: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Dual USB Switch with Fault Blanking

Abstract

General Description The MAX1812 is a dual current-limited switch specifically made for USB applications. Each channel is guaranteed to supply 500 mA and meets USB specifications. The MAX1812's low quiescent supply current ($45 \mu \mathrm{~A}$) and shutdown current $(3 \mu \mathrm{~A})$ conserve battery power in portable applications. The MAX1812 has multiple safety features to ensure that the USB port is protected. Built-in thermal-overload protection limits power dissipation and junction temperature. The device also has accurate internal current-limiting circuitry to protect the input supply against both overload and short-circuit conditions. Independent fault signals ($\overline{F A U L T A}$ and $\overline{\text { FAULTB }}$) notify the microprocessor when a thermal-overload, current limit, undervoltage lockout, or short-circuit fault occurs. A 20ms fault-blanking feature enables the circuit to ignore momentary faults, such as those caused when hot-swapping a capacitive load, thereby preventing false alarms to the host system. The MAX1812 is available in a space-saving 10-pin μ MAX package. For single versions of this device, refer to the MAX1693, MAX1694, and MAX1607 data sheets.

Applications
USB Ports
USB Hubs
Notebook Computers
Desktop Computers
PDAs and Palmtop Computers
Docking Stations

Typical Operating Circuit

Features

- Dual USB Switch in Tiny 10-Pin μ MAX Package
- Guaranteed 500mA Load per Channel
- Built-In 20ms Fault Blanking
- Compliant to USB Specifications
- +4.0V to +5.5V Input Voltage Range
- $45 \mu \mathrm{~A}$ Quiescent Current
- $3 \mu \mathrm{~A}$ Shutdown Current
- Independent Shutdown Control
- Independent FAULT Indicator Outputs
- Thermal-Overload Protection
- UL Listing Pending

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1812EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$

Pin Configuration

For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Dual USB Switch with Fault Blanking

ABSOLUTE MAXIMUM RATINGS
$\frac{I N, I N A, ~ I N B, ~ \overline{O N A}}{}$, $\overline{O N B}$, OUTA, OUTB to GND......-0.3V to +6 V FAULTA, $\overline{F A U L T B}$ to GND
\qquad -0.3 V to $\left(\mathrm{V}_{\mathrm{I}} \mathrm{N}_{-}+0.3 \mathrm{~V}\right)$ INA, IN to OUTA; INB, IN to OUTB.
\qquad ... -0.3 V to +6 V OUTA, OUTB Maximum Continuous Switch Current
(per channel, internally limited)
.1.2A
$\overline{\text { FAULTA }}$, $\overline{F A U L T B}$ Current ... 20 mA

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 10-Pin $\mu \mathrm{MAX}$ (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).)........... 444 mW
Operating Temperature Range-40	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature.	+ $150^{\circ} \mathrm{C}$
Storage Temperature Range-65	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INB }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range			4.0		5.5	V
Switch On-Resistance	Ron	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, each switch		75	105	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, each switch			135	
Standby Supply Current		Both switches disabled		3	10	$\mu \mathrm{A}$
Quiescent Supply Current		Both switches enabled, I IOUTA $=$ IOUTB $=0$		45	100	$\mu \mathrm{A}$
OUT_ Leakage Current		Switches disabled, VOUTA $=$ VOUTB $=0$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.002	1	$\mu \mathrm{A}$
		Switches disabled, VOUTA $=$ VOUTB $=0$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			10	
Undervoltage Lockout Threshold	UVLO	Rising edge, 3\% hysteresis	3.0	3.4	3.8	V
Continuous Load Current			500			mA
Continuous Current Limit	ILIM	$\mathrm{V}_{\text {IN_- }}-\mathrm{V}_{\text {OUT- }}=0.5 \mathrm{~V}$	0.6	0.9	1.2	A
Short-Circuit Current Limit	ISHORT	Vout_ = 0 (lout pulsing)	0.8	1.2	1.6	A(peak)
				0.35		ARMS
Short-Circuit Detect Threshold		(Note 2)		1		V
Continuous Current-Limit Blanking Timeout Period		From continuous current-limit condition to FAULT_ assertion	10	20	35	ms
Short-Circuit Blanking Timeout Period		From short-circuit current-limit condition to FAULT_ assertion	7.5	18	35	ms
Turn-On Delay		ROUT $=10 \Omega$, COUT $=1 \mu \mathrm{~F}$ does not include rise time (from $\overline{\mathrm{ON}}$ to 10% of VOUT)	0.5	1.2	4.0	ms
Output Rise Time		Rout $=10 \Omega$, Cout $=1 \mu \mathrm{~F}$, from 10% to 90% of VOUT		2.5		ms
Turn-Off Delay from ON		ROUT $=10 \Omega$, COUT $=1 \mu \mathrm{~F}$ does not include fall time (from $\overline{\text { ON_ }^{\prime}}$ to 90% of VOUT)		0.8	3	ms
Output Fall Time		COUT $=1 \mu \mathrm{~F}$, ROUT $=10 \Omega$, from 90% to 10% of Vout		2.5		ms
Thermal Shutdown Threshold		$15^{\circ} \mathrm{C}$ hysteresis		160		${ }^{\circ} \mathrm{C}$

