: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Octal-Channel Ultrasound Front-End

General Description

The MAX2077 octal-channel ultrasound front-end is a fully integrated, bipolar, high-density, octal-channel ultrasound receiver optimized for low-cost, high-channel count, high-performance portable and cart-based ultrasound systems. The easy-to-use IC allows the user to achieve high-end 2D and PW imaging capability using substantially less space and power. The highly compact imaging receiver lineup, including a low-noise amplifier (LNA), variable-gain amplifier (VGA), and antialias filter (AAF), achieves an ultra-low 2.4 dB noise figure at $\mathrm{RS}_{\mathrm{S}}=\mathrm{RIN}=200 \Omega$ at a very low 64.8 mW perchannel power dissipation. The full imaging receiver channel has been optimized for second-harmonic imaging with -64 dBFS second-harmonic distortion performance with a 1Vp-p 5 MHz output signal and broadband SNR of $>68 \mathrm{~dB}^{*}$ at 20 dB gain. The bipolar front-end has also been optimized for excellent lowvelocity PW and color-flow Doppler sensitivity with an exceptional near-carrier SNR of $140 \mathrm{dBc} / \mathrm{Hz}$ at 1 kHz offset from a $5 \mathrm{MHz} 1 \mathrm{VP}-\mathrm{P}$ output clutter signal.
The MAX2077 octal-channel ultrasound front-end is available in a small $8 \mathrm{~mm} \times 8 \mathrm{~mm}$, 56 -pin thin QFN or $10 \mathrm{~mm} \times 10 \mathrm{~mm}$, 68-pin thin QFN package with an exposed pad and is specified over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. To add CW Doppler capability, replace the MAX2077 with the MAX2078.
Medical Ultrasound Imaging
Applications
Sonar
Pin Configurations and Typical Application Circuits appear
at end of data sheet.

Applications at end of data sheet.

- 8 Full Channels of LNA, VGA, and AAF in a Small, $8 \mathrm{~mm} \times 8 \mathrm{~mm}$, $56-\mathrm{Pin}$ or $10 \mathrm{~mm} \times 10 \mathrm{~mm}$, 68-Pin TQFN Package
- Ultra-Low Full-Channel Noise Figure of 2.4dB at $R_{\text {IN }}=R_{S}=200 \Omega$
- Low Output-Referred Noise of $23 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 5 MHz , 20 dB Gain, Yielding a Broadband SNR of 68dB* for Excellent Second-Harmonic Imaging
- High Near-Carrier SNR of $140 \mathrm{dBc} / \mathrm{Hz}$ at 1 kHz Offset from a $5 \mathrm{MHz}, 1 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ Output Signal, and 20dB of Gain for Excellent Low-Velocity PW and Color-Flow Doppler Sensitivity in a High-Clutter Environment
- Ultra-Low Power 64.8mW per Full-Channel (LNA, VGA, and AAF) Normal Imaging Mode
- Selectable Active Input-Impedance Matching of $50 \Omega, 100 \Omega, 200 \Omega$, and $1 \mathrm{k} \Omega$
- Wide Input-Voltage Range of 330 mV P-p in High LNA Gain Mode and 550mVP-p in Low LNA Gain Mode
- Integrated Selectable 3-Pole 9MHz, 10MHz, 15 MHz , and 18 MHz Butterworth AAF
- Fast-Recovery, Low-Power Modes (<2 2 s)
- Pin Compatible with the MAX2078 Ultrasound Front-End with CW Doppler (MAX2077 68-Pin Package Variant)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2077CTN +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	56 Thin QFN-EP**
MAX2077CTK +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	68 Thin QFN-EP**

+Denotes a lead(Pb)-free/RoHS-compliant package. ${ }^{* *} E P=$ Exposed pad.

[^0]
Octal-Channel Ultrasound Front-End

ABSOLUTE MAXIMUM RATINGS

VCC_, VREF analog and digital control signals must be applied in this order
Input Differential Voltage2.0VP-p differential

