathrm{A}$
VX Standby Supply Current	VX, all switches $0 V$ or high-Z, control inputs $=0 \mathrm{~V}$ or $\mathrm{VY}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$		15	$\mu \mathrm{A}$
12IN Standby Supply Current	All switches 0 V or high-Z, control inputs $=0 \mathrm{~V}$ or VY		15	$\mu \mathrm{A}$
VY Quiescent Supply Current	Any combination of VY switches on, control inputs $=0 \mathrm{~V}$ or VY, no VCC loads		200	$\mu \mathrm{A}$
VX Quiescent Supply Current	Any combination of VX switches on, control inputs $=0 \mathrm{~V}$ or high-Z, no VCC loads		50	$\mu \mathrm{A}$
12IN Quiescent Supply Current	12 V switches on, control inputs $=0 \mathrm{~V}$ or VY, no VPP loads		100	$\mu \mathrm{A}$
FAULT Output Low Voltage	$\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$, low state		0.4	V
Logic Input Low Voltage	_VCC, __VPP		0.6	V
Logic Input High Voltage	__VCC, __VPP	1.6		V

Note 3: Not production tested.
Note 4: Thermal limit not active in standby state (all switches programmed to GND or high-Z state).

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

Typical Operating Characteristics
$\left(\mathrm{VY}=3.3 \mathrm{~V}, \mathrm{VX}=5 \mathrm{~V}, 12 \mathrm{IN}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

$C_{L}=33 \mu F, R_{L}=\infty$

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

```
                        (VY=3.3V,VX=5V,12IN = 12V, TA= +25' C, unless otherwise noted.)
```


Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

Typical Operating Characteristics (continued)
$\left(\mathrm{VY}=3.3 \mathrm{~V}, \mathrm{VX}=5 \mathrm{~V}, 12 \mathrm{IN}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

12IN ON-RESISTANCE
vs. CURRENT

VX ON-RESISTANCE vs. VCC LOAD CURRENT

VY ON-RESISTANCE vs. VCC LOAD CURRENT

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

Pin Description

PIN	NAME	
1	GND	Ground
2	$12 I N$	+12 V Supply Voltage Input
3	VPP	VPP Output
$4,6,7,9$	VCC	VCC Output. Connect all four VCC pins together.
5	VX	VX Supply Voltage Input. Input range is +3.0V to +5.5V. VX is normally connected to 5V.
8,10	VY	VY and Logic Supply Voltage Inputs. VY pins must be connected together. Input range is +3V to +5.5 V. VY is normally connected to 3.3V.
11	A0VPP	VPP Control Input (see Logic Truth Tables).
12	A1VPP	VPP Control Input (see Logic Truth Tables).
13	AOVCC	VCC Control Input (see Logic Truth Tables).
14	A1VCC	VCC Control Input (see Logic Truth Tables).
15	CODE	Three-Level Code-Select Input (see Logic Truth Tables): Low = Standard "Intel" code, High = "Cirrus" code, Mid-Supply = "Databook" code (Figure 4).
16	$\overline{\text { FAULT }}$	Fault-Detection Output. FAULT goes low during current limit, undervoltage lockout, or thermal limit. $\overline{\text { FAULT is an open-drain output that requires an external pull-up resistor. }}$

Logic Truth Tables

Table 1. Standard "Intel" Code (82365SL), CODE = GND

A1VCC	AOVCC	A1VPP	AOVPP	VCC	VPP	MODE
0	0	0	0	GND	GND	STBY
0	0	0	1	GND	GND	STBY
0	0	1	0	GND	GND	STBY
0	0	1	1	GND	GND	STBY
0	1	0	0	VY	GND	Active
0	1	0	1	VY	VCC	Active
0	1	1	0	VY	$12 I N$	Active
0	1	1	1	VY	High-Z	Active
1	0	0	0	VX	GND	Active
1	0	0	1	VX	VCC	Active
1	0	1	0	VX	$12 I N$	Active
1	0	1	1	VX	High-Z	Active
1	1	0	0	VY	GND	Active
1	1	0	1	VY	VCC	Active
1	1	1	0	VY	$12 I N$	Active
1	1	1	1	VY	High-Z	Active

Table 2. "Cirrus" Code, CODE = High (VY)

A1VCC	AOVCC	A1VPP	AOVPP	VCC	VPP	MODE
0	0	0	0	High-Z	High-Z	STBY
0	0	0	1	High-Z	High-Z	STBY
0	0	1	0	High-Z	High-Z	STBY
0	0	1	1	High-Z	High-Z	STBY
0	1	0	0	VX	GND	Active
0	1	0	1	VX	VCC	Active
0	1	1	0	VX	12IN	Active
0	1	1	1	VX	High-Z	Active
1	0	0	0	VY	GND	Active
1	0	0	1	VY	VCC	Active
1	0	1	0	VY	$12 I N$	Active
1	0	1	1	VY	High-Z	Active
1	1	0	0	GND	GND	STBY
1	1	0	1	GND	GND	STBY
1	1	1	0	GND	GND	STBY
1	1	1	1	GND	GND	STBY