Dual USB Switch with Fault Blanking

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INB }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Logic Input High Voltage		$\mathrm{V}_{1 \mathrm{~N}_{-}}=+4 \mathrm{~V}$ to +5.5 V	2		V
Logic Input Low Voltage		$\mathrm{V}_{\text {IN }}=+4 \mathrm{~V}$ to +5.5 V		0.8	V
Logic Input Current		$\mathrm{V} \overline{\mathrm{ON}}_{-}=0$ or $\mathrm{V}_{1 \mathrm{~N}_{-}}$	-1	1	$\mu \mathrm{A}$
$\overline{\text { FAULT_ Output Low Voltage }}$		$\mathrm{ISINK}=1 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=4 \mathrm{~V}$		0.4	V
FAULT_ Output High Leakage Current		$\mathrm{V}_{1 \mathrm{~N}_{-}}=\mathrm{V}_{\text {FAULT }}{ }_{-}=5.5 \mathrm{~V}$		1	$\mu \mathrm{A}$

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.
Note 2: The output voltage at which the device transitions from short-circuit current limit to continuous current limit.

Typical Operating Characteristics

$\left(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INB }}=5 \mathrm{~V}\right.$, Circuit of Figure 2, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Dual USB Switch with Fault Blanking

$\left(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INB }}=5 \mathrm{~V}\right.$, Circuit of Figure 2, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Dual USB Switch with Fault Blanking

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{I N}=\mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INB }}=5 \mathrm{~V}\right.$, Circuit of Figure 2, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Dual USB Switch with Fault Blanking

PIN	NAME	FUNCTION
1	$\overline{\text { ONA }}$	Control Input for Switch A. Can be driven higher than IN_ without damage. A logic low turns switch A on.
2, 3, 4	INA, IN, INB	Power Input. Connect all IN_ pins together and bypass with a $0.1 \mu \mathrm{~F}$ capacitor to ground. Load conditions may require additional bulk capacitance to prevent the input from being pulled down.
5	$\overline{\text { ONB }}$	Control Input for Switch B. Can be higher than IN_ without damage. A logic low turns switch B on.
6	$\overline{\text { FAULTB }}$	Fault Indicator Output for Switch B. This open-drain output goes low when switch B is in thermal shutdown or undervoltage lockout or in a sustained ($>20 \mathrm{~ms}$) current-limit or short-circuit condition.
7	OUTB	Power Output for Switch B. Connect a 1μ F capacitor from OUTB to ground. Load condition may require additional bulk capacitance. See USB requirements.
8	GND	Ground
9	OUTA	Power Output for Switch A. Connect a $1 \mu \mathrm{~F}$ capacitor from OUTA to ground. Load condition may require additional bulk capacitance. See USB requirements.
10	$\overline{\text { FAULTA }}$	Fault Indicator Output for Switch A. This open-drain output goes low when switch A is in thermal shutdown or undervoltage lockout or in a sustained (>20ms) current-limit or short-circuit condition.

Detailed Description

The MAX1812 is a dual current-limited switch designed specifically for USB applications. It has two independent switches, each with its own enable control input. Each switch also has an independent error flag output to notify the USB controller when the current-limit, shortcircuit, undervoltage-lockout, or thermal-shutdown threshold is reached (Figure 1).
The MAX1812 operates from $\mathrm{a}+4 \mathrm{~V}$ to +5.5 V input voltage and guarantees a minimum output current of 500 mA . A built-in current-limit of 0.9A (typ) limits the current in the event of a heavy overload condition. The MAX1812 has independent thermal shutdown for each switch in the event of a prolonged overload or short-circuit condition.
Use of internal low RON NMOS switches enables the MAX1812 to fit two switches in the ultra-small 10-pin $\mu \mathrm{MAX}$ package. An internal micropower charge pump generates the high-side supply needed for driving the gates of these high-side switches. Separate currentlimiting and thermal-shutdown circuits permit each switch to operate independently, improving system robustness.

> Undervoltage Lockout and Input Voltage Requirements

The MAX1812 includes an undervoltage-lockout (UVLO) circuit to prevent erroneous switch operation when the input voltage goes low during startups and
brownout conditions. Operation is inhibited when V_{IN} $<3.4 \mathrm{~V}$.

