

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX19996 single, high-linearity downconversion mixer provides 8.7dB conversion gain, +24.5dBm IIP3, and 9.6dB noise figure for 2000MHz to 3000MHz WCS, LTE, WiMAX™, and MMDS wireless infrastructure applications. With an 1800MHz to 2550MHz LO frequency range, this particular mixer is ideal for low-side LO injection receiver architectures. High-side LO injection is supported by the MAX19996A, which is pin-for-pin and functionally compatible with the MAX19996.

In addition to offering excellent linearity and noise performance, the MAX19996 also yields a high level of component integration. This device includes a double-balanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for singleended RF and LO inputs. The MAX19996 requires a nominal LO drive of 0dBm, and supply current is typically 230mA at $V_{CC} = +5.0V$ or 149.5mA at $V_{CC} = +3.3V$.

The MAX19996 is pin compatible with the MAX19996A 2300MHz to 3900MHz mixer. The device is also pin similar with the MAX9984/MAX9986 400MHz to 1000MHz mixers and the MAX9993/MAX9994/MAX9996 1700MHz to 2200MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands.

The MAX19996 is available in a compact 5mm x 5mm, 20-pin thin QFN lead-free package with an exposed pad. Electrical performance is guaranteed over the extended -40°C to +85°C temperature range.

Applications

2.3GHz WCS Base Stations 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems

WiMAX is a trademark of WiMAX Forum.

Features

- ♦ 2000MHz to 3000MHz RF Frequency Range
- ♦ 1800MHz to 2550MHz LO Frequency Range
- ♦ 50MHz to 500MHz IF Frequency Range
- ♦ 8.7dB Typical Conversion Gain
- ♦ 9.6dB Typical Noise Figure
- ♦ +24.5dBm Typical Input IP3
- ◆ +11dBm Typical Input 1dB Compression Point
- ♦ 69dBc Typical 2RF-2LO Spurious Rejection at $P_{RF} = -10dBm$
- ♦ Integrated LO Buffer
- ♦ Integrated RF and LO Baluns for Single-Ended Inputs
- ♦ Low -3dBm to +3dBm LO Drive
- ♦ Pin Compatible with the MAX19996A 2300MHz to 3900MHz Mixer
- ♦ Pin Similar with the MAX9993/MAX9994/ MAX9996 1700MHz to 2200MHz Mixers and MAX9984/MAX9986 400MHz to 1000MHz Mixers
- ♦ Single +5.0V or +3.3V Supply
- ♦ External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/Reduced-**Performance Mode**

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX19996ETP+	-40°C to +85°C	20 Thin QFN-EP*
MAX19996ETP+T	-40°C to +85°C	20 Thin QFN-EP*

⁺Denotes a lead-free/RoHS-compliant package.

Pin Configuration appears at end of data sheet.

^{*}EP = Exposed pad.

T = Tape and reel.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND0.3V to +5.5V IF+, IF-, LOBIAS, LO, IFBIAS,	θ _{JA} (Notes 2, 3)+38°C/W θ _{JC} (Notes 1, 3)13°C/W
LEXT to GND0.3V to (V _{CC} + 0.3V)	Operating Case Temperature
RF, LO Input Power+12dBm	Range (Note 4) $T_C = -40$ °C to $+85$ °C
RF, LO Current	Junction Temperature+150°C
(RF and LO is DC shorted to GND through a balun)50mA	Storage Temperature Range65°C to +150°C
Continuous Power Dissipation (Note 1)5.0W	Lead Temperature (soldering, 10s)+300°C

- Note 1: Based on junction temperature T_J = T_C + (θ_{JC} x V_{CC} x I_{CC}). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the *Applications Information* section for details. The junction temperature must not exceed +150°C.
- **Note 2:** Junction temperature $T_J = T_A + (\theta_{JA} \times V_{CC} \times I_{CC})$. This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150°C.
- **Note 3:** Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to **www.maxim-ic.com/thermal-tutorial**.
- Note 4: To is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS

(*Typical Application Circuit*, $V_{CC} = +4.75V$ to +5.25V, no input AC signals. $T_{C} = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = +5.0V$, $T_{C} = +25^{\circ}C$, all parameters are production tested.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	Vcc		4.75	5	5.25	V
Supply Current	Icc			230	245	mA

+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS

(*Typical Application Circuit*, $V_{CC} = +3.0V$ to +3.6V, no input AC signals. $T_{C} = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = +3.3V$, $T_{C} = +25^{\circ}C$, parameters are guaranteed by design and not production tested, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	Vcc		3.0	3.3	3.6	V
Supply Current	Icc	Total supply current, V _{CC} = +3.3V		149.5		mA

RECOMMENDED AC OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency	f _{RF}	(Note 7)	2000		3000	MHz
LO Frequency	fLO	(Note 7)	1800		2550	MHz
IF Frequency	fiF	Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the <i>Typical Application Circuit</i> , IF matching components affect the IF frequency range (Note 7)	100		500	MHz
		Using alternative Mini-Circuits TC4-1W-7A 4:1 transformer, IF matching components affect the IF frequency range (Note 7)	50		250	
LO Drive Level	PLO		-3		+3	dBm