Note 1: T_{C} is the temperature on the exposed pad of the package. T_{A} is the ambient temperature of the device and PCB.
Note 2: Junction temperature $T_{J}=T_{C}+\left(\theta_{\mathrm{JC}} \times \mathrm{V}_{C C} \times I_{C C}\right)$. This formula can only be used if the component is soldered down to a printed circuit board pad containing multiple ground vias to remove the heat. The junction temperature must not exceed $150^{\circ} \mathrm{C}$.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: Junction temperature $T_{J}=T_{A}+\left(\theta_{J A} \times V_{C C} \times I C C\right)$, assuming there is no heat removal from the exposed pad. The junction temperature must not exceed $150^{\circ} \mathrm{C}$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuits, $\mathrm{V}_{\mathrm{REF}}=2.475 \mathrm{~V}$ to $2.525 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 1}=3.13 \mathrm{~V}$ to $3.47 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=4.5 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{GND}=0 \mathrm{~V}$, $\mathrm{NP}=0, \mathrm{PD}=0$, no RF signals applied. Typical values are at $\mathrm{V} C C 1=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
3.3V Supply Voltage	$\mathrm{V}_{\mathrm{CC} 1}$		3.13	3.3	3.47	V
$4.75 \mathrm{~V} / 5 \mathrm{~V}$ Supply Voltage	$\mathrm{V}_{\mathrm{CC} 2}$		4.5	4.75	5.25	V
External Reference Voltage Range	$V_{\text {ReF }}$	(Note 6)	2.475		2.525	V
CMOS Input High Voltage	V_{IH}	Applies to CMOS control inputs	2.5			V
CMOS Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Applies to CMOS control inputs			0.8	V
CMOS Input Leakage Current	IIN	OV to 3.3V			10	$\mu \mathrm{A}$
Data Output High Voltage	DOUT_HI	$10 \mathrm{M} \Omega$ load		VCC1		V
Data Output Low Voltage	DOUT_LO	$10 \mathrm{M} \Omega$ load		0		V
$4.75 \mathrm{~V} / 5 \mathrm{~V}$ Supply Standby Current	I_NP_5V_TOT	NP = 1, all channels		3.9	6	mA
3V Supply Standby Current	I_NP_3V_TOT	NP = 1, all channels		1.7	3	mA
4.75V/5V Power-Down Current	I_PD_5V_TOT	PD = 1, all channels (Note 7)		0.4	10	$\mu \mathrm{A}$
3V Power-Down Current	I_PD_3V_TOT	PD = 1, all channels (Note 7)		0.3	10	$\mu \mathrm{A}$
3V Supply Current per Channel	I_3V_NM	Total I divided by 8, VG+-VG- =-2V		11	18	mA
4.75V/5V Supply Current per Channel	I_5V_NM	Total I divided by 8		6.0	8.3	mA
DC Power per Channel	P_NM			64.8	105	mW
Differential Analog Control Voltage Range	VGAIN_RANG	VG+ - VG-		± 3		V

Octal-Channel Ultrasound Front-End

DC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuits, $\mathrm{V}_{\mathrm{REF}}=2.475 \mathrm{~V}$ to $2.525 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 1}=3.13 \mathrm{~V}$ to $3.47 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=4.5 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}$, $\mathrm{NP}=0, \mathrm{PD}=0$, no RF signals applied. Typical values are at $\mathrm{V}_{\mathrm{CC} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
Common-Mode Voltage for Difference Analog Control	VGAIN_COMM	(VG+ + VG-)/2	1.65 $\pm 5 \%$	UNITS
Source/Sink Current for Gain Control Pins	I_ACONTROL	Per pin	± 1.6	± 4
Reference Current	IREF	All channels	$\mu \mathrm{A}$	
Output Common-Mode Level	VCMO		9.7	13

AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuits, $\mathrm{V}_{\text {REF }}=2.475 \mathrm{~V}$ to $2.525 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} 1=3.13 \mathrm{~V}$ to $3.47 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} 2=4.5 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}$, $N P=0, P D=0, D 3 / D 2 / D 1 / D 0=1 / 0 / 1 / 0(R I N=200 \Omega, L N A$ gain $=18.5 \mathrm{~dB}), D 5 / D 4=1 / 1(f C=18 \mathrm{MHz}), f_{R F}=5 \mathrm{MHz}, \mathrm{RS}=200 \Omega$, capacitance to GND at each of the VGA differential outputs is 25 pF , differential capacitance across VGA outputs is $15 \mathrm{pF}, \mathrm{RL}=1 \mathrm{k} \Omega$ differential, reference noise less than $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ from 1 kHz to 20 MHz , DOUT loaded with $10 \mathrm{M} \Omega$ and 60 pF . Typical values are at $\mathrm{VCC1}$ $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 5)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Impedance		47.5	50	60	Ω
	D1/D0 $=0 / 1, \mathrm{R}$ IN $=100 \Omega$, $\mathrm{fRF}=2 \mathrm{MHz}$	90	100	115	
	D1/D0 $=1 / 0, \mathrm{R}_{\text {IN }}=200 \Omega$, $\mathrm{fRF}=2 \mathrm{MHz}$	185	200	220	
	D1/D0 $=1 / 1, \mathrm{RIN}=1000 \Omega, \mathrm{fRF}^{\text {a }}$ 2 MHz	600	830	1000	
Noise Figure	$\mathrm{R}_{\mathrm{S}}=$ RIN $=50 \Omega$, LNA gain $=18.5 \mathrm{~dB}, \mathrm{VG}+-\mathrm{VG}-=+3 \mathrm{~V}$		4.5		dB
	RS $=$ RIN $=100 \Omega$, LNA gain $=18.5 \mathrm{~dB}, \mathrm{VG}+-$ VG- $=+3 \mathrm{~V}$		3.4		
	$\mathrm{R}_{S}=\mathrm{R}_{\text {IN }}=200 \Omega$, LNA gain $=18.5 \mathrm{~dB}$, VG $+-\mathrm{VG}-=+3 \mathrm{~V}$		2.4		
	RS $=$ RIN $=1000 \Omega$, LNA gain $=18.5 \mathrm{~dB}, \mathrm{VG}+-\mathrm{VG}-=+3 \mathrm{~V}$		2.2		
Low-Gain Noise Figure	$\begin{aligned} & \text { D3/D2/D1/D0 }=0 / 0 / 0 / 1, \text { LNA gain }=12.5 \mathrm{~dB}, \\ & R_{S}=R_{I N}=200 \Omega, V G+-V G-=+3 \mathrm{~V} \end{aligned}$		3.9		dB
Input-Referred Noise Voltage	D3/D2/D1/D0 $=1 / 1 / 1 / 0$		0.9		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input-Referred Noise Current	D3/D2/D1/D0 = 1/1/1/0		2.1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Maximum Gain, High Gain Setting	VG + - VG- = +3V	41	42.4	45	dB
Minimum Gain, High Gain Setting	VG+ - VG- = -3V	9	10.1	12	dB
Maximum Gain, Low Gain Setting	$\begin{aligned} & \text { D3/D2/D1/D0 }=0 / 0 / 0 / 1, \text { RIN }=200 \Omega, \text { LNA gain }=12.5 \mathrm{~dB} \text {, } \\ & \text { VG }+- \text { VG- }=+3 \mathrm{~V} \end{aligned}$	35	37.6	39	dB
Minimum Gain, Low Gain Setting	$\begin{aligned} & \text { D3/D2/D1/D0 }=0 / 0 / 0 / 1, \text { RIN }=200 \Omega, \text { LNA gain }=12.5 \mathrm{~dB} \text {, } \\ & \text { VG+ - VG- }=-3 \mathrm{~V} \end{aligned}$	3	5.4	8	dB
Anti-Aliasing Filter 3dB Corner Frequency	D5/D4 $=0 / 0, \mathrm{fc}=9 \mathrm{MHz}$		9		MHz
	D5/D4 $=0 / 1, \mathrm{fC}=10 \mathrm{MHz}$		10		
	D5/D4 $=1 / 0, \mathrm{f}_{\mathrm{C}}=15 \mathrm{MHz}$		15		
	D5/D4 $=1 / 1, \mathrm{fC}=18 \mathrm{MHz}$		18		
Gain Range	VG+ - VG- = -3V to +3V		33		dB