Output Fault Protection

The MAX1812 senses the switch output voltage and selects continuous current limiting when Vout_ > 1V, or pulsed current limiting when Vout_ < 1V. When Vout_ $>1 \mathrm{~V}$, the device operates in a continuous current-limit mode, which sets the output current limit to 0.9 A (typ). When Vout _ < 1V, the device operates in short-circuit current-limit mode. The MAX1812 pulses the output current at 400 Hz to limit the output current to 0.35 A (RMS).

Thermal Shutdown

The MAX1812 features independent thermal shutdown for each switch channel, allowing one switch to deliver power even if the other switch has a fault condition. When the junction temperature exceeds $+160^{\circ} \mathrm{C}$, the switch turns off and the FAULT_ output goes low immediately; fault blanking does not occur during thermal limit. When the junction cools by $15^{\circ} \mathrm{C}$, the switch turns back on again. If the fault overload condition continues, the switch will cycle on and off, resulting in a pulsed output that saves battery power.

Fault Indicators

The MAX1812 provides an open-drain fault output ($\overline{\text { FAULT_ }}$) for each switch. For most applications, connect FAULT_ to IN_ through a $100 \mathrm{k} \Omega$ pullup resistor.

Dual USB Switch with Fault Blanking

Figure 1. Functional Diagram
$\overline{\mathrm{FAULT}}_{-}$goes low when any of the following conditions occur:

- The input voltage is below the undervoltage-lockout (UVLO) threshold.
- The switch junction temperature exceeds the thermal shutdown temperature limit of $+160^{\circ} \mathrm{C}$.
- The switch is in current limit or short-circuit limit mode and the fault-blanking period is exceeded.

The fault indicators have a latching delay to prevent short $\overline{\mathrm{FAULT}}$ _ pulses. After the fault-condition is removed, the $\overline{\mathrm{FAULT}}$ _ output will deassert after a 20 ms delay. Ensure that the MAX1812 has adequate input bypass capacitance to prevent glitches from triggering FAULT_ outputs. Input glitches greater than $0.2 \mathrm{~V} / \mu \mathrm{S}$ may cause spurious FAULT_{-}transitions.

Dual USB Switch with Fault Blanking

Table 1. MAX1812 Current Limiting and Fault Behavior

CONDITION	MAX1812 BEHAVIOR
If a short circuit is present (Vout < 1V)	If a short circuit is present at startup, current will ramp up to ISHORT in $2 \mathrm{~ms}-3 \mathrm{~ms}$, and the switch will shut off. The blanking timer turns on, but $\overline{\text { FAULT_ stays high. }}$ If a short circuit occurs during operation, current output will be pulsed at 0.35A (RMS). If ISHORT is exceeded between $15 \mathrm{~ms}-20 \mathrm{~ms}$, then the short circuit is still present and $\overline{\text { FAULT_- }}$ low at 20 ms . When the short circuit is removed, the next ramped current pulse will soft-start the output. The $\overline{\mathrm{FAULT}}$ _ flag releases at the end of the next cycle.
If an overload current is present (Vout > 1V)	Current will regulate at ILIM (0.9A typ). The blanking timer turns on, but $\overline{\text { FAULT_ stays high. }}$ Continuous current at ILIM persists until the overload is removed or a thermal fault occurs. If overcurrent is still present at 20 ms , then $\overline{\mathrm{FAULT}}$ _ goes low. When the overcurrent condition is removed, the $\overline{\mathrm{FAULT}}$ _ flag releases at the end of the next cycle.
If thermal fault condition is present	$\overline{\text { FAULT_ }}$ immediately goes low (the blanking timer does not apply to thermal faults), and the switch turns off. When thermal condition is removed, switch control returns to the current-limit loop. $\overline{\text { FAULT }_{-}}{ }^{-}$goes high at the end of the timer period if no further thermal or current-limit faults exist.

Behavior During Current Limit and Fault Blanking

The MAX1812 limits switch current in three ways (Table 1). When $\overline{O N}_{-}$is high, the switch is off, and the residual output current is dominated by leakage. When $\overline{O N}$ _ is low, the switch can supply a continuous output current of at least 500 mA . When the output current exceeds the 0.9A (typ) threshold, the MAX1812 will limit the current, depending upon the output voltage. If VoUT_ > 1V (current-limit mode), the MAX1812 serves the switch drive so that the peak current does not exceed 1.2A (max). If VouT_ < 1V (short-circuit mode), the MAX1812 pulses the switch drive to decrease the current to 0.35A (RMS). Note that a thermal overload may result from either of these high-current conditions.
The switches in the MAX1812 may enter current limit in normal operation when powering up or when driving heavy capacitive loads. To differentiate these conditions from short circuits or sustained overloads that may damage the device, the MAX1812 has an independent fault-blanking circuit in each switch. When a load transient causes the device to enter current limit, an internal counter monitors the duration of the fault. If the load fault persists beyond the 20ms fault-blanking timeout, then the switch turns off and the $\overline{F A U L T}_{-}$signal asserts low. Only current-limit and short-circuit faults are blanked. Thermal overload faults and input voltage
drops below the UVLO threshold immediately cause the switch to turn off and the $\overline{F A U L T}_{-}$to assert low.
Fault blanking allows the MAX1812 to handle USB loads that may not be fully compliant with the USB specifications. USB loads with additional bypass capacitance and/or large startup currents can be successfully powered even while protecting the upstream power source. If the switch is able to bring up the load within the 20 ms blanking period, no fault is reported.

