imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

General Description

The MAX19005 four-channel, ultra-low-power, pinelectronics IC includes a two-level pin driver, a window comparator, a passive load, and force-and-sense Kelvin-switched parametric measurement unit (PMU) connections for each channel. The driver features a -1V to +5.2V voltage range, includes high-impedance modes, and is highly linear even at low voltage swings. The window comparator features 240MHz equivalent input bandwidth and programmable output voltage levels. The passive load provides pullup and pulldown voltages to the device-under-test (DUT).

Low leakage and high impedance are operational configurations that are programmed through a 3-wire, low-voltage, CMOS-compatible serial interface. High-speed PMU switching is realized through dedicated digital control inputs.

This device is available in an 80-pin, 12mm x 12mm body, 0.5mm pitch TQFP with an exposed 6mm x 6mm die pad on the bottom of the package for efficient heat removal. The device is specified to operate over the 0°C to +70°C commercial temperature range and features a die temperature monitor output.

Ordering Information appears at end of data sheet.

Features

- Small Footprint: Four Channels in 0.3in²
- Low-Power Dissipation: 340mW/Channel (typ)
- ♦ High Speed: 200Mbps at 3VP-P
- ♦ -1V to +5.2V Operating Range
- ♦ Integrated Pin Switch (with -1V to +24V Off Range)
- Integrated PMU Switches with -1V to +24V Operating Range
- Passive Load
- Low-Leakage Mode by Pin Switch Off: 10nA (max)
- Low Gain and Offset Error

Applications

NAND Flash Testers DRAM Probe Testers Low-Cost Mixed-Signal/System-on-Chip (SoC) Testers Active Burn-In Systems Structural Testers

For related parts and recommended products to use with this part, refer to: www.maxim-ic.com/MAX19005.related

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

ABSOLUTE MAXIMUM RATINGS

$V_{\mbox{\scriptsize DD}}$ to GND0.3V to +9.4V
V _{SS} to GND6.25V to +0.3V
V _{DD} - V _{SS} +15.65V
V _L to GND0.3V to +5V
DHV_, DLV_ to GND with
Integrated Pin Switch Off V_{SS} - 0.3V to V_{DD} + 0.3V
DHV_, DLV_ to GND with
Integrated Pin Switch On V_{SSSW} - 0.3V to V _{DD} + 0.3V
DATA_, RCV_, V _{BBI} to GND0.3V to +5V
LDV_ to GND V_{SSSW} - 0.3V to V_{DD} + 0.3V
CHV_, CLV_ COMPHI, COMPLO
to GNDV _{SS} - 0.3V to V_{DD} + 0.3V
CMPH_, CMPL_, V _{BBO} to GND0.3V to V _{DD}
$\overline{\text{LD}}$, DIN, SCLK, $\overline{\text{CS}}$, SWEN to GND0.3V to $+\overline{\text{VL}}$
CHV_, CLV_ to DUT_ with Integrated Pin Switch On8V
DUT_ to GND with Integrated Pin Switch OffV _{SSSW} to V _{DDSW}
DUT_ to GND with Integrated Pin Switch On V_{SSSW} to V_{DD}
FORCE, SENSE, PMU_ to GND V _{SSSW} to V _{DDSW}
V _{DDSW} to V _{SSSW} +27V

V _{DDSW} to V _{SS} +31.35V V _{DDSW} to GND0.3V to +26.1V V _{SSSW} to GND2.4V to +0.3V	/
DUT_, CMPH_, CMPL_ Short-Circuit DurationContinuous	
DOUT to GND0.3V to +VL	_
TEMP to GND0.3V to VDD	
TEMP Short-Circuit DurationContinuous	3
PMU Force Switch Continuous Current ±35mA	٩
PMU Force Switch Peak Current ±160mA	٩
PMU Sense Switch Continuous Current ±1mA	١
PMU Sense Switch Peak Current ±30mA	١
All Digital Inputs ±30mA	٩
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
TQFP (derate 35.7mW/°C above +70°C)	/
Storage Temperature Range65°C to +150°C)
Junction Temperature+150°C	
Lead Temperature (soldering, 10s)+300°C)
Soldering Temperature (reflow)+260°C)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{DDSW} = +24.6V, V_{SSSW} = -1.25V, V_{COMPHI} = +1V, V_{COMPLO} = 0V, V_{LDV} = 0V, LOAD EN LOW = LOAD EN HIGH = 0, SWEN = 1, T_J = +70°C with an accuracy of ±15°C. Specification compliance with supply and temperature variations is verified by guard-banding mean shifts of characterization data, unless otherwise noted. All temperature coefficients measured at T_J = +50°C to +90°C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	SYMBOL CONDITIONS		ТҮР	MAX	UNITS			
DRIVER (all specifications apply when DUT_ = DHV_ or DUT_ = DLV_)									
DC CHARACTERISTICS (R _{DUT} \geq 10M Ω , unless otherwise noted)									
Voltage Range			-1.0		+5.2	V			
Gain		Measured at 0V and +3V	0.995	1	1.005	V/V			
Gain Temperature Coefficient				50		ppm/°C			
Offset		$V_{DHV} = +2V, V_{DLV} = 0V$			±10	mV			
Offset Temperature Coefficient		$V_{DHV} = +1.5V$		±250		µV/°C			
Power Supply Dejection Datio	DODD	V_{DD} , V_{SS} independently varied over full range, $V_{DHV_}$ = +1.5V			±18	mV/V			
Power-Supply Rejection Ratio	PSRR	V_{DDSW} , V_{SSSW} independently varied over full range, V_{DHV} = +1.5V			±10	mV/V			
Maximum DC Drive Current	I _{DUT_}		±40			mA			
DC Output Resistance		$I_{DUT_} = \pm 10$ mA, DATA_ = 1, trim condition, target = 49.5 Ω	47.5	49.5	51.5	Ω			
DC Output Resistance (V _{DDSW} = + 15V)		I _{DUT_} = ±10mA, DATA_ = 1	49.0	52.0	55.0	Ω			

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{DDSW} = +24.6V, V_{SSSW} = -1.25V, V_{COMPHI} = +1V, V_{COMPLO} = 0V, V_{LDV} = 0V, LOAD EN LOW = LOAD EN HIGH = 0, SWEN = 1, T_J = +70°C with an accuracy of ±15°C. Specification compliance with supply and temperature variations is verified by guard-banding mean shifts of characterization data, unless otherwise noted. All temperature coefficients measured at T_J = +50°C to +90°C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
DC Output Resistance Variation		I _{DUT} _ = -40mA (Note 2)	A to +40mA, DATA_ = 1			5.0	Ω
DC Output Resistance Variation (V _{DDSW} = +15V)		I _{DUT} _ = -40mA (Note 2)	A to +40mA, DATA_ = 1			8.0	Ω
DC Crosstalk, DHV_ to DLV_,		$V_{DLV_{}} = +1.5V$	/, V _{DHV} = -1V, +5.2V			±5	mV
DLV_ to DHV_		$V_{DHV} = +1.5$	/, V _{DLV_} = -1V, +5.2V			±5	1110
Linearity Error		+1.5V (Note 3))			±5	mV
		-1V and +5.2V	(Note 3)			±15	IIIV
AC CHARACTERISTICS (R _{DUT} = 50	Ω to GND,	unless otherwi	se noted) (Note 4)				
Dynamic Output Current		(Note 5)			±60		mA
Drive Mode Overshoot, Undershoot, and Preshoot		+0.2V to 4V _{P-F}	swing (Note 6)		5% + 10		mV
Lligh Impedance Mede Chike		eq:def-def-def-def-def-def-def-def-def-def-		25			
High-Impedance Mode Spike				25			mV
Propagation Delay, Data to Output		$V_{DHV} = +3V,$ average of t _{LH}		2.5	3.5	5.1	ns
Propagation Delay Temperature Coefficient		$V_{\text{DHV}} = +3V,$	$V_{DLV_} = 0V$		1		ps/°C
Propagation Delay Match, t _{LH} vs. t _{HL}		$V_{DHV} = +3V,$	$V_{DLV} = 0V$		70		ps
Propagation Delay Skew, Drivers Within Package		$V_{DHV_{}} = +3V, V_{DLV_{}} = 0V$ 100		100		ps	
Propagation Delay Change		Relative to	$3V_{P-P}$, 40MHz, PW = 4ns to 21ns		±40		
vs. Pulse Width		12.5ns pulse	1V _{P-P} , 40MHz, PW = 2.5ns to 22.5ns		±90		ps
Propagation Delay Change vs. Common-Mode Voltage		$1V_{P-P}$, V_{DLV} = 0V to +3V, relative to delay at V_{DLV} = +1V			±80		ps
Propagation Delay, Drive to High Impedance, High Impedance to Drive		V_{DHV} = +1.5V, V_{DLV} = -1V, average of both directions of t_{LH} and t_{HL}			3.9		ns
Minimum Voltage Swing		(Note 7)			100		mV