+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, $V_{CC} = +4.75V$ to +5.25V, RF and LO ports are driven from 50Ω sources, $P_{LO} = -3dBm$ to +3dBm, $P_{RF} = -5dBm$, $f_{RF} = 2300MHz$ to 2800MHz, $f_{LO} = 2000MHz$ to 2500MHz, $f_{IF} = 300MHz$, $f_{RF} > f_{LO}$, $T_{C} = -40^{\circ}C$ to $+85^{\circ}C$. Typical values are at $V_{CC} = +5.0V$, $P_{RF} = -5dBm$, $P_{LO} = 0dBm$, $f_{RF} = 2500MHz$, $f_{LO} = 2200MHz$, $f_{IF} = 300MHz$, $f_{IF} = 300MHz$, $f_{C} = +25^{\circ}C$, all parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITI	ONS	MIN	TYP	MAX	UNITS
Conversion Power Gain	GC	$T_C = +25^{\circ}C \text{ (Note 5)}$		8.1	8.7	9.3	dB
Conversion Power Gain Variation vs. Frequency	ΔGC	f _{RF} = 2300MHz to 2800N 100MHz band	MHz for any		0.1		dB
Conversion Power Gain Temperature Coefficient	TCG	$T_{C} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			-0.012		dB/°C
Input 1dB Compression Point	IP _{1dB}	$T_C = +25^{\circ}C \text{ (Note 8)}$		10	11		dBm
Input rab Compression Foint	ir 1aB	$f_{RF} = 2500MHz, T_{C} = +2$	5°C (Note 8)	10.4	11		dBm
Third-Order Input Intercept Point	IIP3	f_{RF1} - f_{RF2} = 1MHz, P_{RF1} T_C = +25°C (Note 5)	$= P_{RF2} = -5dBm,$	22	24.5		dBm
Third-Order Input Intercept Point Variation Over Temperature		f _{RF} = 2300MHz to 2800MHz, f _{IF} = 300MHz, f _{RF1} - f _{RF2} = 1MHz, P _{RF1} = P _{RF2} = -5dBm, T _C = -40°C to +85°C			±0.5		dB
Noise Figure	NF _{SSB}	f _{RF} = 2300MHz to 2700M single sideband, no bloc (Note 9)			9.6	12	dB
Noise Figure	1	f_{RF} = 2500MHz, f_{IF} = 300MHz, P_{LO} = 0dBm, V_{CC} = +5.0V, T_{C} = +25°C, single sideband, no blockers present (Note 9)			9.6	10.5	ив
Noise Figure Temperature Coefficient	TC _{NF}	$f_{RF} = 2000MHz$ to 3000N sideband, no blockers p $T_{C} = -40$ °C to $+85$ °C (No	resent,		0.0183		dB/°C
Noise Figure Under Blocking Condition	NFB	$= 2300MHz, f_{LO} = 2110M$	+8dBm blocker tone applied to RF port, f_{RF} = 2300MHz, f_{LO} = 2110MHz, $f_{BLOCKER}$ = 2400MHz, P_{LO} = -3dBm, V_{CC} = +5.0V,		20.8	25	dB
		$f_{RF} = 2300MHz$ to 2700MHz, $f_{LO} =$	P _{RF} = -10dBm	60	69		
2RF-2LO Spur Rejection	2 x 2	2000MHz to 2400MHz, fSPUR = fLO + 150MHz	P _{RF} = -5dBm (Note 5)	55	64		dBc
		f _{RF} = 2300MHz to 2700MHz, f _{LO} =	P _{RF} = -10dBm	70	78		
3RF-3LO Spur Rejection	3 x 3	2000MHz to 2400MHz, fSPUR = fLO + 100MHz	P _{RF} = -5dBm (Note 5)	60	68		dBc
RF Input Return Loss		LO on and IF terminated into a matched impedance			18		dB
LO Input Return Loss		RF and IF terminated into impedance	a matched		20		dB

+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuit, V_{CC} = +4.75V to +5.25V, RF and LO ports are driven from 50 Ω sources, P_{LO} = -3dBm to +3dBm, P_{RF} = -5dBm, f_{RF} = 2300MHz to 2800MHz, f_{LO} = 2000MHz to 2500MHz, f_{LF} = 300MHz, f_{RF} > f_{LO} , T_{C} = -40°C to +85°C. Typical values are at V_{CC} = +5.0V, P_{RF} = -5dBm, P_{LO} = 0dBm, f_{RF} = 2500MHz, f_{LO} = 2200MHz, f_{LF} = 300MHz, f_{LF} = 300MHz, f_{LF} = 300MHz, f_{LF} = 425°C, all parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIO	ONS	MIN	TYP	MAX	UNITS
IF Output Impedance	Z _{IF}	Nominal differential imped IF outputs	dance at the IC's		200		Ω
		RF terminated into 50Ω , LO driven by 50Ω source, IF transformed to 50Ω using external	f _{IF} = 450MHz, L1 = L2 = 120nH		25		
IF Output Return Loss		components shown in the Typical Application Circuit. See the IF Port Return Loss vs. IF Frequency graph in the	f _{IF} = 350MHz, L1 = L2 = 270nH		25		dB
	Typical Operating Characteristics for		f _{IF} = 300MHz, L1 = L2 = 470nH		25		
Minimum RF-to-IF Isolation		$f_{RF} = 2300MHz$ to 2700MHz, $P_{LO} = +3dBm$ (Note 5)			34		dB
Maximum LO Leakage at RF Port		$f_{LO} = 1900MHz$ to 2500MHz, $P_{LO} = +3dBm$			-22.7		dBm
Maximum 2LO Leakage at RF Port		$f_{LO} = 1900MHz$ to 2500MHz, $P_{LO} = +3dBm$			-21		dBm
Maximum LO Leakage at IF Port		f _{LO} = 1900MHz to 2500M (Note 5)	Hz , $P_{LO} = +3dBm$		-27.5		dBm

