: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Abstract

General Description The MAX2055 high-performance, digitally controlled, variable-gain, differential analog-to-digital converter (ADC) driver/amplifier (DVGA) is designed for use from 30 MHz to 300 MHz in base station receivers.

The device integrates a digitally controlled attenuator and a high-linearity single-ended-to-differential output amplifier, which can either eliminate an external transformer, or can improve the even-order distortion performance of a transformer-coupled circuit, thus relaxing the requirements of the anti-alias filter preceding an ADC. Targeted for ADC driver applications to adjust gain either dynamically or as a one-time channel gain setting, the MAX2055 is ideal for applications requiring high performance. The attenuator provides 23 dB of attenuation range with $\pm 0.2 \mathrm{~dB}$ accuracy. The MAX2055 is available in a thermally enhanced 20 pin TSSOP-EP package and operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range

Applications
Cellular Base Stations
PHS/PAS Infrastructure
Receiver Gain Control
Broadband Systems
Automatic Test Equipment
Terrestrial Links
High-Performance ADC Drivers
\qquad Features

- 30MHz to 300MHz Frequency Range
- Single-Ended-to-Differential Conversion
- -3 dB to +20 dB Variable Gain
- 40dBm Output IP3 (at All Gain States and 70MHz)
- 2nd Harmonic -76dBc
- 3rd Harmonic -69dBc
- Noise Figure: 5.8 dB at Maximum Gain
- Digitally Controlled Gain with 1dB Resolution and $\pm 0.2 \mathrm{~dB}$ Accuracy
- Adjustable Bias Current

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2055EUP-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP-EP ${ }^{*}$

*EP $=$ Exposed paddle.

Pin Configuration/ Functional Diagram

TOP VIEW

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

ABSOLUTE MAXIMUM RATINGS

A	-0.3V to +(VCC $+0.25 \mathrm{~V})$
Input Signal (RF_IN)... 20 dBm	
Output Power (RF_OUT) ... 24 dBm	
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$20-Pin TSSOP (derate $21.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots \ldots2 .1 \mathrm{~W}$	

Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature
….... $+150^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(Circuit of Figure 1; $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , $\mathrm{GND}=0 \mathrm{~V}$. No input signals applied, and input and output ports are terminated with 50Ω. R1 $=1.13 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY						
Supply Voltage	VCC		4.75	5.0	5.25	V
Supply Current	IcC			240	290	mA
ISET Current	ISET			1.1		mA
CONTROL INPUTS						
Control Bits		Parallel		5		Bits
Input Logic High			2			V
Input Logic Low					0.6	V
Input Leakage Current			-1.2		+1.2	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

(Circuit of Figure 1; $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+5.25 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, max gain $\left(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0\right.$), $\mathrm{R}_{1}=1.13 \mathrm{k} \Omega$, Pout $=5 \mathrm{dBm}$, $\mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz}, 50 \Omega$ system impedance. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Frequency Range	f_{R}		30		300	MHz
Gain	G			19.9		dB
Amplitude Unbalance		(Note 3)		0.06		dB
Phase Unbalance		(Note 3)		0.7		Degrees
Minimum Reverse Isolation				29		dB
Noise Figure	NF			5.8		dB
Output 1dB Compression Point	$\mathrm{P}_{1 \mathrm{~dB}}$			25.7		dBm
2nd-Order Output Intercept Point	OIP2	$\mathrm{f}_{1}+\mathrm{f}_{2}, \mathrm{f}_{1}=70 \mathrm{MHz}, \mathrm{f}_{2}=71 \mathrm{MHz}, 5 \mathrm{dBm} /$ tone at RF_OUT		75		dBm
3rd-Order Output Intercept Point	OIP3	All gain conditions, 5dBm/tone at RF_OUT		40		dBm
2nd Harmonic	2fin			-76		dBc
3rd Harmonic	3fin			-69		dBc
RF Gain-Control Range				23		dB
Gain-Control Resolution				1		dB
Attenuation Absolute Accuracy		Compared to the ideal expected attenuation		± 0.2		dB
Attenuation Relative Accuracy		Between adjacent states		$\begin{gathered} +0.05 / \\ -0.2 \end{gathered}$		dB
Gain Drift Over Temperature		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 0.3		dB

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

AC ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1; $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+5.25 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, max gain $(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0)$, $\mathrm{R}_{1}=1.13 \mathrm{k} \Omega$, $\mathrm{POUT}=5 \mathrm{dBm}$, $\mathrm{f}_{\mathrm{I}} \mathrm{N}=70 \mathrm{MHz}, 50 \Omega$ system impedance. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Gain Flatness Over 50 MHz Bandwidth		Peak-to-peak for all settings		0.5		dB
Attenuator Switching Time		50\% control to 90\% RF		40		ns
Input Return Loss		$\mathrm{fR}_{\mathrm{R}}=30 \mathrm{MHz}$ to 300 MHz , all gain conditions		15		dB
Output Return Loss		$\mathrm{f}_{\mathrm{R}}=30 \mathrm{MHz}$ to 250 MHz , all gain conditions		15		dB
		$\mathrm{fr}_{\mathrm{R}}=250 \mathrm{MHz}$ to 300 MHz , all gain conditions		12		