STBY $=$ Standby Mode

[^0]
Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

\qquad Logic Truth Table 3. "Databook" Code, CODE = Mid-Supply (VY/2)						
A1VCC	AOVCC	AVPP	AOVPP	VCC	VPP	MODE
0	0	0	X	GND	High-Z	STBY
0	0	1	X	VY	12 N	Active
0	1	0	X	GND	GND	STBY
0	1	1	X	VX	12 N	Active
1	0	0	X	VY	VCC	Active
1	0	1	X	VY	GND	Active
1	1	0	X	VX	VCC	Active
1	1	1	X	VX	GND	Active

STBY = Standby Mode, $X=$ Don't Care

Detailed Description
The MAX1602 power-switching IC contains a network of low-resistance MOSFET switches that deliver selectable VCC and VPP voltages to two CardBus or PC Card host socket. Figure 1 is the detailed block diagram.
The power-input pins (VY, VX, 12IN) are completely independent, however, power must always be applied to VY for proper operation. Low inrush current is guaranteed by controlled switch rise times. VCC's 100μ s minimum output rise time is 100% tested with a $1 \mu \mathrm{~F}$ capacitive load, and VPP's 1 ms minimum rise time is guaranteed with a $0.1 \mu \mathrm{~F}$ load. These respective capacitive loads are chosen as worst-case card-insertion parameters. The internal switching control allows VCC and VPP rise times to be controlled, and makes them nearly

Figure 1. Detailed Block Diagram

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

independent of resistive and capacitive loads (see risetime photos in the Typical Operating Characteristics). Fall times are a function of loading, and are compensated by internal circuitry.
Power savings is automatic: internal charge pumps draw very low current when the VCC switches are static. Standby mode reduces switch supply current to $11 \mu \mathrm{~A}$.

Operating Modes

The MAX1602 is compatible with the Cirrus CL-PD67XX, Databook DB86184, and Intel 82365SL PC Card Interface Controllers (PCIC). Four control inputs select the internal switches' positions and the operating modes according to the input code. Select the proper code format for the chosen controller with the CODE input pin (see Pin Description and Tables 1, 2, and 3). CODE reconfigures the logic decoder to one of three interface controllers:

```
Low = Standard "Intel" code (Figure 3)
High = "Cirrus" code (Figure 2)
Mid-supply = "Databook" code (Figure 4)
```

An additional $1 \mu \mathrm{~A}$ ($3 \mu \mathrm{~A}$ max) of VY supply current will flow if CODE = mid-supply (VY/2).
The MAX1602 has two operating modes: normal and standby. Normal mode supplies the selected outputs with their appropriate supply voltages. Standby mode places all switches at ground, high impedance, or a combination of the two.

Figure 2. Application with Cirrus Logic Interface

Overcurrent Protection

Peak detecting circuitry protects both the VCC and VPP switches against overcurrent conditions. When current through any switch exceeds the internal current limit (4A for VCC switches and 200mA for VPP switches) the switch turns off briefly, then turns on again at the controlled rise rate. If the overcurrent condition lasts more than $2 \mu \mathrm{~s}$, the FAULT output goes low. FAULT is not latched. A continuous short-circuit condition results in a pulsed output current and a pulsed FAULT output until thermal shutdown is reached. FAULT is open-drain and requires an external pull-up resistor.

Thermal Shutdown

If the IC junction temperature rises above $+150^{\circ} \mathrm{C}$, the thermal shutdown circuitry opens all switches, including the GND switches, and FAULT is pulled low. When the temperature falls below $+130^{\circ} \mathrm{C}$, the switches turn on again at the controlled rise rate. If the overcurrent condition remains, the part cycles between thermal shutdown and overcurrent.

Undervoltage Lockout

If the VX switch input voltage drops below 1.9 V , the associated switch turns off and FAULT goes low. For example, if VY is 3.3 V and VX is 0 V , and if the interface controller selects VY , the VCC output will be 3.3 V . If VX is selected, VCC changes to a high-impedance output and FAULT goes low.
When a voltage is initially applied to 12 IN , it must be greater than 8 V to allow the switch to operate. Operation continues until the voltage falls below 2 V (the VPP output is high impedance).
When VY drops to less than 2.6 V , all switches are turned off and the VCC and VPP outputs are high impedance.

Applications Information

Supply Bypassing

Bypass the VY, VX, and 12 IN inputs with ceramic $0.1 \mu \mathrm{~F}$ capacitors. Bypass the VCC and VPP outputs with a $0.1 \mu \mathrm{~F}$ capacitor for noise reduction and ESD protection.

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

Figure 3. Application with Intel Interface

Figure 4. Block Diagram of the Databook DB87144 PCI to CardBus Controller Interface to the MAX1602

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

[^0]: STBY = Standby Mode