Applications Information

Input Power Source

The power for all control and charge-pump circuitry comes from IN, INA, and INB. All three IN_{-}pins must be connected together externally.

Input Capacitor

To limit the input voltage drop during momentary output short-circuit conditions, connect a capacitor from IN_{-}to ground. A $0.1 \mu \mathrm{~F}$ ceramic capacitor is required for local decoupling; however, higher capacitor values will further reduce the voltage drop at the input (Figure 2). When driving inductive loads, a larger capacitance will prevent voltage spikes from exceeding the device's absolute maximum ratings.

Output Capacitor
An output capacitor helps prevent inductive parasitics from pulling OUT_ negative during turn-off. At startups,

Dual USB Switch with Fault Blanking

Figure 2. Typical Application Circuit
the switch pulses the output current at 0.35A RMS until the output voltage rises above 1 V , then the capacitor will continue to charge at the full 0.9A current limit. There is no limit to the output capacitor size, but to prevent a startup fault assertion the capacitor must charge up within the fault-blanking delay period. Typically starting up into a $330 \mu \mathrm{~F}$ or smaller capacitor will not trigger a fault output. In addition to bulk capacitance, small value $(0.1 \mu \mathrm{~F})$ ceramic capacitors improve the output's resilience to electrostatic discharge (ESD).

Driving Inductive Loads

A wide variety of devices (mice, keyboards, cameras, and printers) can load the USB port. These devices commonly connect to the port with cables, which can add an inductive component to the load. This inductance can cause the output voltage at the USB port to ring during a load step. The MAX1812 is capable of driving inductive loads, but care should be taken to avoid exceeding the device's absolute maximum ratings. Usually, the load inductance is relatively small, and the MAX1812's input includes a substantial bulk capacitance from an upstream regulator as well as a local bypass, so the amount of transient overshoot is small. If the load inductance is very large, ringing may become severe, and it may be necessary to clamp the MAX1812's output below 6V and above -0.3V.

Turn-On and Turn-Off Behavior
In normal operation, the MAX1812's internal switches turn on and turn off slowly under the control of the ON_{-} inputs. Transition times for both edges are approximately 2 ms . The slow charge-pump switch-drive minimizes load transients the upstream power source. Under thermal fault and under voltage lockout, the
power device will turn off rapidly (100ns typ) to protect the power device.

Layout and Thermal Dissipation

To optimize the switch-response time to output shortcircuit conditions, it is important to keep all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors no more than 5 mm from the package leads. All IN_ and OUT_ pins must be connected with short traces to the power bus. Wide power bus planes provide superior heat dissipation through the switch IN_ and OUT_ pins.
Under normal operating conditions, power dissipation is small and the package can conduct heat away. Calculate the maximum power dissipation for normal operation as follows:

$$
\begin{gathered}
P=\left(\text { lOUT_ }^{2}\right)^{2} \text { RON } \\
P=(0.5 \mathrm{~A})^{2} \times 0.135 \Omega=34 \mathrm{~mW} \text { per switch }
\end{gathered}
$$

where IOUT_ is the maximum normal operating current, and RON is the on-resistance of the switch ($135 \mathrm{~m} \Omega$ max).
The worst-case power dissipation occurs when the switch is in current limit and the output is greater than 1 V . In this case, the power dissipated in each switch is the voltage drop across the switch multiplied by the current limit:

$$
P=(I L I M)(V I N-V O U T)
$$

For a 5 V input and 1 V output, the maximum power dissipation per switch is:

$$
P=(1.2 A)(5 V-1 V)=4.8 W
$$

Since the maximum package power dissipation is only 444 mW , the MAX1812 die temperature will quickly exceed the thermal-shutdown threshold, and the switch output will pulse on and off. The duty cycle and period are strong functions of the ambient temperature and the PC board layout.
When the output is short circuited, current limiting activates and the power dissipated across the switch increases as does junction temperature. If the fault condition persists, the thermal-overload-protection circuitry activates (see Thermal Shutdown).

Chip Information

TRANSISTOR COUNT: 2739
PROCESS: BiCMOS

Dual USB Switch with Fault Blanking