Octal-Channel Ultrasound Front-End

AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuits, $\mathrm{V}_{\mathrm{REF}}=2.475 \mathrm{~V}$ to $2.525 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 1}=3.13 \mathrm{~V}$ to $3.47 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=4.5 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}$, $N P=0, P D=0, D 3 / D 2 / D 1 / D 0=1 / 0 / 1 / 0(R / N=200 \Omega, L N A$ gain $=18.5 \mathrm{~dB}), \mathrm{D} 5 / \mathrm{D} 4=1 / 1(\mathrm{fc}=18 \mathrm{MHz}), \mathrm{fRF}_{\mathrm{R}}=5 \mathrm{MHz}, \mathrm{RS}_{\mathrm{S}}=200 \Omega$, capacitance to GND at each of the VGA differential outputs is 25 pF , differential capacitance across VGA outputs is $15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ differential, reference noise less than $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ from 1 kHz to 20 MHz , DOUT loaded with $10 \mathrm{M} \Omega$ and 60 pF . Typical values are at $\mathrm{V}_{\mathrm{CC}} 1$ $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 5)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Absolute Gain Error	VG + - VG- = -2V		± 0.4		dB
	VG+ - VG- = OV		± 0.4		
	VG+-VG- = +2V		± 0.4		
Input Gain Compression	VG+ - VG- $=-3 V$ (VGA minimum gain), gain ratio with 330 mV P-P/50mVP-p input tones		1.4		dB
	LNA low gain $=12.5 \mathrm{~dB}, \mathrm{VG}+-\mathrm{VG}-=-3 \mathrm{~V}(\mathrm{VGA}$ minimum gain), gain ratio with $600 \mathrm{mV} \mathrm{P}_{-\mathrm{P}} / 50 \mathrm{mV}$ P-P		0.8		
VGA Gain Response Time	Gain step up ($V_{I N}=5 \mathrm{mV}$ P-P, gain changed from 10 dB to 44 dB , settling time is measured within 1 dB final value)		1.4		$\mu \mathrm{s}$
	Gain step down (VIN $=5 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{P} \text {, gain changed from } 44 \mathrm{~dB}}$ to 10 dB , settling time is measured within 1 dB final value)		1.6		
VGA Output Offset Under Pulsed Overload	Overdrive is $\pm 10 \mathrm{~mA}$ in clamping diodes, gain at 30 dB , 16 pulses at 5 MHz , repetition rate 20 kHz ; offset is measured at output when RF duty cycle is off		180		mV
Small-Signal Output Noise	20 dB of gain, VG+-VG- $=-0.85 \mathrm{~V}$, no input signal		23		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Large-Signal Output Noise	20 dB of gain, $\mathrm{VG}+-\mathrm{VG}-=-0.85 \mathrm{~V}, \mathrm{fRF}=5 \mathrm{MHz}$, $\mathrm{f}_{\text {NOISE }}=\mathrm{f}_{\mathrm{RF}}+1 \mathrm{kHz}$, VOUT $=1 \mathrm{VP}$ P-P differential		35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Second Harmonic (HD2)	$\mathrm{V}_{\text {IN }}=50 \mathrm{mVP-P} \mathrm{fRF}=,2 \mathrm{MHz}$, $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		-67		dBc
	$\mathrm{V}_{\text {IN }}=50 \mathrm{mV}$ P-P, fri $=5 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		-64.2		
High-Gain IM3 Distortion		-52	-61		dBc
Low-Gain IM3 Distortion	$\begin{aligned} & \text { D3/D2/D1/D0 }=0 / 0 / 0 / 1(\text { RIN }=200 \Omega, \text { LNA gain }= \\ & 12.5 \mathrm{~dB}), \mathrm{V}_{\text {IN }}=100 \mathrm{mV} V_{\text {P-P }}, \text { fRF1 }=5 \mathrm{MHz}, \mathrm{fRF}_{\mathrm{R} 2}=5.01 \mathrm{MHz}, \\ & \text { Vout }^{2} 1 \mathrm{~V}_{\text {P-P }}(\text { Note } 8) \end{aligned}$	-50	-60		dBc
Standby Mode Power-Up Response Time	Gain set for $26 \mathrm{~dB}, \mathrm{fRF}=5 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\mathrm{P} \text {-P, settled }}$ within 1dB from transition on NP pin		2.1		$\mu \mathrm{s}$
Standby Mode Power-Down Response Time	To reach DC current target $\pm 10 \%$		2.0		$\mu \mathrm{s}$
Power-Up Response Time	Gain set for $28 \mathrm{~dB}, \mathrm{fRF}=5 \mathrm{MHz}$, VOUT $=1 \mathrm{VP}$-p, settled within 1dB from transition on PD		2.7		ms
Power-Down Response Time	Gain set for $28 \mathrm{~dB}, \mathrm{f}_{\mathrm{RF}}=5 \mathrm{MHz}$, DC power reaches $6 \mathrm{~mW} /$ channel, from transition on PD		5		ns
Adjacent Channel Crosstalk	$V_{\text {OUT }}=1 \mathrm{VP}_{\text {P-P }}$ differential, $\mathrm{fRF}=10 \mathrm{MHz}, 28 \mathrm{~dB}$ of gain		-58		dBc
Nonadjacent Channel Crosstalk	$\mathrm{V}_{\text {OUT }}=1 \mathrm{VPP}_{\text {P-P }}$ differential, frim $=10 \mathrm{MHz}, 28 \mathrm{~dB}$ of gain		-71		dBc
Phase Matching Between Channels	$\begin{aligned} & \text { Gain }=28 \mathrm{~dB}, \mathrm{VG}+-\mathrm{VG}-=0.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{f}_{\mathrm{RF}}=10 \mathrm{MHz} \end{aligned}$		± 1.2		Degrees