+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, RF and LO ports are driven from 50Ω sources, Typical values are at $V_{CC} = +3.3V$, $P_{RF} = -5dBm$, $P_{LO} = 0dBm$, $f_{RF} = 2500MHz$, $f_{LO} = 2200MHz$, $f_{IF} = 300MHz$, $T_{C} = +25^{\circ}C$, unless otherwise noted.) (Note 6)

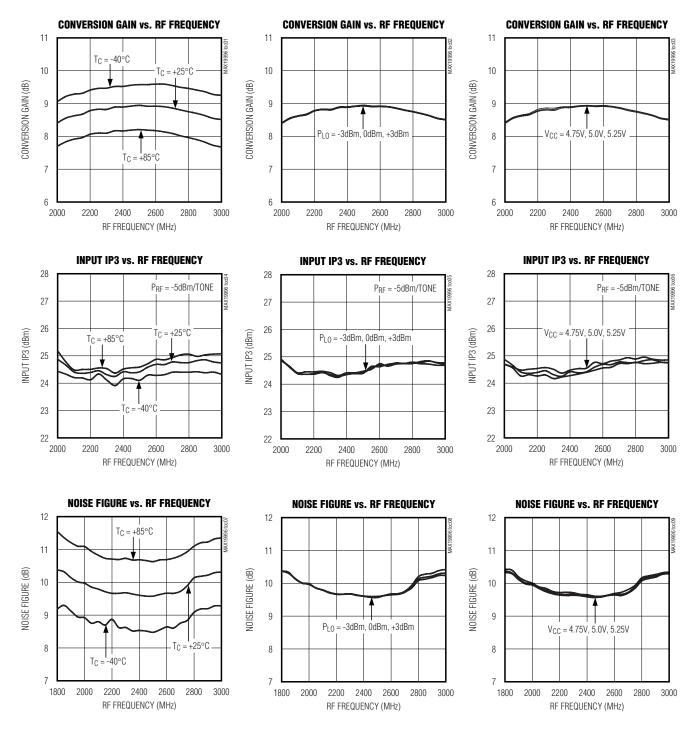
PARAMETER	SYMBOL	CONDITIONS	MIN TY	P MAX	UNITS
Conversion Power Gain	GC		8.	ô	dB
Conversion Power Gain Variation vs. Frequency	ΔGC	f_{RF} = 2300MHz to 2800MHz for any 100MHz band	0.	1	dB
Gain Variation Over Temperature	TCG	$T_C = -40$ °C to $+85$ °C	-0.0	12	dB/°C
Input 1dB Compression Point	IP _{1dB}	(Note 8)	7.	5	dBm
Third-Order Input Intercept Point	IIP3	$f_{RF1} = 2500MHz$, $f_{RF2} = 2501MHz$, $f_{LO} = 2200MHz$, $P_{RF1} = P_{RF2} = -5dBm$	19	.8	dBm
Third-Order Input Intercept Variation Over Temperature		$f_{RF1} = 2500 MHz$, $f_{RF2} = 2501 MHz$, $f_{LO} = 2200 MHz$, $P_{RF1} = P_{RF2} = -5 dBm$, $T_C = +25 ^{\circ}C$	±0	.5	dB
Noise Figure	NF _{SSB}	Single sideband, no blockers present (Note 9)	9.	ĵ.	dB
Noise Figure Temperature Coefficient	TC _{NF}	Single sideband, no blockers present, T _C = -40°C to +85°C (Note 9)	0.0	17	dB/°C
2RF-2LO Spur Rejection	2 x 2	$P_{RF} = -10dBm$	65	.9	dBc
Znr-zLO Spui nejection	2 X Z	P _{RF} = -5dBm	60	.9] ubc

+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)

(*Typical Application Circuit*, RF and LO ports are driven from 50Ω sources, Typical values are at V_{CC} = +3.3V, P_{RF} = -5dBm, P_{LO} = 0dBm, f_{RF} = 2500MHz, f_{LO} = 2200MHz, f_{IF} = 300MHz, T_{C} = +25°C, unless otherwise noted.) (Note 6)