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{DDSW} = +24.6V, V_{SSSW} = -1.25V, V_{COMPHI} = +1V, V_{COMPLO} = 0V, V_{LDV} = 0V, LOAD EN LOW = LOAD EN HIGH = 0, SWEN = 1, T_J = +70°C with an accuracy of ±15°C. Specification compliance with supply and temperature variations is verified by guard-banding mean shifts of characterization data, unless otherwise noted. All temperature coefficients measured at T_J = +50°C to +90°C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		$V_{DHV} = +0.2V, V_{DLV} = 0V, 20\%$ to 80%		0.8		
		$V_{DHV} = +1V, V_{DLV} = 0, 20\% \text{ to } 80\%$		0.8		
Rise/Fall Time		V_{DHV} = +3V, V_{DLV} = 0V, 10% to 90%	1.4	2.0	2.7	1
(Average Rise/Fall Time)		$V_{DHV_} = +4V, V_{DLV_} = 0V,$ $R_{DUT_} = 500\Omega, 10\%$ to 90%		2.5		ns
		$V_{DHV} = +5V, V_{DLV} = 0V,$ $R_{DUT} = 500\Omega, 10\% \text{ to } 90\%$		3.1		
		$V_{DHV} = +0.2V$		±50		
Rise/Fall Time Matching		$V_{DHV} = +1V$ $V_{DLV} = 0V$		±15		%
		V_{DHV} = +3V and +5V		±5		
Minimum Pulse Width		$0.2V_{P-P}, V_{DHV} = +0.2V, V_{DLV} = 0V$		1.8		
(Average Positive/Negative Pulse)		$1V_{P-P}, V_{DHV} = +1V, V_{DLV} = 0V$		2.0		ns
(Note 8)		$3V_{P-P}, V_{DHV} = +3V, V_{DLV} = 0V$		2.6		
COMPARATOR (driver in high-impe	dance mod	e) (Note 9)				
DC CHARACTERISTICS						
Input Voltage Range			-1.0		+5.2	V
Differential Input Voltage		V _{DUT} - V _{CHV} , V _{DUT} - V _{CLV}	-6.2		+6.2	V
Hysteresis		$V_{CHV_{}} = V_{CLV_{}} = +1.5V$		8		mV
Input Offset Voltage		$V_{DUT_} = +1.5V, V_{COMPHI} = +0.8V, V_{COMPLO} = +0.2V (Note 10)$			±10	mV
Input Offset Temperature Coefficient		(Note 10)		±25		µV/°C
Common-Mode Rejection Ratio	CMRR	V _{DUT} = 0V and +3V (Note 10)	60			dB
Lippority Error		V _{DUT} = +1.5V (Notes 3, 10)			±5	m)/
Linearity Error		V _{DUT} = -1V, +5.2V (Notes 3, 10)			±10	mV
Power-Supply Rejection Ratio	PSRR	V_{DUT} = +1.5V, V_{DD} , V_{SS} , V_{DDSW} , V_{SSSW} supplies independently varied over full range (Note 10)			±5	mV/V
AC CHARACTERISTICS (Note 11)						
Equivalent Input Bandwidth		$V_{DLV_{-}} = 0V$ termination mode, $V_{DUT_{-}} = 1V_{P-P}$, $t_{R} = t_{F} = 500$ ps input, calculated from 10% to 90% redigitization waveform		300		MHz
Prop Delay		V_{DUT} = 1 V_{P-P} , V_{CHV} or V_{CLV} = +0.5V	1.1	2.0	3.3	ns
Prop-Delay Temperature Coefficient		V_{DUT} = 1 V_{P-P} , V_{CHV} or V_{CLV} = +0.5V		2		ps/°C
Prop-Delay Match, t_{LH} to t_{HL}		Absolute value of delta for each comparator, $V_{DUT_} = 1V_{P_P}$		±250		ps

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{DDSW} = +24.6V, V_{SSSW} = -1.25V, V_{COMPHI} = +1V, V_{COMPLO} = 0V, V_{LDV} = 0V, LOAD EN LOW_ = LOAD EN HIGH_ = 0, SWEN = 1, T_J = +70°C with an accuracy of ±15°C. Specification compliance with supply and temperature variations is verified by guard-banding mean shifts of characterization data, unless otherwise noted. All temperature coefficients measured at T_J = +50°C to +90°C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Prop-Delay Skew, Comparators Within Package		Same edges (LH and HL), V _{DUT} _ = 1V _{P-P}		±100		ps
Prop-Delay Dispersions vs.		V_{CHV} or V_{CLV} = 0 to +4.9V, V_{DUT} = 0.2 V_{P-P}		±20		ps
Common-Mode Voltage (Note 12)		V_{CHV} or V_{CLV} = -0.9 to +4.9V, V_{DUT} = 0.2 V_{P-P}		±30		
Prop-Delay Dispersions vs. Overdrive		$V_{DLV_} = 0V$ termination mode, $V_{DUT_} = 1V_{P-P}$, $t_R = t_F = 500ps$ input, 90% (rising edge) and 10% (falling edge) relative to timing at 50% point		±600		ps
Prop-Delay Dispersions vs. Pulse Width		2ns to 23ns pulse width, relative to 12.5ns pulse width		±60		ps
Prop-Delay Dispersions vs. Slew Rate		+0.5V/ns to +2V/ns		±50		ps
LOGIC INPUTS AND OUTPUTS (COI	ИРНІ, СОМ	PLO, CMPH_, CMPL_, V _{BBO})				
Input Voltage Range, V _{COMPHI} and V _{COMPLO}			0		3.6	V
Differential Input Voltage, VCOMPHI - VCOMPLO		$V_{COMPHI} \ge V_{COMPLO}$, CMPH_ and CMPL_ with no load	0		3.6	V
Differential Input Voltage, ^V COMPHI ^{- V} COMPLO		$\label{eq:complusion} \begin{array}{l} V_{COMPHI} \geq V_{COMPLO}, \mbox{ CMPH} \mbox{ and } \\ \mbox{ CMPL} \mbox{ with } 50 \Omega \mbox{ to } V_{TTCMP}, V_{COMPHI} \geq \\ V_{TTCMP} \geq V_{COMPLO} \end{array}$	0		1.0	v
Reference Output, V _{BBO}		Relative to $(V_{COMPHI} + V_{COMPLO})/2$ at $V_{COMPHI} = +1V$ and $V_{COMPLO} = 0V$			±50	mV
Output High-Voltage Offset		I_{OUT} = 0mA, relative to V _{COMPHI} at V _{COMPHI} = +1V			±65	mV
Output Low-Voltage Offset		I_{OUT} = 0mA, relative to V _{COMPLO} at V _{COMPLO} = 0V			±65	mV
Output Resistance, CMPH_ and CMPL_		I _{CMPH_} = I _{CMPL_} = ±10mA, V _{COMPHI} = +1V, V _{COMPLO} = 0V, CMPH_, CMPL_ at high-level output	40	50	60	Ω
Maximum Current Limit, CMPH_ and CMPL_		$V_{COMPHI} = +1.8V, V_{COMPLO} = 0V,$ CMPH_, CMPL_ at high-level output, $V_{FORCE} = 0V, +3.6V$	-15		+15	mA
Maximum Current Limit, V _{BBO}		$V_{COMPHI} = +1V$, $V_{COMPLO} = 0V$, at $V_{BBO} = +0.5V$ output	-1		+1	mA