Octal-Channel Ultrasound Front-End

AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuits, $\mathrm{V}_{\mathrm{REF}}=2.475 \mathrm{~V}$ to $2.525 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 1}=3.13 \mathrm{~V}$ to $3.47 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=4.5 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}$, $\mathrm{NP}=0, \mathrm{PD}=0, \mathrm{D} 3 / \mathrm{D} 2 / \mathrm{D} 1 / \mathrm{DO}=1 / 0 / 1 / 0(\mathrm{RIN}=200 \Omega, \mathrm{LNA}$ gain $=18.5 \mathrm{~dB}), \mathrm{D} 5 / \mathrm{D} 4=1 / 1(\mathrm{fC}=18 \mathrm{MHz}), \mathrm{fRF}=5 \mathrm{MHz}, \mathrm{RS}=200 \Omega$, capacitance to GND at each of the VGA differential outputs is 25 pF , differential capacitance across VGA outputs is $15 \mathrm{pF}, \mathrm{RL}=1 \mathrm{k} \Omega$ differential, reference noise less than $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ from 1 kHz to 20 MHz , DOUT loaded with $10 \mathrm{M} \Omega$ and 60 pF . Typical values are at $\mathrm{V}_{\mathrm{CC}} 1$ $=3.3 \mathrm{~V}, \mathrm{VCC}^{2}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 5)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
3V Supply Modulation Ratio	Gain $=28 \mathrm{~dB}, \mathrm{VG}+-\mathrm{VG}-=0.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}$ P-P, $\mathrm{f}_{\mathrm{RF}}=5 \mathrm{MHz}, \mathrm{f}_{\mathrm{MOD}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{MOD}}=50 \mathrm{mV}$ P-P, ratio of output sideband at $5.001 \mathrm{MHz}, 1 \mathrm{VP}_{\text {P-P }}$		-73		dBc
4.75V/5V Supply Modulation Ratio	Gain $=28 \mathrm{~dB}, \mathrm{VG}+-\mathrm{VG}-=0.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}$ P-P, $f_{R F}=5 \mathrm{MHz}, \mathrm{f}_{\mathrm{MOD}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{MOD}}=50 \mathrm{mV}$ P-P, ratio of output sideband at $5.001 \mathrm{MHz}, 1 \mathrm{~V}_{\text {P-P }}$		-82		dBc
Gain Control Lines CommonMode Rejection Ratio	$\begin{aligned} & \text { Gain }=28 \mathrm{~dB}, \mathrm{VG}+-\mathrm{VG}-=0.4 \mathrm{~V}, \mathrm{VOUT}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{fRF}_{\mathrm{RF}}=5 \mathrm{MHz}, \mathrm{f}_{\mathrm{MOD}}(\mathrm{CM})=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{MOD}(\mathrm{CM})}=50 \mathrm{mV} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \text { ratio of output sideband at } 5.001 \mathrm{MHz} \text { to } 1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$		-74		dBc
Overdrive Phase Delay	VG+ - VG- $=-3 \mathrm{~V}$, delay between $\mathrm{V}_{\mathrm{IN}}=300 \mathrm{mV}$ P-p and VIN $=30 \mathrm{mV}$ P-P differential		5		ns
Output Impedance	Differential		100		Ω

AC ELECTRICAL CHARACTERISTICS—SERIAL PERIPHERAL INTERFACE

(DOUT loaded with 60 pF and $10 \mathrm{M} \Omega$, 2ns rise and fall edges on CLK.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Clock Speed				10	MHz
Mininimum Data-to-Clock Setup Time	tcs		5		ns
Mininimum Data-to-Clock Hold Time	${ }_{\text {t }} \mathrm{CH}$		0		ns
Mininimum Clock-to-CS Setup Time	tes		5		ns
$\overline{\mathrm{CS}}$ Positive Mininimum Pulse Width	tew		1		ns
Mininimum Clock Pulse Width	tcw		2		ns