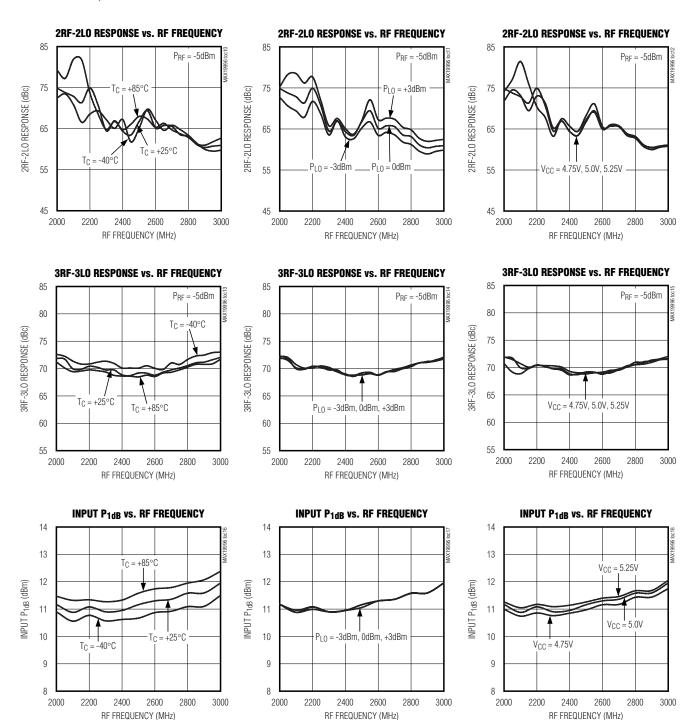
PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS		
2DE 2LO Spur Dejection	2 4 2	$P_{RF} = -10 dBm$		3 x 3			67.9		dBc
3RF-3LO Spur Rejection	3 X 3	P _{RF} = -5dBm			57.9		abc		
RF Input Return Loss		LO on and IF terminated in impedance	nto a matched		16		dB		
LO Input Return Loss		RF and IF terminated into impedance	a matched		16.7		dB		
IF Output Impedance	Z _{IF}	Nominal differential impedance at the IC's IF outputs			200		Ω		
		RF terminated into 50Ω , LO driven by 50Ω source, IF transformed to 50Ω using external	f _{IF} = 450MHz, L1 = L2 = 120nH		23				
IF Output Return Loss	Output Return Loss	I Circuit See the IF Port	f _{IF} = 350MHz, L1 = L2 = 270nH		23		dB		
		Typical Operating Characteristics for performance vs. inductor values.	f _{IF} = 300MHz, L1 = L2 = 470nH		23				
Minimum RF-to-IF Isolation		f _{RF} = 2300MHz to 2700MHz, P _{LO} = +3dBm			33		dB		
Maximum LO Leakage at RF Port		$f_{LO} = 1900MHz$ to 2500MHz, $P_{LO} = +3dBm$			-26.6		dBm		
Maximum 2LO Leakage at RF Port		$f_{LO} = 1900MHz$ to 2500MHz, $P_{LO} = +3dBm$			-28.8		dBm		
Maximum LO Leakage at IF Port		$f_{LO} = 1900MHz$ to 2500MHz	Hz , $P_{LO} = +3dBm$		-21.9		dBm		

Note 5: 100% production tested for functional performance.

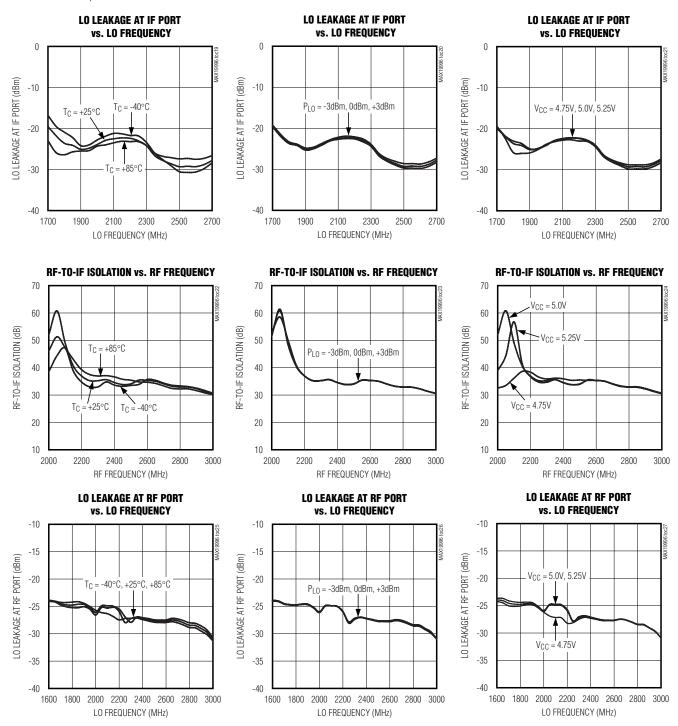

Note 6: All limits reflect losses of external components, including a 0.8dB loss at f_{IF} = 300MHz due to the 4:1 impedance transformer. Output measurements were taken at IF outputs of the *Typical Application Circuit*.