Note 1: Guaranteed by design and characterization.
Note 2: All limits reflect losses of external components. Output measurements are taken at RF_OUT using the application circuit shown in Figure 1
Note 3: The amplitude and phase unbalance are tested with 50Ω resistors connected from OUT+/OUT- to GND.
(Circuit of Figure 1, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathbf{R}_{\mathbf{1}}=\mathbf{1 . 1 3 k} \Omega$, max gain $(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0)$, $\mathrm{POUT}=5 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

(Circuit of Figure 1, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathbf{R}_{\mathbf{1}}=\mathbf{1 . 1 3 k} \boldsymbol{\Omega}$, max gain $(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0)$, $\mathrm{POUT}=5 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

NOISE FIGURE vs. FREQUENCY

OUTPUT IP3 vs. FREQUENCY

OUTPUT IP3 vs. FREQUENCY

REVERSE ISOLATION vs. RF FREQUENCY

OUTPUT P-1dB vs. FREQUENCY

INPUT IP3 vs. ATTENUATION STATE

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

Typical Operating Characteristics (continued)
(Circuit of Figure 1, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathbf{R}_{\mathbf{1}}=\mathbf{1 . 1 3 k} \Omega$, max gain $\left(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0\right.$), $\mathrm{POUT}=5 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OUTPUT-PORT PHASE UNBALANCE
vs. FREQUENCY

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

Typical Operating Characteristics (continued)
(Circuit of Figure 2, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{1}=909 \Omega$, max gain, $(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{BA}=0)$) Pout $=5 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

GAIN vs. RF FREQUENCY

attenuation relative accuracy (ALL STATES)

OUTPUT RETURN LOSS vs. FREQUENCY
(ALL STATES)

GAIN vs. RF FREQUENCY

REVERSE ISOLATION vs. RF FREQUENCY

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

Typical Operating Characteristics (continued)
(Circuit of Figure 2, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathbf{R}_{\mathbf{1}}=\mathbf{9 0 9 \Omega}$, max gain, $(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0)$, $\mathrm{POUT}=5 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OUTPUT IP3 vs. FREQUENCY

OUTPUT IP3 vs. FREQUENCY

OUTPUT P-1dB vs. FREQUENCY

INPUT IP3 vs. ATTENUATION STATE

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

\qquad Typical Operating Characteristics (continued)
(Circuit of Figure 2, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathbf{R}_{\mathbf{1}}=909 \Omega$, max gain, $(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0)$, POUT $=5 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

Pin Description

PIN	NAME	FUNCTION
1,9	VCC	Power Supply. Bypass to GND with capacitors as close to the pin as possible as shown in the typical application circuits (Figures 1 and 2).
2	RF_IN	Signal Input. Internally matched to 50Ω over the operating frequency. See the typical application circuit for recommended component values.
$3,18,20$, EP	GND	Ground. Use low-inductance layout techniques on the PC board. Solder the exposed paddle to the board ground plane.
$4-8$	B4-B0	Attenuation Control Bits. Digital input for attenuation control. See Table 3 for attenuation setting.
10	RF_OUT-	Inverted Differential Signal Output. Requires an external pullup choke inductor (120mA typical current) to VCC along with a DC-blocking capacitor; see Figures 1 and 2.
11	RF_OUT+	Noninverted Differential Signal Output. Requires an external pullup choke inductor (120mA typical current) to VCC along with a DC-blocking capacitor; see Figures 1 and 2.
12	IBIAS	Amplifier Bias Input. See Figures 1 and 2 for detailed connection.
13	CBP	Bypass Capacitor. See Figures 1 and 2 for detailed connection.
14	LE	Amplifier DC Ground. Requires choke inductor that can handle supply current. DC resistance of inductor should be less than 0.2 Ω.
15	AMPIN	Amplifier Input. Requires DC-coupling to allow biasing.
16	CC	Compensation Capacitor. Requires connection to AMPIN (pin 15) for stability.
17	ISET	Connect R1 from IsET to GND (see Table 1 or Table 2 for values).
19	ATTNOUT	Attenuator Output. Requires external DC-blocking capacitor.