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{DDSW} = +24.6V, V_{SSSW} = -1.25V, V_{COMPHI} = +1V, V_{COMPLO} = 0V, V_{LDV} = 0V, LOAD EN LOW = LOAD EN HIGH = 0, SWEN = 1, T_J = +70°C with an accuracy of ±15°C. Specification compliance with supply and temperature variations is verified by guard-banding mean shifts of characterization data, unless otherwise noted. All temperature coefficients measured at T_J = +50°C to +90°C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Rise/Fall Time, CMPH_ and CMPL_		20% to 80%, V _{COMPHI} = +1V, V _{COMPLO} = 0V, load = T-line, $50\Omega > 1$ ns, 50Ω to GND		0.7		ns
PASSIVE LOAD (driver in high-imp	edance mod	e) (Note 13)				
DC CHARACTERISTICS $R_{DUT} \ge 1$	0MΩ, unless	otherwise noted)				
LDV_ Voltage Range			-1.0		+5.2	V
Gain		Measured at 0V and +3V	0.99		1.01	V/V
Gain Temperature Coefficient		Measured at 0V and +3V		50		ppm/°C
Offset		$V_{LDV_{}} = +1.5V$			±100	mV
Offset Temperature Coefficient				0.02		mV/°C
Power Supply Principalian Patio	PSRR	V_{DD} and V_{SS} independently varied over full range, $V_{LDV_}$ = +1.5V	-18		+18	mV/V
Power-Supply Rejection Ratio	Fonn	V_{DDSW} and V_{SSSW} independently varied over full range, V_{LDV} = +1.5V	-10		+10	mV/V
Output Resistance Tolerance— High Value		$I_{DUT_} = \pm 2mA, V_{LDV_} = +1.5V$	710	750	790	Ω
Output Resistance Tolerance— Low Value		$I_{DUT_} = \pm 4mA, V_{LDV_} = +1.5V$	335	375	415	Ω
Output Resistance, Tolerance— High Value (V _{DDSW} = +15V)		$I_{DUT_} = \pm 2mA, V_{LDV_} = +1.5V$	735	800	865	Ω
Output Resistance, Tolerance— Low Value (V _{DDSW} = +15V)		$I_{DUT_} = \pm 4$ mA, $V_{LDV_} = +1.5V$	360	425	490	Ω
		0 to +3V (relative to +1.5V)		±10		0/
Switch Resistance Variation		Full range (relative to +1.5V)		±30		- %
Switch Resistance Variation		0 to +3V (relative to +1.5V)		±10		0/
$(V_{DDSW} = +15V)$		Full range (relative to +1.5V)		±30		- %
		$V_{LDV_{}} = -1V, V_{DUT_{}} = +5V$	-4			
Maximum Output Current		$V_{LDV} = +5V, V_{DUT} = -1V$			+4	- mA
Linearity Error, Full Range		Measured at -1V, +1.5V, and +5.2V (Notes 3, 14)			±25	mV
AC CHARACTERISTICS		·				
Settling Time, LDV_ to Output		$V_{LDV_}$ = -1V to +5V step, $R_{DUT_}$ = 100k Ω (Note 15)		0.5		μs
Output Transient Response		V_{LDV} = +1.5V, V_{DUT} = -1V to +5V square wave at 1MHz, R_{DUT} = 50k Ω		20		ns

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{DDSW} = +24.6V, V_{SSSW} = -1.25V, V_{COMPHI} = +1V, V_{COMPLO} = 0V, V_{LDV} = 0V, LOAD EN LOW_ = LOAD EN HIGH_ = 0, SWEN = 1, T_J = +70°C with an accuracy of ±15°C. Specification compliance with supply and temperature variations is verified by guard-banding mean shifts of characterization data, unless otherwise noted. All temperature coefficients measured at T_J = +50°C to +90°C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PMU SWITCHES (FORCE, SENSE, P	MU_) (Note	13)				
Voltage Range			-1.0		+24	V
Voltage Range ($V_{DDSW} = +15V$)			-1.0		+10	V
Force Switch Resistance		$V_{FORCE} = +1.5V, I_{PMU} = \pm 10mA$			40	Ω
Force Switch Resistance (V _{DDSW} = +15V)		$V_{FORCE} = +1.5V, I_{PMU} = \pm 10mA$			47	Ω
Force Path Current		V_{PMU} = -1V to +24V, V_{FORCE} = -1V to +24V			±30	mA
Force Path Current (V _{DDSW} = +15V)		V_{PMU} = -1V to +10V, V_{FORCE} = -1V to +10V			±30	mA
Force Quitab Desistance Variation		OV to +3V (relative to $V_{FORCE} = +1.5V$)		±10		0/
Force Switch Resistance Variation		Full range (Note 16)		±40		%
Force Switch Resistance Variation		0V to +3V (relative to $V_{FORCE} = +1.5V$)		±15		%
$(V_{DDSW} = +15V)$		Full range (Note 16)		±45		70
Sense Switch Resistance		$V_{SENSE} = +1.5V$, $I_{PMU} = \pm 0.4$ mA	650	1000	1350	Ω
Sense Switch Resistance (V _{DDSW} = +15V)		$V_{\text{SENSE}} = +1.5V$, $I_{\text{PMU}} = \pm 0.4$ mA	850	1250	1800	Ω
Sense Switch Resistance Variation		Relative to +11.5V, full range		±40		%
Sense Switch Resistance Variation (V _{DDSW} = +15V)		Relative to +4.5V, full range		±40		%
PMU_ Capacitance		Force and sense switches open		6		рF
FORCE Capacitance		All channels of force and sense switches open		36		pF
SENSE Capacitance		All channels of force and sense switches open		8		pF
FORCE External Capacitance		Allowable external capacitance		2		nF
SENSE External Capacitance		Allowable external capacitance		1		nF
		Connect, PMU_ = +5V, FORCE or SENSE 10M Ω II 8pF		10		
FORCE and SENSE Switching Speed		Disconnect, PMU_ = +5V, FORCE or SENSE 10M Ω II 8pF		100		μs
PMU_Leakage		SWEN = 0, or PMU EN_ = 0, $V_{FORCE_} = V_{SENSE_} = -1V$ to +24V		±0.5	±5	nA
PMU_ Leakage (V _{DDSW} = +15V)		SWEN = 0, or PMU EN_ = 0, $V_{FORCE_} = V_{SENSE_} = -1V$ to +10V		±0.5	±5	nA