Note 7: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See the *Typical Operating Characteristics*.

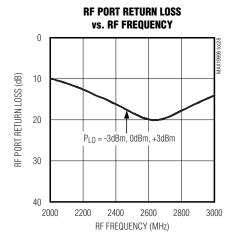
Note 8: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50Ω source.
 Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.

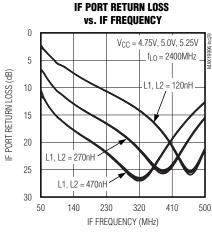

Typical Operating Characteristics

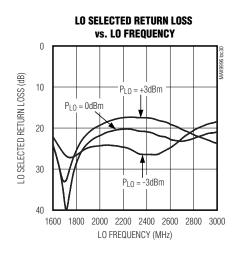
(Typical Application Circuit, $V_{CC} = +5.0V$, $P_{LO} = 0$ dBm, $P_{RF} = -5$ dBm, LO is low-side injected for a 300MHz IF, $T_{C} = +25$ °C, unless otherwise noted.)

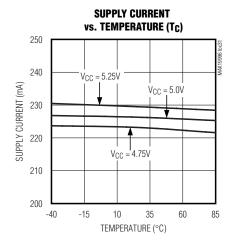

Typical Operating Characteristics (continued)

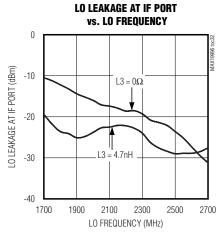
(Typical Application Circuit, $V_{CC} = +5.0V$, $P_{LO} = 0$ dBm, $P_{RF} = -5$ dBm, LO is low-side injected for a 300MHz IF, $T_{C} = +25$ °C, unless otherwise noted.)

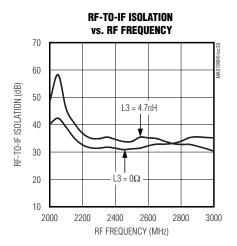

Typical Operating Characteristics (continued)

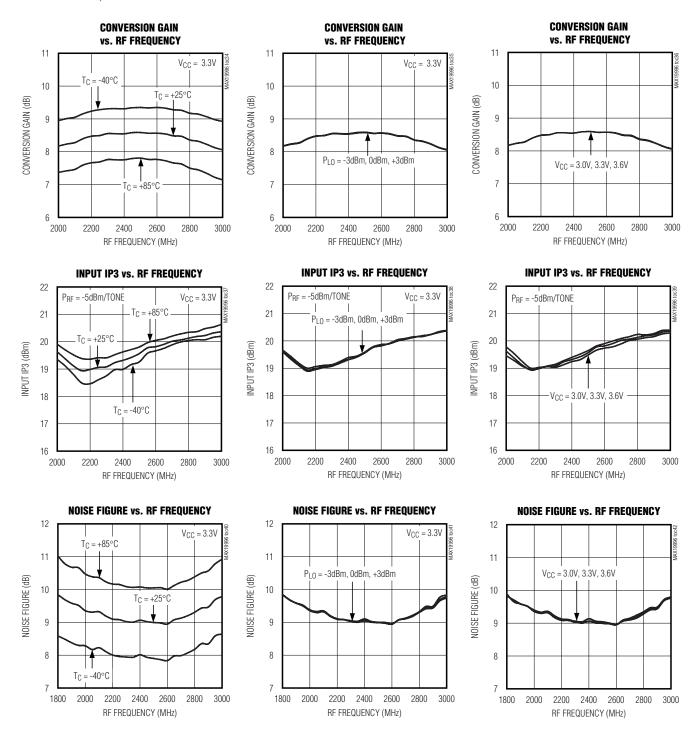

(*Typical Application Circuit*, $V_{CC} = +5.0V$, $P_{LO} = 0dBm$, $P_{RF} = -5dBm$, LO is low-side injected for a 300MHz IF, $T_{C} = +25^{\circ}C$, unless otherwise noted.)

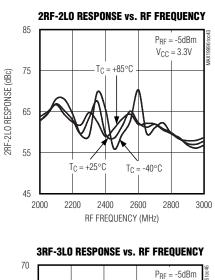


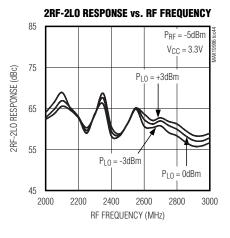

Typical Operating Characteristics (continued)

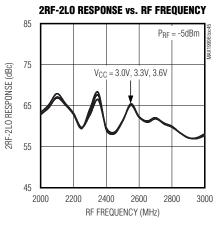

(*Typical Application Circuit*, $V_{CC} = +5.0V$, $P_{LO} = 0$ dBm, $P_{RF} = -5$ dBm, LO is low-side injected for a 300MHz IF, $T_{C} = +25$ °C, unless otherwise noted.)