Note 5: Minimum and maximum limits at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$ are guaranteed by design, characterization, and/or production test.
Note 6: Noise performance of the device is dependent on the noise contribution from Vref. Use a low-noise supply for $V_{\text {REF }}$. The reference input noise is given for 8 channels, knowing that the reference-noise contributions are correlated in all 8 channels. If more channels are used, the reference noise must be reduced to get the best noise performance.
Note 7: Not applicable to the MAX2077CTK+.
Note 8: See the Ultrasound-Specific IMD3 Specification section.

Octal-Channel Ultrasound Front-End

Typical Operating Characteristics

(Typical Application Circuits, $\mathrm{V}_{\mathrm{REF}}=2.475 \mathrm{~V}$ to $2.525 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{NP}=0, \mathrm{PD}=0$, D3/D2/D1/D0 $=1 / 0 / 1 / 0(R i n=200 \Omega, L N A$ gain $=18.5 \mathrm{~dB}), \mathrm{D} 5 / \mathrm{D} 4=1 / 1(\mathrm{fc}=18 \mathrm{MHz}), \mathrm{f}_{\mathrm{RF}}=5 \mathrm{MHz}, \mathrm{RS}=200 \Omega$, capacitance to GND at each of the VGA differential outputs is 25 pF , differential capacitance across VGA outputs is $15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ differential, reference noise less than $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ from 1 kHz to 20 MHz , DOUT loaded with $10 \mathrm{M} \Omega$ and 60 pF , unless otherwise noted. All typical operating curves have been taken with the MAX2077CTN+ package variant.)

Octal-Channel Ultrasound Front-End

Typical Operating Characteristics (continued)
(Typical Application Circuits, $\mathrm{V}_{\mathrm{REF}}=2.475 \mathrm{~V}$ to $2.525 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{NP}=0, \mathrm{PD}=0$, D3/D2/D1/D0 $=1 / 0 / 1 / 0(R / N=200 \Omega$, LNA gain $=18.5 \mathrm{~dB}), \mathrm{D} 5 / \mathrm{D} 4=1 / 1(\mathrm{fc}=18 \mathrm{MHz}), \mathrm{f}_{\mathrm{RF}}=5 \mathrm{MHz}, \mathrm{RS}=200 \Omega$, capacitance to GND at each of the VGA differential outputs is 25 pF , differential capacitance across VGA outputs is $15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ differential, reference noise less than $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ from 1 kHz to 20 MHz , DOUT loaded with $10 \mathrm{M} \Omega$ and 60 pF , unless otherwise noted. All typical operating curves have been taken with the MAX2077CTN+ package variant.)

Octal-Channel Ultrasound Front-End

(Typical Application Circuits, $\mathrm{V}_{\mathrm{REF}}=2.475 \mathrm{~V}$ to 2.525V, $\mathrm{V}_{\mathrm{CC} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{NP}=0, \mathrm{PD}=0$, D3/D2/D1/D0 $=1 / 0 / 1 / 0(R I N=200 \Omega$, LNA gain $=18.5 \mathrm{~dB}), \mathrm{D} 5 / \mathrm{D} 4=1 / 1(\mathrm{fc}=18 \mathrm{MHz}), \mathrm{f}_{\mathrm{RF}}=5 \mathrm{MHz}, \mathrm{RS}=200 \Omega$, capacitance to GND at each of the VGA differential outputs is 25 pF , differential capacitance across VGA outputs is $15 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega$ differential, reference noise less than $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ from 1 kHz to 20 MHz , DOUT loaded with $10 \mathrm{M} \Omega$ and 60 pF , unless otherwise noted. All typical operating curves have been taken with the MAX2077CTN+ package variant.)

Octal-Channel Ultrasound Front-End

Typical Operating Characteristics (continued)
(Typical Application Circuits, $\mathrm{V}_{\mathrm{REF}}=2.475 \mathrm{~V}$ to 2.525V, $\mathrm{V}_{\mathrm{CC} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{NP}=0, \mathrm{PD}=0$, D3/D2/D1/D0 $=1 / 0 / 1 / 0(R I N=200 \Omega$, LNA gain $=18.5 \mathrm{~dB}), \mathrm{D} 5 / \mathrm{D} 4=1 / 1(\mathrm{fc}=18 \mathrm{MHz}), \mathrm{f}_{\mathrm{RF}}=5 \mathrm{MHz}, \mathrm{RS}=200 \Omega$, capacitance to GND at each of the VGA differential outputs is 25 pF , differential capacitance across VGA outputs is $15 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega$ differential, reference noise less than $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ from 1 kHz to 20 MHz , DOUT loaded with $10 \mathrm{M} \Omega$ and 60 pF , unless otherwise noted. All typical operating curves have been taken with the MAX2077CTN+ package variant.)