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{DDSW} = +24.6V, V_{SSSW} = -1.25V, V_{COMPHI} = +1V, V_{COMPLO} = 0V, V_{LDV} = 0V, LOAD EN LOW = LOAD EN HIGH = 0, SWEN = 1, T_J = +70°C with an accuracy of ±15°C. Specification compliance with supply and temperature variations is verified by guard-banding mean shifts of characterization data, unless otherwise noted. All temperature coefficients measured at T_J = +50°C to +90°C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
TOTAL FUNCTION		1			
DUT_					
Leakage, High-Impedance Mode		Passive load switches open, pin switch short, $V_{DUT_}$ = +5.2V, $V_{CLV_}$ = $V_{CHV_}$ = -1V, $V_{DUT_}$ = -1V, $V_{CLV_}$ = $V_{CHV_}$ = +5.2V, full range		2	μΑ
Low-Leakage Recovery Time		Confirmed simulation only (Note 17)		10	μs
Combined Capacitance		High-impedance mode, passive load switches open, pin switch short		10	pF
Load Resistance Range		(Note 18)		1	GΩ
Load Capacitance Range		(Note 18)		12	nF
Leakage, Pin Switch Off Mode		-1V to +24V, pin switch open		±1 ±10	nA
Leakage, Pin Switch Off Mode (V _{DDSW} = +15V)		-1V to +10V, pin switch open		±1 ±10	nA
Pin Switch Switching Speed		Connect or disconnect, $V_{DH_} = +5V$, DUT_ = 10M Ω 8pF		10	μs
VOLTAGE REFERENCE INPUTS (I	DHV_, DLV_,	CHV_, CLV_, LDV_, COMPHI, COMPLO)			
Input Bias Current				±100	μA
SINGLE-ENDED CONTROL INPUT	S (DATA_, RO	CV_)			
Input High Voltage			V _{BBI} + 0.2	3.2	V
Input Low Voltage			0	V _{BBI} - 0.2	V
Voltage Between Inputs and V_{BBI}			V _{BBI} - 1.6	V _{BBI} + 1.6	V
Input Offset Voltage				±50	mV
Input Bias Current				±100	μA
REFERENCE INPUT (V _{BBI})					
Input Voltage Range			0.2	3.0	V
Input Bias Current				±100	μA
DIGITAL INPUTS (LD, DIN, SCLK,	CS)	•			
Input High Voltage		(Note 19)	2/3 (V _L)	VL	V
Input Low Voltage		(Note 19)	-0.1	1/3 (V _L)	V
Input Bias Current				±1	μA
SERIAL-DATA OUTPUT (DOUT)		·			
Output High Voltage		I _{OH} = -1mA	V _L - 0.4	V _L + 0.1	V
Output Low Voltage		$I_{OL} = +1mA$	V _{DGND} - 0.	1 V _{DGND} + 0.4	V
Output Rise-and-Fall Time		$C_L = 10 pF$		5.0	ns

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{DDSW} = +24.6V, V_{SSSW} = -1.25V, V_{COMPHI} = +1V, V_{COMPLO} = 0V, V_{LDV} = 0V, LOAD EN LOW = LOAD EN HIGH = 0, SWEN = 1, T_J = +70°C with an accuracy of ±15°C. Specification compliance with supply and temperature variations is verified by guard-banding mean shifts of characterization data, unless otherwise noted. All temperature coefficients measured at T_J = +50°C to +90°C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Low to DOUT Delay		$C_L = 10 pF$	4		45	ns
SERIAL-INTERFACE TIMING		·				
SCLK Frequency					20	MHz
SCLK Pulse-Width High	tCH		20			ns
SCLK Pulse-Width Low	t _{CL}		20			ns
CS Low to SCLK High Setup	t _{CSS0}		5			ns
SCLK High to \overline{CS} Low Hold	t _{CSH0}		0			ns
CS High to SCLK High Setup	t _{CSS1}		20			ns
SCLK High to $\overline{\text{CS}}$ High Hold	tCSH1		20			ns
DIN to SCLK High Setup	t _{DS}		10			ns
DIN to SCLK High Hold	t _{DH}		10			ns
$\overline{\text{CS}}$ High to $\overline{\text{LD}}$ Low Hold	tCSHLD		20			ns
CS High Pulse Width	t _{CSWH}		20			ns
LD Low Pulse Width	t _{LDW}		20			ns
V_L Rising to \overline{CS} Low		Power-on delay		2		μs
TEMPERATURE SENSOR	I					
Nominal Voltage		$T_J = +70^{\circ}C, R_L \ge 10M\Omega$		3.43		V
Temperature Coefficient				+10		mV/°C
Output Resistance				17		kΩ
POWER SUPPLIES						•
Positive Supply Voltage	V _{DD}	(Note 20)	7.6	8	8.4	V
Negative Supply Voltage	V _{SS}	(Note 20)	-5.25	-5	-4.75	V
Logic Supply Voltage	VL		2.3	3	3.6	V
Switch Positive Supply Voltage	V _{DDSW}	(Notes 20, 21)	24.1	24.6	25.1	V
Switch Positive Supply Voltage	V _{DDSW}	(Notes 20, 22)	14.5	15	15.5	V
Switch Negative Supply Voltage	V _{SSSW}	(Note 20)	-1.4	-1.25	-1.1	V
Positive Supply Current	I _{DD}	f _{OUT} = 0MHz		105	120	mA
Negative Supply Current	I _{SS}	f _{OUT} = 0MHz		105	120	mA
Logic Supply Current	١L	f _{OUT} = 0MHz		1	4	mA
Switch Positive Supply Current	IDDSW	f _{OUT} = 0MHz		2	6	mA
Switch Negative Supply Current	I _{SSSW}	f _{OUT} = 0MHz		1.5	5	mA
Static Power Dissipation		f _{OUT} = 0MHz		1.35	1.56	W
Operating Power Dissipation		f _{OUT} = 100Mbps (Note 23)		1.45		W

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{DDSW} = +24.6V, V_{SSSW} = -1.25V, V_{COMPHI} = +1V, V_{COMPLO} = 0V, V_{LDV} = 0V, LOAD EN LOW_ = LOAD EN HIGH_ = 0, SWEN = 1, T_J = +70°C with an accuracy of ±15°C. Specification compliance with supply and temperature variations is verified by guard-banding mean shifts of characterization data, unless otherwise noted. All temperature coefficients measured at T_J = +50°C to +90°C, unless otherwise noted.) (Note 1)$

- **Note 1:** All minimum and maximum DC, rise/fall time at +3V swing tests are 100% production tested. The propagation-delay data to output and propagation-delay comparator tests are guaranteed by design. All specifications are with DUT_ and PMU_ electrically isolated, unless otherwise noted.
- **Note 2:** Resistance measurements are made using ± 2.5 mA current changes in the loading instrument about the noted value. Absolute value of the difference in measured resistance over the specified range, tested separately for each current polarity. Test conditions are at I_{DUT} = ± 1 mA, ± 12 mA, and ± 40 mA, respectively.
- **Note 3:** Relative to a straight line through 0V and +3V.
- Note 4: $V_{DHV} = +3V$, $V_{DLV} = 0V$, unless otherwise specified. DATA_ and RCV_ V_{HIGH} = +2V, $V_{LOW} = 1V$, $V_{BBI} = +1.5V$.
- **Note 5:** Current supplied for a minimum of 10ns. Verified to be greater than or equal to DC drive current by design and characterization.
- **Note 6:** Undershoot is any reflection of the signal back towards its starting voltage after it has reached 90% of its swing. Preshoot is any aberration in the signal before it reaches 10% of its swing.
- **Note 7:** At the minimum voltage swing, undershoot is less than 20%. DHV_ and DLV_ references are adjusted to result in the specified swing.
- **Note 8:** At this pulse width, the output reaches at least 90% of its nominal (DC) amplitude. The pulse width is measured at DATA_.
- Note 9: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.
- **Note 10:** Measured by using a servo to locate comparator thresholds.
- **Note 11**: Unless otherwise noted, all propagation delays are measured at 40MHz, V_{DUT} = 0 to +1V, V_{CHV} = V_{CLV} = +0.5V, t_{R} = t_{F} = 500ps, Z_{S} = 50 Ω , driver in high-impedance mode. Comparator outputs are terminated with 50 Ω to GND. Measured from V_{DUT} crossing calibrated CHV_/CLV_ threshold to midpoint of nominal comparator output swing.
- **Note 12:** V_{DUT} = 200m V_{P-P} . Propagation delay is compared to a reference time at +2V.
- Note 13: Operating output voltage/current range of passive load and PMU force switch at +24.6V supply. See Figure 1.
- **Note 14:** LOAD EN LOW_ = LOAD EN HIGH_ = 1.
- Note 15: Waveform settles to within 5% of final value into 100 k Ω load.
- Note 16: I_{PMU} = ±2mA at V_{FORCE} = -1V, +11.5V, and +24V. Percent variation relative to value calculated at V_{FORCE} = +11.5V.
- Note 17: Time to return to the specified maximum leakage after a +3V, +4V/ns step at DUT_.
- Note 18: Load at end of 2ns transmission line; for stability only, AC performance could be degraded.
- Note 19: The driver meets all of its timing specifications at the specified digital input voltages.
- **Note 20:** Specifications are simulated and characterized over the full power-supply range. Production tests are performed with power supplies at typical values.
- **Note 21:** DUT_ (pin switch off), PMU_ maximum voltage is +24V.
- **Note 22:** DUT_ (pin switch off), PMU_ maximum voltage is +10V.
- **Note 23:** All channels driven at $3V_{P-P}$, load = 2ns, 50Ω transmission line terminated with 3pF.