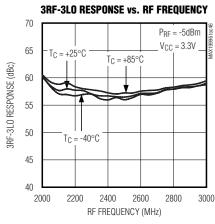


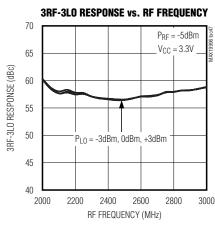


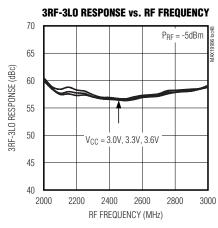

_Typical Operating Characteristics (continued)

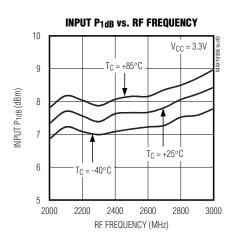

(Typical Application Circuit, $V_{CC} = +3.3V$, $P_{LO} = 0$ dBm, $P_{RF} = -5$ dBm, LO is low-side injected for a 300MHz IF, $T_{C} = +25$ °C, unless otherwise noted.)

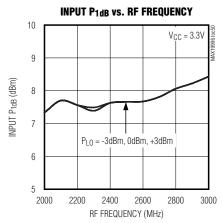


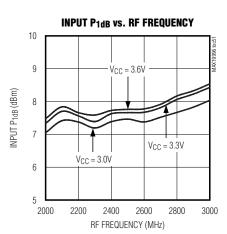

Typical Operating Characteristics (continued)

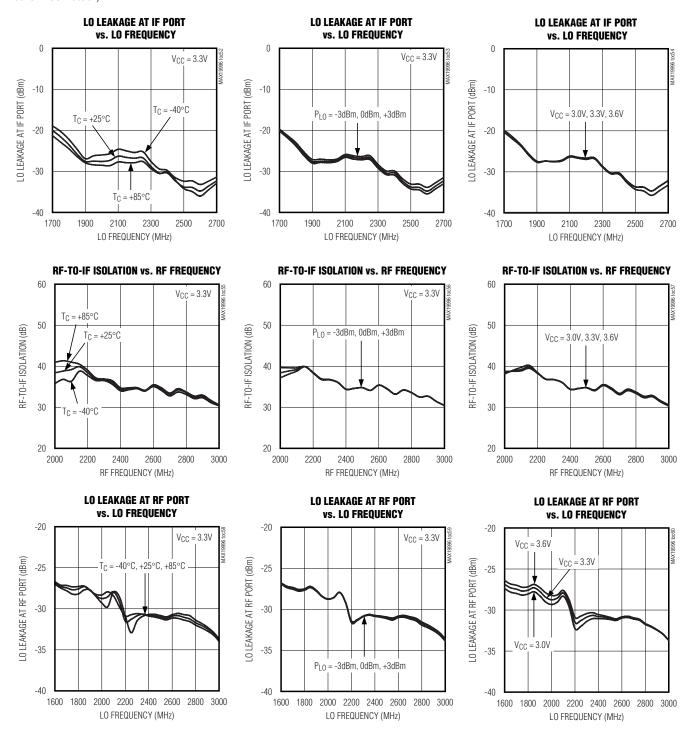

(Typical Application Circuit, $V_{CC} = +3.3V$, $P_{LO} = 0$ dBm, $P_{RF} = -5$ dBm, LO is low-side injected for a 300MHz IF, $T_{C} = +25$ °C, unless otherwise noted.)

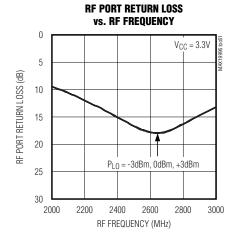


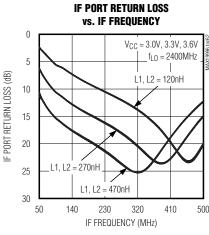


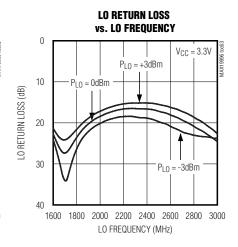


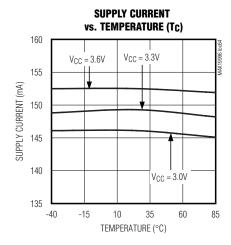


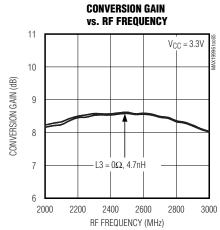


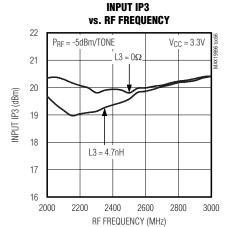

_Typical Operating Characteristics (continued)

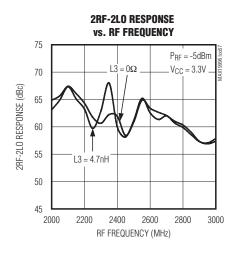

(*Typical Application Circuit*, $V_{CC} = +3.3V$, $P_{LO} = 0dBm$, $P_{RF} = -5dBm$, LO is low-side injected for a 300MHz IF, $T_{C} = +25^{\circ}C$, unless otherwise noted.)