LNA OVERLOAD RECOVERY TIME

 FOR $1 \mu \mathrm{~s}$ AND BACK TO 500 mV p-P FOR $0.5 \mu \mathrm{~s}, \mathrm{GAIN}=10 \mathrm{~dB}$)

VGA OVERLOAD RECOVERY TIME
(VIN $=40 \mathrm{mV} V_{\text {P.P }}$ FOR $1 \mu \mathrm{~S}$ TO $4 \mathrm{mV} \mathrm{V}_{\text {P-P }}$ FOR 1 $\mu \mathrm{s}$ AND BACK $\mathbf{T O} 40 \mathrm{mV}$ p-p

FOR $1 \mu \mathrm{~s}, \mathrm{GAIN}=42.5 \mathrm{~dB}$

Octal-Channel Ultrasound Front-End

Pin Description

PIN		NAME	FUNCTION
56 TQFN	68 TQFN		
1	2	INC2	Channel 2 Clamp Input. Connect to a coupling capacitor. See the Typical Application Circuits for details.
2	3	ZF3	Channel 3 Active Impedance Matching Line. AC-couple to source with a 10nF capacitor.
3	4	IN3	Channel 3 Input
4	5	INC3	Channel 3 Clamp Input. Connect to a coupling capacitor. See the Typical Application Circuits for details.
5	6	ZF4	Channel 4 Active Impedance Matching Line. AC-couple to source with a 10nF capacitor.
6	7	IN4	Channel 4 Input
7	8	INC4	Channel 4 Clamp Input. Connect to a coupling capacitor. See the Typical Application Circuits for details.
8	10	AG	AC Ground. Connect a low-ESR $1 \mu \mathrm{~F}$ capacitor to ground.
9	11	ZF5	Channel 5 Active Impedance Matching Line. AC-couple to source with a 10nF capacitor.
10	12	IN5	Channel 5 Input
11	13	INC5	Channel 5 Clamp Input. Connect to a coupling capacitor. See the Typical Application Circuits for details.
12	14	ZF6	Channel 6 Active Impedance Matching Line. AC-couple to source with a 10nF capacitor.
13	15	IN6	Channel 6 Input
14	16	INC6	Channel 6 Clamp Input. Connect to a coupling capacitor. See the Typical Application Circuits for details.
15	17	ZF7	Channel 7 Active Impedance Matching Line. AC-couple to source with a 10nF capacitor.
16	18	IN7	Channel 7 Input
17	19	INC7	Channel 7 Clamp Input. Connect to a coupling capacitor. See the Typical Application Circuits for details.
18	20	ZF8	Channel 8 Active Impedance Matching Line. AC-couple to source with a 10nF capacitor.
19	21	IN8	Channel 8 Input
20	22	INC8	Channel 8 Clamp Input. Connect to a coupling capacitor. See the Typical Application Circuits for details.
21, 51	23, 64	VCC2	4.75 V Power Supply. Connect to an external 4.75 V power supply. Connect all 4.75 V supply pins together externally and bypass with 100 nF capacitors as close as possible to the pin.
22	24	VREF	External 2.5V Reference Supply. Connect to a low-noise power supply. Bypass to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the pins. Note that noise performance of the device is dependent on the noise contribution from $V_{\text {REF }}$. Use a supply with noise lower than $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ from 1 kHz to 20 MHz .
23, 35, 49	25, 44, 63	$\mathrm{V}_{\mathrm{CC} 1}$	3.3V Power Supply. Connect to an external 3.3 V power supply. Connect all 3.3 V supply pins together externally and bypass with 100 nF capacitors as close as possible to the pin.
24	26	VG+	VGA Analog Gain Control Differential Input. Set the differential voltage to -3V for minimum
25	27	VG-	gain and to +3V for maximum gain.
26	32	DOUT	Serial Port Data Output. Data output for ease of daisy-chain programming. The level is 3.3 V CMOS.

Octal-Channel Ultrasound Front-End

Pin Description (continued)

PIN		NAME	FUNCTION
56 TQFN	68 TQFN		
27	34	OUT8-	Channel 8 Negative Differential Output
28	35	OUT8+	Channel 8 Positive Differential Output
29	36	OUT7-	Channel 7 Negative Differential Output
30	37	OUT7+	Channel 7 Positive Differential Output
31	38	OUT6-	Channel 6 Negative Differential Output
32	39	OUT6+	Channel 6 Positive Differential Output
33	40	OUT5-	Channel 5 Negative Differential Output
34	41	OUT5+	Channel 5 Positive Differential Output
36	45	OUT4-	Channel 4 Negative Differential Output
37	46	OUT4+	Channel 4 Positive Differential Output
38	47	OUT3-	Channel 3 Negative Differential Output
39	48	OUT3+	Channel 3 Positive Differential Output
40	49	OUT2-	Channel 2 Negative Differential Output
41	50	OUT2+	Channel 2 Positive Differential Output
42	51	OUT1-	Channel 1 Negative Differential Output
43	52	OUT1+	Channel 1 Positive Differential Output
44	54	CLK	Serial Port Data Clock (Positive Edge Triggered). 3.3V CMOS. Clock input for programming the serial shift registers.
45	55	DIN	Serial Port Data Input Line. 3.3V CMOS. Data input to program the serial shift registers.
46	56	$\overline{\mathrm{CS}}$	Active-Low Serial Port Chip Select. 3.3V CMOS. Used to store programming bits in registers, as well as in CW mode, synchronizing all channel phases (on a rising edge).
47	-	PD	Power-Down Mode Select Input (56-Pin TQFN Only). Drive PD high to place the entire device in power-down mode. Drive PD low for normal operation. This mode overrides the standby mode.
48	57	NP	VGA Standby Mode Select Input. Set NP to 1 to place the entire device in standby mode. Overrides soft channel shutdown in serial shift register, but not general power-down (PD).
50	9, 28, 31	GND	Ground
52	65	ZF1	Channel 1 Active Impedance Matching Line. AC-couple to source with a 10nF capacitor.
53	66	IN1	Channel 1 Input
54	67	INC1	Channel 1 Clamp Input. Connect to a coupling capacitor. See the Typical Application Circuits for details.
55	68	ZF2	Channel 2 Active Impedance Matching Line. AC-couple to source with a 10 nF capacitor.
56	1	IN2	Channel 2 Input
-	$\begin{aligned} & 29,30, \\ & 33,42, \\ & 43,53, \\ & 58-62 \end{aligned}$	N.C.	No Connection. Internally not connected.
-	-	EP	Exposed pad. Internally connected to ground. Connect to a large ground plane using multiple vias to maximize thermal and electrical performance. Not intended as an electrical connection point.