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

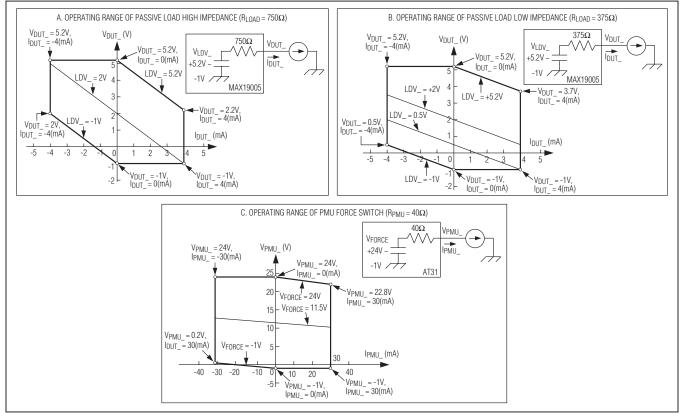
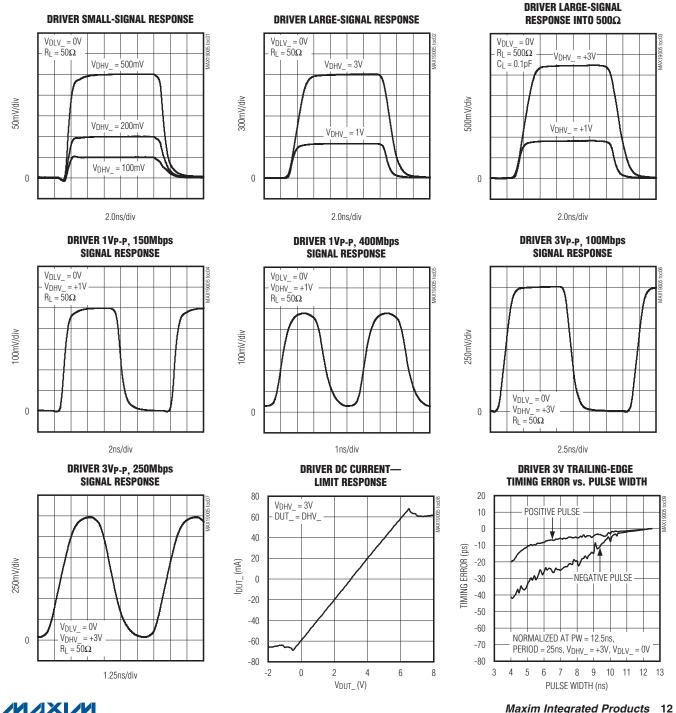
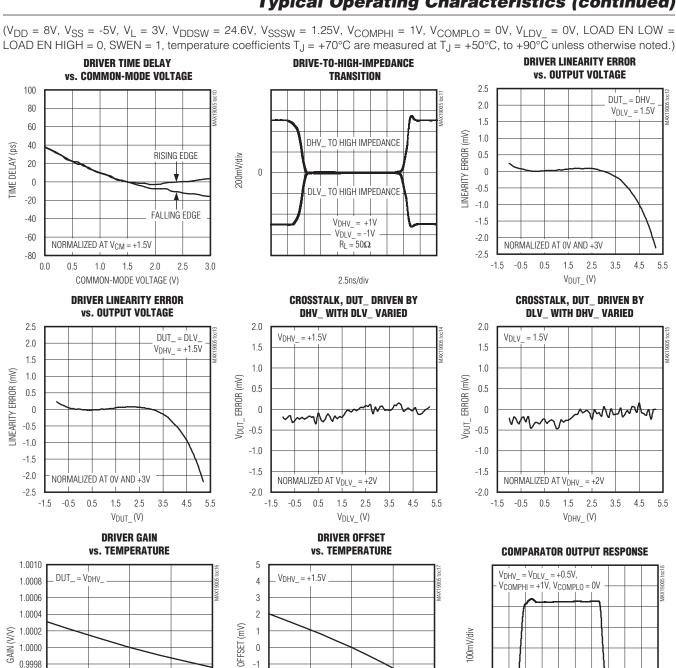



Figure 1. Operating Ranges

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators


Typical Operating Characteristics

 $(V_{DD} = 8V, V_{SS} = -5V, V_L = 3V, V_{DDSW} = 24.6V, V_{SSSW} = 1.25V, V_{COMPHI} = 1V, V_{COMPLO} = 0V, V_{LDV} = 0V, LOAD EN LOW = LOAD EN HIGH = 0, SWEN = 1, temperature coefficients T_J = +70°C are measured at T_J = +50°C to +90°C, unless otherwise noted.)$

Maxim Integrated Products 12

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

-1

-2

-3

-4

-5

50

NORMALIZED AT T_J = +70°C

70

TEMPERATURE (°C)

80

90

60

0.9998

0.9996

0.9994

0 9992

0.9990

50

NORMALIZED AT T_J = +70°C

70

TEMPERATURE (°C)

60

80

90

Typical Operating Characteristics (continued)

