imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX2839AS direct conversion, zero-IF, RF transceiver is designed specifically for 2.3GHz to 2.7GHz 802.16e MIMO mobile WiMAX™ systems. The device incorporates one transmitter and two receivers, with > 40dB isolation between each receiver. The MAX2839AS completely integrates all circuitry required to implement the RF transceiver function, providing RF to baseband receive path, and baseband to RF transmit path, VCO, frequency synthesizer, crystal oscillator, and baseband/control interface. The device includes a fast-settling sigma-delta RF synthesizer with smaller than 40Hz frequency steps and a crystal oscillator that allows the use of a low-cost crystal in place of a TCXO. The transceiver IC also integrates circuits for on-chip DC-offset cancellation, I/Q error, and carrier leakage detection circuits. An internal transmit to receive loopback mode allows for receiver I/Q imbalance calibration. The local oscillator I/Q quadrature phase error can be digitally corrected in approximately 0.125° steps. Only an RF bandpass filter (BPF), crystal, RF switch, PA, and a small number of passive components are needed to form a complete wireless broadband RF radio solution.

The MAX2839AS completely eliminates the need for an external SAW filter by implementing on-chip programmable monolithic filters for both the receiver and transmitter, for all 2GHz and 802.16e profiles and WiBro. The baseband filters along with the Rx and Tx signal paths are optimized to meet the stringent noise figure and linearity specifications. The device supports up to 2048 FFT OFDM and implements programmable channel filters for 3.5MHz to 20MHz RF channel bandwidths. The transceiver requires only 2µs Tx-Rx switching time. The IC is available in a small wafer-level package (WLP) measuring 5.16mm x 3.66mm x 0.5mm.

Applications

802.16e Mobile WiMAX Systems Korean WiBro Systems Proprietary Wireless Broadband Systems 802.11g or n WLAN with MRC or MIMO Down Link

WiMAX is a trademark of the WiMAX Forum. SPI is a trademark of Motorola, Inc.

Features

- ♦ 2.3GHz to 2.7GHz Wideband Operation
- Dual Receivers for MIMO, Single Transmitter
- Complete RF Transceiver, PA Driver, and Crystal Oscillator
 - 3.5dB Rx Noise Figure on Each Receiver with Balun

-35dB Rx EVM for 64QAM Signal 0dBm Linear OFDM Transmit Power (64QAM) -70dBr Tx Spectral Emission Mask -35dBc LO Leakage

- Automatic Rx DC Offset Correction
- Monolithic Low-Noise VCO with -39dBc Integrated Phase Noise
- Programmable Rx I/Q Lowpass Channel Filters Programmable Tx I/Q Lowpass Anti-Aliasing
- Filters Sigma-Delta Fractional-N PLL with 28.61Hz Minimum Step Size
- 62dB Tx Gain Control Range with 1dB Step Size, Digitally Controlled
- 95dB Rx Gain Control Range with 1dB Step Size, Digitally Controlled
- 60dB Analog RSSI Instantaneous Dynamic Range

4-Wire SPI™ Digital Interface I/Q Analog Baseband Interface Digital Tx/Rx Mode Control Digitally Tuned Crystal Oscillator On-Chip Digital Temperature Sensor Readout

- ♦ +2.7V to +3.6V Transceiver Supply
- Low-Power Shutdown Current
- Small WLP Package (5.16mm x 3.66mm x 0.5mm)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2839ASEWO+T	-40°C to +85°C	73 WLP

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

Bump Configuration and Typical Operating Circuit appear at end of data sheet.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} _ Pins to GND0.3V to	+3.9V Di
RF Inputs: RXINA+, RXINA-, RXINB+,	Bi
RXINB- to GNDAC-Couple	d Only Sł
RF Outputs: TXOUT+, TXOUT- to GND0.3V to	+3.9V RF
Analog Inputs: TXBBI+, TXBBI-, TXBBQ+,	RF
TXBBQ- to GND0.3V to	
Analog Input: REFCLK, XTAL10.3V to +3	3.9Vp-p
Analog Outputs: RXBBIA+, RXBBIA-, RXBBQA+, RXBBQ	A-, O
RXBBIB+, RXBBIB-, RXBBQB+, RXBBQB-, CPOUT+,	Ju
CPOUT-, PABIAS, RSSI to GND0.3V to	+3.9V St
Digital Inputs: TXRX, CS, SCLK, DIN, B7:B0,	Sc
CLKOUT_DIV, RXHP, ENABLE to GND0.3V to	+3.9V
Nete de Defense Anglie stien Nete 1001. Un denste adie a	ula Daalaa af ula

Digital Outputs: DOUT, CLKOUT	
Bias Voltages: VCOBYP	0.3V to +3.9V
Short-Circuit Duration on All Output Pins	
RF Input Power: All RXIN	+10dBm
RF Output Differential Load VSWR: All TXC	DUT6:1
Continuous Power Dissipation (T _A = +70°0	,
73-Bump WLP (derate 31.3mW/°C abov	/e +70°C)2500mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Soldering Temperature (reflow)	(Note 1) +260°C

Note 1: Refer to Application Note 1891: Understanding the Basics of the Wafer-Level Chip-Scale Package (WL-CSP) available at www.maxim-ic.com.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION! ESD SENSITIVE DEVICE