Octal-Channel Ultrasound Front-End

Octal-Channel Ultrasound Front-End

Detailed Description

The MAX2077 is a high-density, octal-channel ultrasound receiver optimized for low-cost, high-channel count, high-performance portable and cart-based ultrasound applications. The integrated octal LNA, VGA, and AAF offer a complete ultrasound imaging path receiver solution.
Imaging path dynamic range has been optimized for exceptional second-harmonic performance. The complete imaging receive channel exhibits an exceptional 68 dBFS * SNR at 5 MHz . The bipolar front-end has also been optimized for exceptionally low near-carrier modulation noise for exceptional low-velocity pulsed and color-flow Doppler sensitivity under high-clutter conditions, achieving an impressive near-carrier SNR of
$140 \mathrm{dBc} / \mathrm{Hz}$ at 1 kHz offset from a Vout $=1 \mathrm{Vp}-\mathrm{P}, 5 \mathrm{MHz}$ clutter signal. To add CW Doppler capability, replace the MAX2077 with the MAX2078.

Modes of Operation
The MAX2077 requires programming before it can be used. The operating modes are controlled by the D0-D6 programming bits. Tables 1 and 2 show the functions of these programming bits.

Low-Noise Amplifier (LNA)

The MAX2077's LNA is optimized for excellent dynamic range and linearity performance characteristics, making it ideal for ultrasound imaging applications. When the LNA is placed in low-gain mode, the input resistance (RIN), being a function of the gain $A\left(R_{I N}=\right.$ $R F /(1+A)$), increases by a factor of approximately 2 .
*When coupled with the MAX1437B ADC.
Table 1. Summary of Programming Bits

BIT NAME	DESCRIPTION
D0, D1, D2	Input-impedance programming
D3	LNA gain (D3 = 0 is low gain)
D4, D5	Anti-alias filter fc programming
D6	Don't care

Table 2. Logic Functions of Programming Bits

D6	D5	D4	D3	D2	D1	D0	MODE
X	X	X	1	0	0	0	$R_{I N}=50 \Omega$, LNA gain $=18.5 \mathrm{~dB}$
X	X	X	1	0	0	1	$R_{I N}=100 \Omega$
X	X	X	1	0	1	0	$R_{I N}=200 \Omega$
X	X	X	1	0	1	1	$R_{I N}=1000 \Omega$
X	X	X	0	0	0	0	$R_{I N}=100 \Omega$, LNA gain $=12.5 \mathrm{~dB}$
X	X	X	0	0	0	1	$R_{I N}=200 \Omega$
X	X	X	0	0	1	0	$R_{I N}=400 \Omega$
X	X	X	0	0	1	1	$R_{I N}=2000 \Omega$
X	X	X	1	1	X	X	Open feedback, LNA gain $=18.5 \mathrm{~dB}$
X	0	0	X	X	X	X	$f_{C}=9 \mathrm{MHz}$
X	0	1	X	X	X	X	$f_{C}=10 \mathrm{MHz}$
X	1	0	X	X	X	X	$f_{C}=15 \mathrm{MHz}$
X	1	1	X	X	X	X	$f_{C}=18 \mathrm{MHz}$

[^1]
Octal-Channel Ultrasound Front-End

Consequently, the switches that control the feedback resistance (RF_{F}) have to be changed. For instance, the 100Ω mode in high gain becomes the 200Ω mode in low gain (see Table 2).

Variable-Gain Amplifier (VGA)

The MAX2077's VGAs are optimized for high linearity, high dynamic range, and low output-noise performance, all of which are critical parameters for ultrasound imaging applications. Each VGA path includes circuitry for adjusting analog gain, as well as an output buffer with differential output ports (OUT_+, OUT_-) for driving ADCs.
The VGA gain can be adjusted through the differential gain control input VG+ and VG-. Set the differential gain control input voltage at -3 V for minimum gain and +3 V for maximum gain. The differential analog control com-mon-mode voltage is 1.65 V (typ).

Overload Recovery

The device is also optimized for quick overload recovery for operation under the large input signal conditions that are typically found in ultrasound imaging applications. See the Typical Operating Characteristics for an illustration of the rapid recovery time from a transmit-related overload.

Power-Down Mode

The MAX2077CTN+ can also be powered down with PD (the same feature is not available in the MAX2077CTK+). Set PD to logic-high for power-down mode. In powerdown mode, the device consumes 3.0 $\mu \mathrm{W}$ (typ) power. Set PD to logic-low for normal operation.
Setting NP to logic-high places the MAX2077 in standby mode. In standby mode, the device consumes less power (5.6 mW typ), but input/output pins remain biased to provide quick power-up response time. Standby mode is available for both MAX2077CTN+ and MAX2077CTK+ versions.