Maxim Integrated Products 13

0

 $R_{COMP} = 50\Omega$

2.0ns/div

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

(V_{DD} = 8V, V_{SS} = -5V, V_L = 3V, V_{DDSW} = 24.6V, V_{SSSW} = 1.25V, V_{COMPHI} = 1V, V_{COMPLO} = 0V, V_{LDV} = 0V, LOAD EN LOW = LOAD EN HIGH = 0, SWEN = 1, temperature coefficients $T_J = +70^{\circ}$ C are measured at $T_J = +50^{\circ}$ C, to +90°C unless otherwise noted.) **COMPARATOR OFFSET COMPARATOR OFFSET COMPARATOR WAVEFORM TRACKING** vs. COMMON-MODE VOLTAGE vs. TEMPERATURE 0.5 2.0 800 $V_{CHV} = +1.5V$ 04 1.5 600 VDUT FALLING 0.3 1.0 V_{DUT}_RISING (IMING VARIATION (ps) 400 0.2 0.5 (hm) OFFSET (mV) 0.1 200 **OFFSET** 0 0 0 -0.1 -0.5 -0.2 -200 -1.0 -0.3 -400 VDUT_=0V TO +1V, 2ns/V, DRIVE VDLV_=0V, NORMALIZED AT 50% -1.5 -0.4 NORMALIZED AT VCM = +1.5V NORMALIZED AT T.I = +70°C -0.5 -2.0 -600 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 55 50 60 70 80 90 0 20 40 60 80 100 TEMPERATURE (°C) COMMON-MODE VOLTAGE (V) **REFERENCE LEVEL (%) COMPARATOR RESPONSE COMPARATOR TIMING VARIATION COMPARATOR TIMING VARIATION** vs. HIGH SLEW-RATE OVERDRIVE vs. PULSE WIDTH vs. INPUT SLEW RATE 40 100 V_{DUT} = 0V T0 +1V, 2ns/V, DRIVE V_{DLV} = 0V, HIGH-IMPEDANCE MODE 1V SWING INPUT. NORMALIZED COMPARATOR 80 NORMALIZED AT SR = 1V/ns 20 RESPONSE SWING POSITIVE PULSE VCOMPHI = +1V, VCOMPLO = 0V, (bs) 60 $R_{COMP} = 50\Omega$ (bs) 0 **FRAILING-EDGE ERROR** TIMING VARIATION 40 VDUT_FALLING 200mV/div -20 20 -40 0 NEGATIVE PULSE -60 -20 NORMALIZED AT PW = 12.5ns, V_{DUT}_RISING 0 -80 HIGH-IMPEDANCE MODE, 1VP-P 2V/ns -40 $V_{COMPHI} = +1V, V_{COMPLO} = 0V, R_{COMP} = 50\Omega$ -100 -60 2 3 4 5 6 7 8 9 10 11 12 13 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 1 2.0ns/div PULSE WIDTH (ns) SLEW RATE (V/ns) **PASSIVE LOAD HIGH RESISTOR PASSIVE LOAD OFFSET** PASSIVE LOAD LOW RESISTOR vs. TEMPERATURE vs. VOLTAGE vs. VOLTAGE 900 500 500 DRIVER SET TO HIGH-IMPEDANCE MODE DRIVER SET TO HIGH-IMPEDANCE MODE. DRIVER SET TO HIGH-IMPEDANCE MODE, 400 $I_{DUT} = \pm 2mA$ $I_{DUT} = \pm 4mA$ VI DV = 1.5V, NORMALIZED AT +70°C 850 300 450 200 Resistance (Ω) 800 RESISTANCE (Ω) 400 OFFSET (µV) 100 750 0 350 -100

700

650

600

90

80

-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 55

VLDV_(V)

-200 -300

-400

-500

50

60

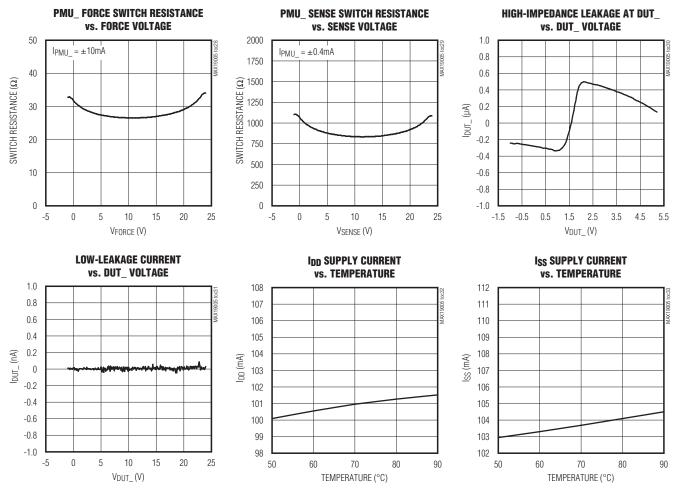
70

TEMPERATURE (°C)

Typical Operating Characteristics (continued)

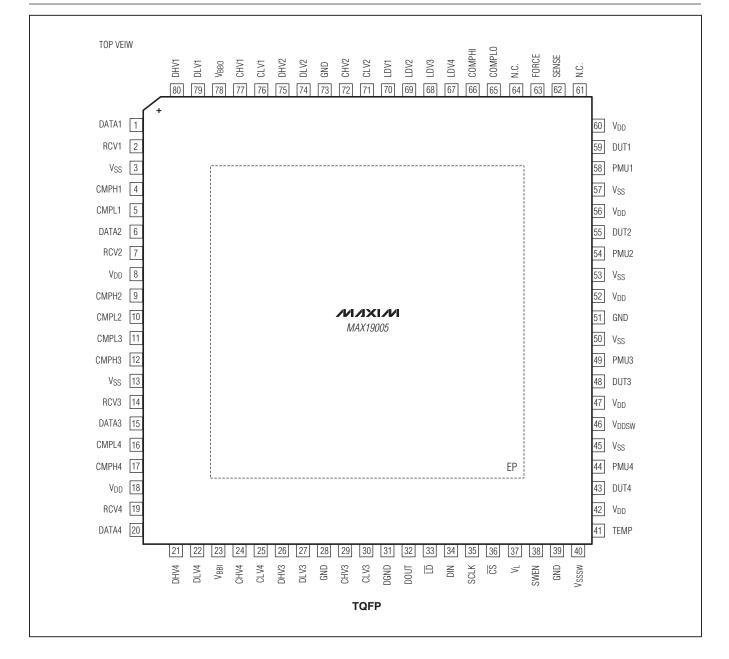
Maxim Integrated Products 14

VLDV_(V)


300

250

-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 55


Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

Typical Operating Characteristics (continued)(VDD = 8V, VSS = -5V, VL = 3V, VDDSW = 24.6V, VSSSW = 1.25V, VCOMPHI = 1V, VCOMPLO = 0V, VLDV_ = 0V, LOAD EN LOW = LOADEN HIGH = 0, SWEN = 1, temperature coefficients TJ = +70°C are measured at TJ = +50°C, to +90°C unless otherwise noted.)

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

Pin Configuration

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

Pin Description

PIN	NAME	FUNCTION
1	DATA1	Channel 1 Multiplexer Control Input. Selects the driver 1 input from DHV1 or DLV1 in drive mode. See Table 1 and Figure 2.
2	RCV1	Channel 1 Multiplexer Control Input. Sets the channel 1 mode to drive or receive. See Table 1 and Figure 2.
3, 13, 45, 50, 53, 57	V _{SS}	Negative Power-Supply Input
4	CMPH1	Channel 1 High-Side Comparator Output
5	CMPL1	Channel 1 Low-Side Comparator Output
6	DATA2	Channel 2 Multiplexer Control Input. Selects the driver 2 input from DHV2 or DLV2 in drive mode. See Table 1 and Figure 2.
7	RCV2	Channel 2 Multiplexer Control Input. Sets the channel 2 mode to drive or receive. See Table 1 and Figure 2.
8, 18, 42, 47, 52, 56, 60	V _{DD}	Positive Power-Supply Input
9	CMPH2	Channel 2 High-Side Comparator Output
10	CMPL2	Channel 2 Low-Side Comparator Output
11	CMPL3	Channel 3 Low-Side Comparator Output
12	CMPH3	Channel 3 High-Side Comparator Output
14	RCV3	Channel 3 Multiplexer Control Input. Sets the channel 3 mode to drive or receive. See Table 1 and Figure 2.
15	DATA3	Channel 3 Multiplexer Control Input. Selects the driver 3 input from DHV3 or DLV3 in drive mode. See Table 1 and Figure 2.
16	CMPL4	Channel 4 Low-Side Comparator Output
17	CMPH4	Channel 4 High-Side Comparator Output
19	RCV4	Channel 4 Multiplexer Control Input. Sets the channel 4 mode to drive or receive. See Table 1 and Figure 2.
20	DATA4	Channel 4 Multiplexer Control Input. Selects driver 4 input from DHV4 or DLV4 in drive mode. See Table 1 and Figure 2.
21	DHV4	Channel 4 Driver High-Voltage Input
22	DLV4	Channel 4 Driver Low-Voltage Input
23	V _{BBI}	DATA_/RCV_ Threshold Voltage Input
24	CHV4	Channel 4 High-Side Comparator Threshold Voltage Input
25	CLV4	Channel 4 Low-Side Comparator Threshold Voltage Input
26	DHV3	Channel 3 Driver High-Voltage Input
27	DLV3	Channel 3 Driver Low-Voltage Input
28, 39, 51, 73	GND	Analog Ground
29	CHV3	Channel 3 High-Side Comparator Threshold Voltage Input
30	CLV3	Channel 3 Low-Side Comparator Threshold Voltage Input
31	DGND	Digital Ground Connection