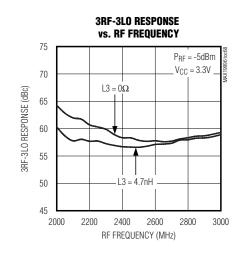


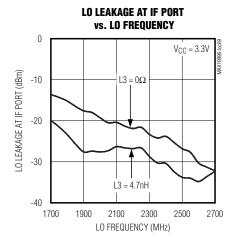

Typical Operating Characteristics (continued)

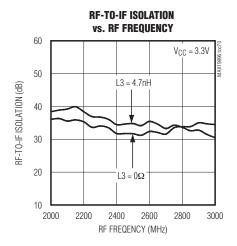

(Typical Application Circuit, $V_{CC} = +3.3V$, $P_{LO} = 0$ dBm, $P_{RF} = -5$ dBm, LO is low-side injected for a 300MHz IF, $T_{C} = +25$ °C, unless otherwise noted.)










_Typical Operating Characteristics (continued)

(*Typical Application Circuit*, $V_{CC} = +3.3V$, $P_{LO} = 0dBm$, $P_{RF} = -5dBm$, LO is low-side injected for a 300MHz IF, $T_{C} = +25^{\circ}C$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1, 6, 8, 14	Vcc	Power Supply. Bypass to GND with 0.01µF capacitors as close as possible to the pin.
2	RF	Single-Ended 50Ω RF Input. Internally matched and DC shorted to GND through a balun. Requires an input DC-blocking capacitor.
3, 4, 5, 10, 12, 13, 17	GND	Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together.
7	LOBIAS	LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604Ω 1% resistor (230mA bias condition) from LOBIAS to ground.
9, 15	N.C.	Not internally connected. Pins can be grounded.
11	LO	Local Oscillator Input. This input is internally matched to 50Ω . Requires an input DC-blocking capacitor.
16	LEXT	External Inductor Connection. Connect an inductor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation (see the <i>Typical Operating Characteristics</i> for typical performance vs. inductor value).
18, 19	IF-, IF+	Mixer Differential IF Output. Connect pullup inductors from each of these pins to V _{CC} (see the <i>Typical Application Circuit</i>).
20	IFBIAS	IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698Ω 1% resistor (230mA bias condition) from IFBIAS to GND.
_	EP	Exposed Pad. Internally connected to GND. Connect to a large ground plane using multiple vias to maximize thermal and RF performance.

Detailed Description

The MAX19996 high-linearity downconversion mixer provides 8.7dB of conversion gain and +24.5dBm of IIP3, with a typical 9.6dB noise figure. The integrated baluns and matching circuitry allow for 50Ω single-ended interfaces to the RF and the LO port. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19996's input to a -3dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF-2LO performance.

Specifications are guaranteed over broad frequency ranges to allow for use in WCS, LTE, WiMAX, and MMDS base stations. The MAX19996 is specified to operate over an RF input range of 2000MHz to 3000MHz, an LO range of 1800MHz to 2550MHz, and an IF range of 50MHz to 500MHz. The external IF components set the lower frequency range (see the *Typical Operating Characteristics* for details). Operation beyond these ranges is possible (see the *Typical Operating Characteristics* for additional information). Although this device is optimized for low-side LO injection applications, it can operate in high-side LO injection modes as well. However, performance degrades as fLO continues to increase. For increased high-side LO performance, refer to the MAX19996A data sheet.

RF Port and Balun

The MAX19996 RF input provides a 50Ω match when combined with a series 8.2pF DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. The RF port input return loss is typically 15dB over the RF frequency range of 2300MHz to 2800MHz.

LO Inputs, Buffer, and Balun

The MAX19996 is optimized for low-side LO injection applications with an 1800MHz to 2550MHz LO frequency range. The LO input is internally matched to 50Ω , requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity Mixer

The core of the MAX19996 is a double-balanced, high-performance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, the performance of IIP3, 2RF-2LO rejection, and noise-figure is typically +24.5dBm, 69dBc, and 9.6dB, respectively.

Differential IF Output Amplifier

The MAX19996 has an IF frequency range of 50MHz to 500MHz, where the low-end frequency depends on the frequency response of the external IF components. The MAX19996 mixer is tuned for a 450MHz IF using 120nH external pullup bias inductors. Lower IFs of 350MHz and 300MHz require higher inductor values of 270nH and 470nH, respectively. The differential, open-collector IF output ports require these inductors to be connected to VCC.

Note that these differential ports are ideal for providing enhanced 2RF-2LO performance. Single-ended IF applications require a 4:1 (impedance ratio) balun to transform the 200Ω differential IF impedance to a 50Ω single-ended system. Use the TC4-1W-17 4:1 transformer for IF frequencies above 200MHz and the TC4-1W-7A 4:1 transformer for frequencies below 200MHz. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer.

Applications Information

Input and Output Matching

The RF and LO ports are designed to operate in a 50Ω system. Use DC blocks at the RF and LO inputs to isolate the ports from external DC while providing some reactive tuning. The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance-ratio) balun transforms this impedance down to a 50Ω single-ended output (see the *Typical Application Circuit*).