Applications Information

Serial Interface

The MAX2077 is programmed using a serial shift register arrangement. This greatly simplifies the complexity of the program circuitry, reduces the number of IC pins necessary for programming, and reduces the PCB layout complexity. The data in (DIN) and data out (DOUT) can be daisy-chained from device to device and all front-ends can run off a single programming clock.
The data can be entered after $\overline{\mathrm{CS}}$ goes low. Once a whole word is entered, $\overline{\mathrm{CS}}$ needs to rise. When programming the part, enter LSB first and MSB last. The chip-select line $(\overline{\mathrm{CS}})$ is used to load the programming information in multiple MAX2077 devices at the same
time. The line is pulled down before the programming begins and pulled up after it is complete for all devices used. On the rising edge, the information is stored in internal registers.

Active Impedance Matching

To provide exceptional noise-figure characteristics, the input impedance of each amplifier uses a feedback topology for active impedance matching. A feedback resistor of the value $(1+(A / 2)) \times R S$ is added between the inverting input of the amplifier to the output. The input impedance is the feedback resistor (Z_{F}) divided by $1+(A / 2)$. The factor of two is due to the gain of the amplifier (A) being defined with a differential output. For common input impedances, the internal digitally programmed impedances can be used (see Table 2). For other input impedances, use an externally supplied resistor in series with the existing programmable feedback impedances to set the input impedance according to the above formula.

Noise Figure

The MAX2077 is designed to provide maximum input sensitivity with exceptionally low noise figure. The input active devices are selected for very low-equivalent input-noise voltage and current, optimized for source impedances from 50Ω to 1000Ω. Additionally, the noise contribution of the matching resistor is effectively divided by $1+(A / 2)$. Using this scheme, typical noise figure of the amplifier is approximately 2.4 dB for $\mathrm{R} / \mathrm{N}=\mathrm{RS}=200 \Omega$. Table 3 illustrates the noise figure for other input impedances.

Input Clamp
The MAX2077 includes configurable integrated inputclamping diodes. The diodes are clamped to ground at $\pm 0.8 \mathrm{~V}$. The input-clamping diodes can be used to prevent large transmit signals from overdriving the inputs of the amplifiers. Overdriving the inputs could possibly place charge on the input-coupling capacitor, causing longer transmit overload recovery times. Input signals are AC-coupled to the single-ended inputs IN1-IN8, but are clamped with the INC1-INC8 inputs. See the Typical Application Circuits. If external clamping devices are preferred, simply leave INC1-INC8 unconnected.

Table 3. Noise Figure vs. Source and Input Impedances

RS $_{\mathbf{~}} \boldsymbol{\Omega}$)	RIN (Ω)	NF (dB)
50	50	4.5
100	100	3.4
200	200	2.4
1000	1000	2.2

Octal-Channel Ultrasound Front-End

Figure 1. Shift Register Timing Diagram

Analog Output Coupling

 Each of the VGA output pins can drive 25 pF to GND and $15 \mathrm{pF} \| 1 \mathrm{k} \Omega$ differentially. The differential outputs have a common-mode bias of approximately 1.73 V . AC-couple these differential outputs if the next stage has a different common-mode input range.
Power-Supply Sequencing

Use the following power-on sequence:

1) 4.75 V supply
2) 3.3 V supply
3) 2.5 V reference voltage
4) Control signals

Before a signal is turned on, it should be either at OV or in an open state.

Ultrasound-Specific IMD3 Specification
Unlike typical communications applications, the two input tones are not equal in magnitude for the ultra-sound-specific IMD3 two-tone specification. In this measurement, f_{1} represents reflections from tissue and f_{2} represents reflections from blood. The latter reflections are typically 25 dB lower in magnitude, and hence the measurement is defined with one input tone 25 dB lower than the other. The IMD3 product of interest
($f_{1}-\left(f_{2}-f_{1}\right)$) presents itself as an undesired Doppler error signal in ultrasound applications (see Figure 2).

Figure 2. Ultrasound IMD3 Measurement Technique

Octal-Channel Ultrasound Front-End

PCB Layout
The pin configuration of the MAX2077 is optimized to facilitate a very compact physical layout of the device and its associated discrete components. A typical application for this device might incorporate several devices in close proximity to handle multiple channels of signal processing.
The exposed pad (EP) of the MAX2077's TQFN-EP packages provide a low thermal-resistance path to the die. It is important that the PCB on which the MAX2077 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.

Chip Information
PROCESS: Complementary BiCMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
56 TQFN-EP	$T 5688+2$	$\underline{\mathbf{2 1 - 0 1 3 5}}$
68 TQFN-EP	$T 6800+2$	$\underline{\mathbf{2 1 - 0 1 4 2}}$

Pin Configurations

Octal-Channel Ultrasound Front-End

Pin Configurations (continued)

Octal-Channel Ultrasound Front-End

Octal-Channel Ultrasound Front-End

Octal-Channel Ultrasound Front-End

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$7 / 09$	Initial release	-
1	$9 / 09$	Removed future product reference for MAX2077CTK+ package and made minor corrections	$1,6-9,12$

[^0]: *When coupled with the MAX1437B ADC.

[^1]: $X=$ Don't care.