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

FUNCTION PIN NAME DOUT 32 Serial-Interface Data Output Load Input. Latches data from the serial input register to the control register on rising edge. 33 LD Transparent when low. 34 DIN Serial-Interface Data Input SCLK Serial Clock 35 36 CS Chip Select 37 Logic Power-Supply Input V_{L} 38 SWEN PMU Switch and Pin Switch Enable Input 40 PMU Switch and Pin Switch Negative Power-Supply Input VSSSW 41 TEMP Temperature Sensor Output Channel 4 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 4. 43 DUT4 PMU4 Channel 4 Parametric Measurement Unit Connection. PMU switch I/O node for channel 4. 44 Positive PMU Switch and Pin Switch Power-Supply Input 46 VDDSW Channel 3 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 3. 48 DUT3 PMU3 Channel 3 Parametric Measurement Unit Connection. PMU switch I/O node for channel 3. 49 PMU2 Channel 2 Parametric Measurement Unit Connection. PMU switch I/O node for channel 2. 54 DUT2 Channel 2 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 2. 55 Channel 1 Parametric Measurement Unit Connection. PMU switch I/O node for channel 1. 58 PMU1 59 DUT1 Channel 1 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 1. 61,64 N.C. No Connection. Not internally connected. 62 SENSE **PMU Sense Connection** FORCE **PMU Force Connection** 63 65 COMPLO Comparator Output Low-Voltage Reference Input Comparator Output High-Voltage Reference Input COMPHI 66 IDV4 Channel 4 Load Voltage Input 67 68 LDV3 Channel 3 Load Voltage Input 69 LDV2 Channel 2 Load Voltage Input 70 LDV1 Channel 1 Load Voltage Input CLV2 Channel 2 Low-Side Comparator Threshold Voltage Input 71 72 CHV2 Channel 2 High-Side Comparator Threshold Voltage Input 74 DLV2 Channel 2 Driver Low-Voltage Input 75 DHV2 Channel 2 Driver High-Voltage Input 76 CLV1 Channel 1 Low-Side Comparator Threshold Voltage Input 77 CHV1 Channel 1 High-Side Comparator Threshold Voltage Input 78 Comparator Output Threshold Voltage Output VBBO Channel 1 Driver Low-Voltage Input 79 DLV1 DHV1 Channel 1 Driver High-Voltage Input 80 EΡ Exposed Pad. Leave unconnected or connect to GND ____

Pin Description (continued)

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

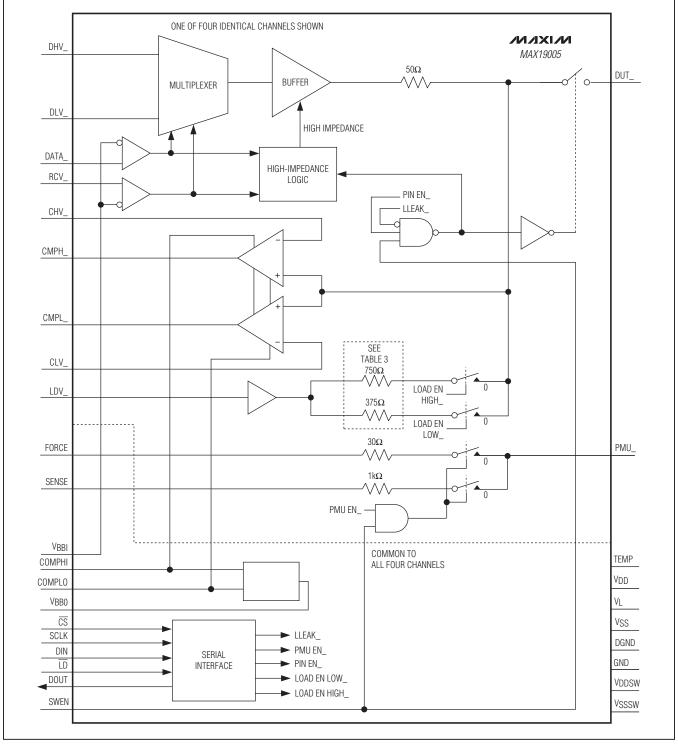


Figure 2. Block Diagram

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

Detailed Description

The MAX19005 is a four-channel, ultra-low-power, pin-electronics IC for automated test equipment that includes, for each channel, a two-level pin driver, a window comparator, a passive load, and a Kelvin instrument connection (Figure 2). All functions feature a -1V to +5.2V operating range and the drivers include a high-impedance mode. The comparators feature programmable output voltages, allowing optimization for different CMOS interface standards. The loads have selectable output resistance for optimizing DUT_ current loading. The Kelvin paths allow accurate connection of an instrument with ±25mA source/sink capability. Additionally, the IC offers a low-leakage mode that reduces DUT_ leakage current to less than 20nA.

Each of the four channels feature single-ended CMOScompatible inputs (DATA_ and RCV_) for control of the driver signal path (Figure 3). The IC mode operations

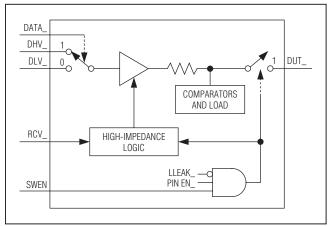


Figure 3. Multiplexer and Driver Channel

Table 1. Component List

are programmed through a 3-wire, low-voltage CMOS-compatible serial interface.

The driver input is a high-speed multiplexer that selects one of two voltage inputs: DHV_ and DLV_. This switching is controlled by high-speed inputs DATA_ and RCV_. DATA_ and RCV_ are single-ended inputs with threshold levels (VBBI). Each channel's threshold levels are independently buffered to minimize crosstalk.

DUT_ can be toggled at high speed between the buffer output and high-impedance mode, or it can be placed into low-leakage mode (Figure 3, Table 1). High-speed input RCV_ and mode-control bit LLEAK_ control these modes. In high-impedance mode, the bias current at DUT_ is less than 2μ A over the -1V to +5.2V range, while the node maintains its ability to track high-speed signals. In low-leakage mode, the bias current at DUT_ is further reduced to less than 20nA, and signal tracking slows.

The nominal driver output resistance is 49.5Ω .

Comparators

The IC provides two independent high-speed comparators for each channel. Each comparator has one input connected internally to DUT_ and the other input connected to either CHV_ or CLV_ (Figure 2). Comparator outputs are a logical result of the input conditions, as indicated in Table 2.

The comparator output voltages are easily interfaced to a wide variety of logic standards. Use buffered inputs COMPHI and COMPLO to set the high and low output voltages. For correct operation, COMPHI should be greater than or equal to COMPLO. The comparator 50 Ω output impedance provides source termination (Figure 4). VBBO output voltage is provided, (COMPHI + COMPLO)/2.

