: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MAX17541G 3.3V Output Evaluation Kit

MAX17541G in 3.3V Output-Voltage Application

General Description

The MAX17541G 3.3V EV kit provides a proven design to evaluate the MAX17541G 3.3V high-efficiency, high-voltage, synchronous step-down DC-DC converter. The EV kit generates 3.3 V at load currents up to 500 mA from a 5 V to 42 V input supply. The EV kit features a 600 kHz fixed switching frequency for optimum efficiency and component size. The EV kit features a forced-PWM control scheme that provides constant switching-frequency operation at all load and line conditions.

Features

- Operates from a 5V to 42V Input Supply
- 3.3V Output Voltage
- 500 mA Output Current
- 600kHz Switching Frequency
- Enable/UVLO Input
- Resistor-Programmable UVLO Threshold
- Open-Drain RESET Output
- Overcurrent and Overtemperature Protection
- Proven PCB Layout
- Fully Assembled and Tested

Ordering Information appears at end of data sheet.

Quick Start

Recommended Equipment

- MAX17541G 3.3V EV kit
- 5 V to $42 \mathrm{~V}, 2 \mathrm{~A}$ DC input power supply
- Load capable of sinking 500 mA
- Digital voltmeter (DVM)
- Function generator

Procedure

The EV kit is fully assembled and tested. Follow the steps below to verify the board operation. Caution: Do not turn on power supply until all connections are completed.

1) Set the power supply at a voltage between 5 V and 42 V . Disable the power supply.
2) Connect the positive terminal of the power supply to the VIN PCB pad and the negative terminal to the nearest PGND PCB pad. Connect the positive terminal of the 500 mA load to the VOUT PCB pad and the negative terminal to the nearest PGND PCB pad.
3) Connect the DVM across the VOUT PCB pad and the nearest PGND PCB pad.
4) Turn on the DC power supply.
5) Enable the load.
6) Verify that the DVM displays 3.3 V .

To turn-on/off the part from EN/UVLO, follow the steps below:

1) Connect the power supply to the EV kit and turn on the power supply. Set the power supply at a voltage between 5 V and 42 V .
2) Connect the function generator output to the EN/UVLO test loop.
3) EN/UVLO rising threshold is 1.24 V and falling threshold is 1.11 V . Make sure that the voltage-high and voltagelow levels of the function generator output are greater than 1.24 V and less than 1.11 V , respectively.
4) While powering down the EV kit, first disconnect the function generator output from the EN/UVLO test loop and then turn off the DC power supply.

MAX17541G in 3.3V Output-Voltage Application

Detailed Description of Hardware

The MAX17541G 3.3V EV kit provides a proven design to evaluate the MAX17541G 3.3 V high-efficiency, highvoltage, synchronous step-down DC-DC converter. The EV kit generates 3.3 V at load currents up to 500 mA from a 5 V to 42 V input supply. The EV kit features a 600 kHz fixed switching frequency for optimum efficiency and component size. The EV kit features a forcedPWM control scheme that provides constant switchingfrequency operation at all load and line conditions.
The EV kit includes an EN/UVLO PCB pad to enable control of the converter output. An additional RESET PCB pad is available for monitoring the open-drain logic output. The VCC PCB pad helps measure the internal LDO voltage.

Soft-Start Input (SS)

The device utilizes an adjustable soft-start function to limit inrush current during startup. The soft-start time is adjusted by the value of C3, the external capacitor from SS to GND. To adjust the soft-start time, determine C3 using the following formula:

$$
\mathrm{C} 3=5.55 \times \mathrm{tss}
$$

where tss is the required soft-start time in milliseconds and C3 is in nanofarads.

Regulator Enable/Undervoltage-Lockout Level (EN/UVLO)

The device features an EN/UVLO input. For normal operation, no shunts should be installed across pins 1-2 or 2-3 on jumper JU1. To disable the output, install a shunt across pins 2-3 on JU1 and the EN/UVLO pin is pulled to GND. See Table 1 for JU1 settings.

Setting the Undervoltage-Lockout Level

The device offers an adjustable input undervoltagelockout level. Set the voltage at which the device turns on with a resistive voltage-divider connected from VIN to GND (see Figure 1). Connect the center node of the divider to EN/UVLO.
Choose R1 to be $3.3 \mathrm{M} \Omega$ and then calculate R2 as follows:

$$
\mathrm{R} 2=\frac{\mathrm{R} 1 \times 1.218}{\left(\mathrm{~V}_{\mathrm{INU}}-1.218\right)}
$$

where $\mathrm{V}_{\text {INU }}$ is the voltage at which the device is required to turn on. Ensure that $\mathrm{V}_{\text {INU }}$ is higher than $0.8 \times \mathrm{V}_{\text {OUT }}$.