Table 1. Suggested Components of Circuit of Figure 1

COMPONENT	VALUE	SIZE
C1, C3-C6, C8, C9, C10, C12	1 nF	0603
C2, C11	100 pF	0603
L1, L3	330 nH	0603
L2	100 nH	0603
L4, L5	680 nH	1008
R1	$1.13 \mathrm{k} \Omega$	0603
R7	10Ω	0603
T1, T2	$1: 1$	-

Table 2. Suggested Components of Circuit of Figure 2

COMPONENT	VALUE	SIZE
C1, C3, C4, C5, C7-C10, C12	1 nF	0603
C2, C11	100 pF	0603
L1, L2, L3	330 nH	0603
L4, L5	680 nH	1008
R1	909Ω	0603
R7	10Ω	0603
T2	$1: 1$	-

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

Figure 1. Typical Application Circuit

Detailed Description

The MAX2055 is a high-dynamic-range, digitally controlled, variable-gain differential ADC driver/amplifier (DVGA) for use in applications from 30 MHz to 300 MHz . The amplifier is designed for 50Ω single-ended input and 50Ω differential output systems.
The MAX2055 integrates a digital attenuator with a 23dB selectable attenuation range and a high-linearity, single-ended-to-differential output amplifier. The attenuator is digitally controlled through five logic lines: B0-B4. The on-chip attenuator provides up to 23 dB of attenuation with $\pm 0.2 \mathrm{~dB}$ accuracy. The single-ended input to differential output amplifier utilizes negative
feedback to achieve high gain and linearity over a wide bandwidth.

Applications Information

Digitally Controlled Attenuator

The digital attenuator is controlled through five logic lines: B0, B1, B2, B3, and B4. Table 3 lists the attenuation settings. The input and output of this attenuator require external DC blocking capacitors. The attenuator's insertion loss is approximately 2 dB , when the control bits are set to $0 \mathrm{~dB}(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0)$.

Single-Ended-to-Differential Amplifier

The MAX2055 integrates a single-ended-to-differential amplifier with a nominal gain of 22dB in a negative

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

Figure 2. Low-Cost Application Circuit
feedback topology. This amplifier is optimized for a frequency range of operation from 30 MHz to 300 MHz with a high-output third-order intercept point (OIP3). The bias current is chosen to optimize the IP3 of the amplifier. When R1 is $1.13 \mathrm{k} \Omega$ (909Ω if using the circuit of Figure 2), the current consumption is 240 mA while exhibiting a 40 dBm typical output IP3 at 70 MHz . The common-mode inductor, L2, provides a high commonmode rejection with excellent amplitude and phase balance at the output. L2 must handle the supply current and have DC resistance less than 0.2Ω.

Choke Inductor

The single-ended amplifier input and differential output ports require external choke inductors. At the input, connect a 330 nH bias inductor from AMPIN (pin 15) to IBIAS (pin 12). Connect 680nH choke inductors from RF_OUT+ (pin 11) and RF_OUT- (pin 10) to $\mathrm{V}_{C C}$. These connections provide bias current to the amplifier.

Layout Considerations

A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For best performance, route the ground-pin traces directly to the exposed pad underneath the

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

package. This pad should be connected to the ground plane of the board by using multiple vias under the device to provide the best RF/thermal conduction path. Solder the exposed pad on the bottom of the device package to a PC board exposed pad.
The MAX2055 Evaluation Kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each Vcc pin with a 1000 pF and 100 pF capacitor. Connect the 100 pF capacitor as close to the device as possible. Resistor R7 helps reduce switching transients. If switching transients are not a concern, R7 is not required. Therefore, connect pin 9 directly to Vcc.

Exposed Paddle RF Thermal Considerations

The EP of the MAX2055's 20-pin TSSOP-EP package provides a low thermal-resistance path to the die. It is important that the PC board on which the IC is mounted be designed to conduct heat from this contact. In addition, the EP provides a low-inductance RF ground path for the device.
It is recommended that the EP be soldered to a ground plane on the PC board, either directly or through an array of plated via holes.
Soldering the pad to ground is also critical for efficient heat transfer. Use a solid ground plane wherever possible.

Chip Information

TRANSISTOR COUNT: 325
PROCESS: BiCMOS

Table 3. Attenuation Setting vs. GainControl Bits

ATTENUATION	B4	B3 *	B2	B1	B0
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	0	1	1
4	0	0	1	0	0
5	0	0	1	0	1
6	0	0	1	1	0
7	0	0	1	1	1
8	0	1	0	0	0
9	0	1	0	0	1
10	0	1	0	1	0
11	0	1	0	1	1
12	0	1	1	0	0
13	0	1	1	0	1
14	0	1	1	1	0
15	0	1	1	1	1
16	1	X	0	0	0
17	1	X	0	0	1
18	1	X	0	1	0
19	1	X	0	1	1
20	1	X	1	0	0
21	1	X	1	0	1
22	1	X	1	1	0
23	1	X	1	1	1

*Enabling B4 disables B3 and the minimum attenuation is 16dB.

Digitally Controlled, Variable-Gain, Differential ADC Driver/Amplifier

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