EXTERN	EXTERNAL PIN CONNECTIONS			l register Rol Bits	DRIVER STATUS	PIN SWITCH STATUS
RCV_	DATA_	SWEN	PIN EN_	LLEAK_		314103
0	0	1	1	0	DUT_ = DLV_	Short
0	1	1	1	0	DUT_ = DHV_	Short
1	Х	1	1	0	High impedance	Short
Х	Х	0	Х	0	OV	Open
Х	Х	Х	0	0	OV	Open
Х	Х	Х	Х	1	0V (low power)	Open

X = Don't care.

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

Table 2. Comparator Logic

CONDITION		CMPH_	CMPL_
DUT_ < CHV_	DUT_ < CLV_	0	0
DUT_ < CHV_	DUT_ > CLV_	0	1
DUT_ > CHV_	DUT_ < CLV_	1	0
DUT_ > CHV_	DUT_ > CLV_	1	1

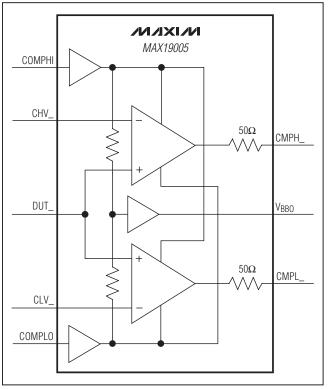


Figure 4. Complementary 50Ω Comparator Outputs

Passive Load

The IC channels each feature a passive load consisting of a buffered input voltage (LDV_) connected to DUT_ through two resistive paths (Figure 2). Each path connects to DUT_ individually by a switch controlled through the serial interface. Programming options include none (load disconnected), either, or both paths connected. The loads facilitate fast open/short testing in conjunction with the comparator, and pullup of open-drain DUT_ outputs. See Table 3.

Table 3. Passive Load Logic

INTERNAL CO	ONTROL BITS		
LOAD EN HIGH_	LOAD EN LOW_	PASSIVE LOAD STATUS	
0	0	Disconnect	
0	1	375Ω load connect	
1	0	750 Ω load connect	
1	1	750 Ω II 375 Ω load connect	

Table 4. PMU Switch Logic

EXTERNAL CONNECTION	INTERNAL CONTROL BIT	PMU SWITCH STATUS	
SWEN	PMU EN_	0	
0	Х	Open	
1	0	Open	
1	1	Short	

X = Don't care.

Parametric Switches

Each of the four IC channels provide force-and-sense paths for connection of a PMU or other DC resource to the device-under-test (Figure 2). Both force and sense switches are simultaneously controlled through the serial interface providing maximum application flexibility. PMU_ and DUT_ are provided on separate pins, allowing designs that do not require the parametric switch feature to avoid the added capacitance of PMU_. It also allows PMU_ to connect to DUT_, either directly or with an impedance-matching network. See Table 4.

Low-Leakage Mode (LLEAK_)

Asserting LLEAK_ through the serial port places the IC into a very-low-leakage state. See the <u>Electrical</u> <u>Characteristics</u> section. This mode is convenient for making IDDQ and PMU measurements without the need for an output disconnect relay. LLEAK_ control is independent for each channel.

When DUT_ is driven with a high-speed signal while LLEAK_ is asserted, the leakage current momentarily increases beyond the limits specified for normal operation. The low-leakage recovery specification in the *Electrical Characteristics* section indicates device behavior under this condition.

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

Temperature Monitor

Each device supplies a single temperature output signal (TEMP) that asserts a nominal +3.43V output voltage at a +70°C (343K) die temperature. The output voltage increases proportionately with temperature at a rate of 10mV/°C. The temperature sensor output impedance is 17k Ω (typ).

Serial Interface and Device Control

A CMOS-compatible serial interface controls the IC modes (Figure 5). Control data flow into a 12-bit shift register (LSB first) and are latched when \overline{CS} is taken high. Data from the shift register are then loaded to the per-channel control latches, as determined by bits D[8:11] (Figure 5 and Table 5). The latches contain the five mode bits for each channel of the device. The mode bits, in conjunction with external inputs DATA_ and

RCV_, manage the features of each channel. Transfer data asynchronously from the input registers to the channel registers by forcing $\overline{\text{LD}}$ low. With $\overline{\text{LD}}$ always low, data transfer on the rising edge of $\overline{\text{CS}}$.

Heat Removal

With adequate airflow, no external heat sinking is needed under most operating conditions. If excess heat must be dissipated through the exposed pad, solder it to circuitboard copper. The exposed pad must be either left unconnected, isolated, or connected to GND.

Power Minimization

To minimize power consumption, activate only the needed channels. Each channel placed in low-leakage mode saves approximately 240mW.

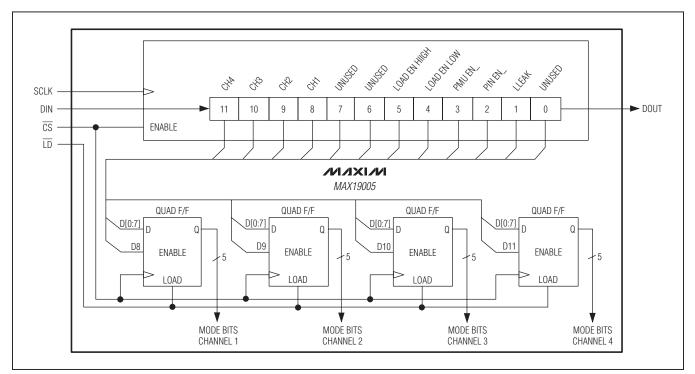


Figure 5. Serial Interface

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

Table 5. Control Register Bits

BIT NAME	FUNCTION	BIT STATE		POWER-UP	
		0	1	STATE	
D0	—	Unused	Х	Х	0
D1	LLEAK	Assert low-leakage mode	Active	Low leakage	0
D2	PIN EN	Enable pin switch	Disabled	Enabled	0
D3	PMU EN	Enable PMU switch	Disabled	Enabled	0
D4	LOAD EN LOW	Enable low load resistor	Disabled	Enabled	0
D5	LOAD EN HIGH	Enable high load resistor	Disabled	Enabled	0
D6	—	Unused	Х	Х	0
D7		Unused	Х	Х	0
D8	CH1	Update channel 1 control register	Disabled	Enabled	1
D9	CH2	Update channel 2 control register	Disabled	Enabled	1
D10	CH3	Update channel 3 control register	Disabled	Enabled	1
D11	CH4	Update channel 4 control register	Disabled	Enabled	1

X = Don't care.

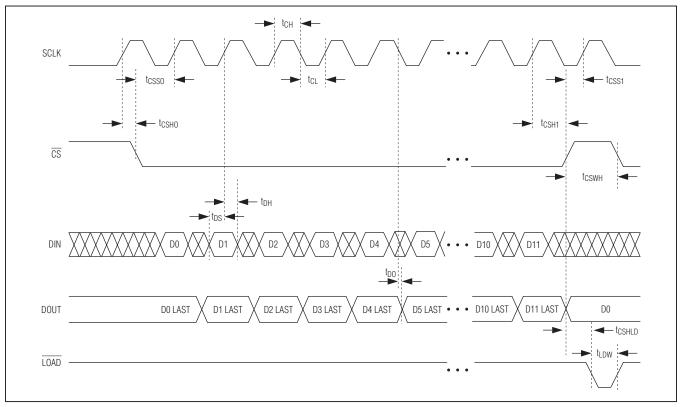


Figure 6. Serial-Interface Timing

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

Ordering Information

PART	TEMP	PIN-	HEAT
	RANGE	PACKAGE	EXTRACTION
MAX19005CCS+	0°C to +70°C	80 TQFP-EP*	Bottom

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
80 TQFP-EP	C80E+4	<u>21-0115</u>	<u>90-0152</u>

Quad, Ultra-Low-Power, 200Mbps ATE Drivers/Comparators

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	12/11	Initial release	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

Maxim is a registered trademark of Maxim Integrated Products, Inc.

25