Adjusting the Output Voltage

The device offers an adjustable output voltage. Set the output voltage with a resistive voltage-divider connected from the positive terminal of the output capacitor (VOUT) to GND (see schematic attached to PDF). Connect the center node of the voltage-divider to FB.
To choose the values of R4 and R5, select the parallel combination of R4 and R5, with R_{p} less than $15 k \Omega$. Once R_{P} is selected, calculate $R 4$ as follows:

$$
\mathrm{R} 4=\frac{\mathrm{R}_{\mathrm{P}} \times \mathrm{V}_{\mathrm{OUT}}}{0.9}
$$

Calculate R5 as follows:

$$
R 5=\frac{R 4 \times 0.9}{\left(\mathrm{~V}_{\text {OUT }}-0.9\right)}
$$

Table 1. Regulator Enable (EN/UVLO) Jumper JU1 Settings

SHUNT POSITION	EV/UVLO PIN	MAX17541G 3.3V OUTPUT
Not installed*	Connected to the center node of resistor-divider R1 and R2	Enabled, UVLO level set through the R1 and R2 resistor-divider
$2-3$	Connected to GND	Disabled

[^0]
MAX17541G 3.3V Output

 Evaluation Kit
EV Kit Performance Report

Figure 1. MAX17541G 3.3V Output Load and Line Regulation

Figure 3. MAX17541G 3.3V Output No Load to 250mA Load Transient

Figure 5. MAX17541G 3.3V Output Full-Load Bode Plot ($\left.V_{I N}=24 V\right)$

Figure 2. MAX17541G 3.3V Output Efficiency

Figure 4. MAX17541G 3.3V Output 250mA to 500mA Load Transient

MAX17541G 3.3V Output Evaluation Kit

MAX17541G in 3.3V
Output-Voltage Application

Component Suppliers

SUPPLIER	
Murata Americas	www.murata.com
Panasonic Corp.	www.panasonic.com
Wurth Group	www.we-online.com

Note: Indicate that you are using the MAX17541G when contacting these component suppliers.
Component Information, PCB Layout, and Schematic
See the following links for component information, PCB layout, and schematic:

- MAX17541G 3.3V EV BOM
- MAX17541G 3.3V EV PCB Layout
- MAX17541G 3.3V EV Schematic

MAX17541G 3.3V Output Evaluation Kit

MAX17541G in 3.3V
Output-Voltage Application

Revision History

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $7 / 15$ | Initial release | - |

\oplus

BILL OF MATERIALS (Revision 7/15)

Reference	Description	Quantity	Designator	Part Number
1	$1 \mathrm{~F} \pm \pm 10 \%, 50 \mathrm{~V} \times 7 \mathrm{R}$ ceramic capacitor (1206)	1	C1	Murata GRM31MR71H105K
2	$1 \mu \mathrm{~F} \pm 10 \%$, 6.3 V X 7 R ceramic capacitor (0603)	1	C2	Murata GRM188R701105K
3	$3300 \mathrm{pF} \pm 10 \%, 50 \mathrm{~V} \times 7 \mathrm{R}$ ceramic capacitor (0402)	1	C3	Murata GRM155R71H332K
4	$10 \mathrm{~F} \ddagger \pm 10 \%$, 6.3 SV X7R ceramic capacitor (1206)	1	C4	Murata GRM31CR701106K
5	$3300 \mathrm{pF} \pm 10 \%, 50 \mathrm{~V} \times 7 \mathrm{R}$ ceramic capacitor (0402)	1	C5	Murata GRM155R71H332K
6	33 F 5 50V aluminum electrolytic ($\mathrm{D}=6.3 \mathrm{~mm}$)	1	C7	Panasonic EEE-FK1H330XP
7	27pF 55%, 50 V co6 ceramic capacitor (0402)	1	C9	Murata GRM1555C1H270J
8	${ }^{3}$-pin header (36-pin header 0.1" ${ }^{\prime \prime}$ centers)	1	JU1	Sullins: PTC365AAN
9	33 uH Inductor ($5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 4 \mathrm{~mm}$)	1	L1	Wurth Electronics 74404054330
10	3.32M ohm $\pm 1 \%$, resistor (0402)	1	R1	
11	825 k ohm $\pm 1 \%$, resistor (0402)	1	R2	
12	14.7 k ohm $\pm 1 \%$, resistor (0402)	1	R3	
13	$48.7 \mathrm{k} \pm 1 \%$ ohm resistor (0402)	1	R4	
14	$18.2 \mathrm{t} \pm 1 \%$ ohm resistor (0402)	1	R5	
15	10 k ohm $\pm 1 \%$, resistor (0402)	1	R6	
16	Not installed, resistor (0402)	0	R7	
17	Buck Converter (10TDFN 3mmx2mm) MAX17541GATB+	1	U1	MAX175416ATB+
18	Shunt	1	See Jumper Table	SULIINS STCO2SYAN

JUMPER	Jumper Table
SUUNT POSTIION	
JU1	$1-2$

[^0]: *Default position.