Externally Adjustable Bias

Bias currents for the LO buffer and the IF amplifier are optimized by fine-tuning resistors R1 and R2. The values for R1 and R2, as listed in Table 1, represent the nominal values which yield the highest level of linearity performance. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. Contact the factory for details concerning recommended power reduction vs. performance tradeoffs. If $\pm 1\%$ resistors are not readily available, $\pm 5\%$ resistors can be substituted.

Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of +3.3V. Doing so reduces the overall power consumption by up to 57%. See the +3.3V Supply AC Electrical Characteristics table and the relevant +3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs.

Table 1. Component Values

DESIGNATION	QTY	DESCRIPTION	COMPONENT SUPPLIER
C1	1	8.2pF microwave capacitor (0402)	Murata Electronics North America, Inc.
C2, C6, C8, C11	4	0.01µF microwave capacitors (0402)	Murata Electronics North America, Inc.
C3, C9	0	Not installed, capacitors	_
C10	1	2pF microwave capacitor (0402)	Murata Electronics North America, Inc.
C13, C14	2	1000pF microwave capacitors (0402)	Murata Electronics North America, Inc.
C15	1	82pF microwave capacitor (0402)	Murata Electronics North America, Inc.
L1, L2	2	120nH wire-wound high-Q inductors* (0805) (see the <i>Typical Operating Characteristics</i>)	Coilcraft, Inc.
L3	1	4.7nH wire-wound high-Q inductor (0603)	Coilcraft, Inc.
D4	-	$698Ω \pm 1\%$ resistor (0402). Use for V_{CC} = +5.0V applications.	Digi Kay Cara
R1	Į Į	1.1kΩ ±1% resistor (0402). Use for V_{CC} = +3.3V applications.	Digi-Key Corp.
R2	-	$604\Omega \pm 1\%$ resistor (0402). Use for V_{CC} = +5.0V applications.	Digi Kay Cara
HZ		845Ω ±1% resistor (0402). Use for V_{CC} = +3.3 V applications.	Digi-Key Corp.
R3	1	0Ω resistor (1206)	Digi-Key Corp.
T1	1	4:1 IF balun TC4-1W-17*	Mini-Circuits
U1	1	MAX19996 IC (20 TQFN)	Maxim Integrated Products, Inc.

^{*}Use 470nH inductors and TC4-1W-7A 4:1 balun for IF frequencies below 200MHz.

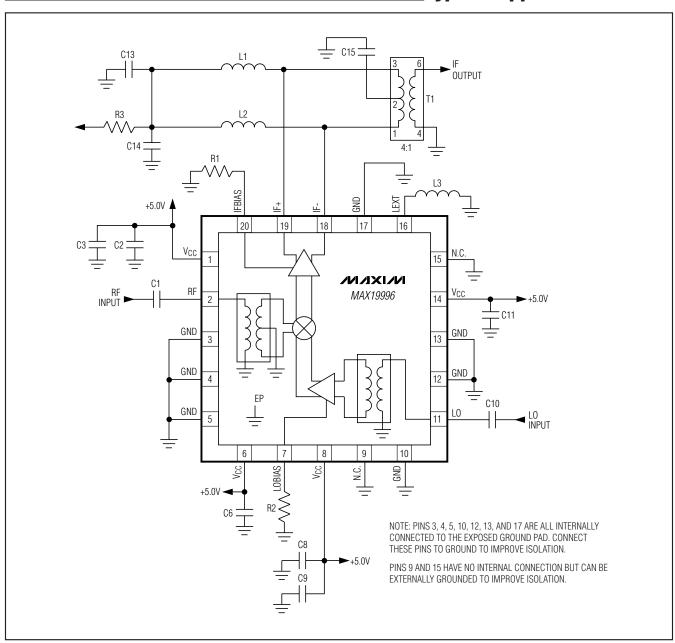
LEXT Inductor

Short LEXT to ground using a 0Ω resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation, a 4.7nH low-ESR inductor can be connected from LEXT to GND. However, the load impedance presented to the mixer must be such that any capacitances from IF- and IF+ to ground do not exceed several picofarads to ensure stable operating conditions. Since approximately 120mA flows through LEXT, it is important to use a low-DCR wire-wound inductor.

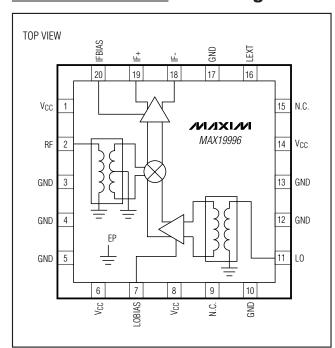
Layout Considerations

A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad **MUST** be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad

to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19996 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.


Power-Supply Bypassing

Proper voltage-supply bypassing is essential for high-frequency circuit stability. Bypass each VCC pin with the capacitors shown in the *Typical Application Circuit* and see Table 1.


Exposed Pad RF/Thermal Considerations

The exposed pad (EP) of the MAX19996's 20-pin thin QFN package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19996 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP **MUST** be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.

Typical Application Circuit

Pin Configuration

_Chip Information

PROCESS: SiGe BiCMOS

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
20 Thin QFN-EP	T2055+3	<u>21-0140</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.