DC ELECTRICAL CHARACTERISTICS

(MAX2839AS Evaluation Kit. Unless otherwise noted, $V_{CC_{-}} = 2.7V$ to 3.6V, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C, Rx set to the maximum gain. ENABLE and TXRX set according to operating mode. \overline{CS} = high, SCLK = DIN = low, no input signal at RF inputs, all RF inputs and outputs terminated into 50Ω . 90mV_{RMS} differential I and Q signals (1MHz) applied to I, Q baseband inputs of transmitter in transmit mode, all registers set to recommended settings. Typical values are at V_{CC} = 2.8V, f_{LO} = 2.5GHz, and T_A = +25°C.) (Note 2)

PARAMETER		CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage	V _{CC} _		2.7		3.6	V
	Shutdown mode, T, V _{CC}	$A = +25^{\circ}C$; all logic inputs equal 0 or		2		μA
	Clock-out only mod	le		2.7	3.8	
	Standby mode			33	50	
Supply Current	Rx mode	One receiver on		79	101	
Supply Current	HX MODE	Both receivers on		120	148	
	Tx mode	16 QAM		116	148	mA
	TX Mode	64 QAM (Note 3)		145	183	
	Rx calibration mode, both receivers on			153	200	-
	Tx calibration mode			102	145	
	D[9:8] = 00 in A[4:0] = 00100		0.8	1.05	1.35	
Rx I/Q Output Common-Mode	D[9:8] = 01 in A[4:0] = 00100			1.15		V
Voltage	D[9:8] = 10 in A[4:0] = 00100			1.25		V
	D[9:8] = 11 in A[4:0] = 00100			1.45		
Tx Baseband Input Common- Mode Voltage Operating Range	DC-coupled		0.5		1.2	V
Tx Baseband Input Bias Current	Source current			10	20	μΑ
LOGIC INPUTS: TXRX, ENABLE	, SCLK, DIN, CS, B7:	B0, CLKOUT_DIV, RXHP				
Digital Input-Voltage High, VIH			V _{CC} - 0.4	1		V
Digital Input-Voltage Low, VIL					0.4	V
Digital Input-Current High, IIH			-1		+1	μA

DC ELECTRICAL CHARACTERISTICS (continued)

(MAX2839AS Evaluation Kit. Unless otherwise noted, V_{CC-} = 2.7V to 3.6V, T_A = -40°C to +85°C, Rx set to the maximum gain. ENABLE and TXRX set according to operating mode. \overline{CS} = high, SCLK = DIN = low, no input signal at RF inputs, all RF inputs and outputs terminated into 50 Ω . 90mV_{RMS} differential I and Q signals (1MHz) applied to I, Q baseband inputs of transmitter in transmit mode, all registers set to recommended settings. Typical values are at V_{CC} = 2.8V, f_{LO} = 2.5GHz, and T_A = +25°C.) (Note 2)

PARAMETER	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Digital Input-Current Low, IIL		-1		+1	μA
LOGIC OUTPUTS: DOUT, CLKOU	т				
Digital Output-Voltage High, V _{OH}	Sourcing 100µA	V _{CC} - 0.4			V
Digital Output-Voltage Low, VOL	Sinking 100µA			0.4	V

AC ELECTRICAL CHARACTERISTICS—Rx MODE

(MAX2839AS Evaluation Kit. Unless otherwise noted, $V_{CC_{-}} = 2.8V$, $T_A = +25^{\circ}C$, $f_{RF} = 2.4999GHz$, $f_{LO} = 2.5GHz$; baseband output signal frequency = 100kHz, $f_{REF} = 40$ MHz, ENABLE = TXRX = \overline{CS} = high, SCLK = DIN = low, with power matching for the differential RF pins using the *Typical Operating Circuit* and registers set to default settings. Lowpass filter is set to 10MHz RF channel BW. Unmodulated single-tone RF input signal is used.) (Note 2)

PARAMETER		CONDITIONS	MIN	ТҮР	МАХ	UNITS
RF INPUT TO I, Q BASEBAND-LO	DADED OUTPUT		•			
RF Input Frequency Range			2.3		2.7	GHz
Peak-to-Peak Gain Variation over RF Input Frequency Range	Tested at band ed	ested at band edges and band center		1.5		dB
RF Input Return Loss	All LNA settings			12		dB
Total Voltage Gain	$T_A = -40^{\circ}C$ to	Maximum gain, B7:B0 = 0000000	92	99		dB
Total voltage Gall	+85°C	Minimum gain, B7:B0 = 1111111		4	10	uв
	From max RF gain (B7:B6 = 01)	(B7:B6 = 00) to max RF gain - 8dB		8		٩D
RF Gain Steps	From max RF gain to max RF gain - 16dB (B7:B6 = 10)			16		dB
	From max RF gain to max RF gain - 32dB (B7:B6 = 11)			32		
	Any RF or baseband gain change; gain settling to within ± 1 dB of steady state; RXHP = 1			200		
Gain Change Settling Time	Any RF or baseband gain change; gain settling to within ± 0.1 dB of steady state; RXHP = 1			2000		ns
Baseband Gain Range		aseband gain (B5:B0 = 000000) to :B0 = 111111), T _A = -40°C to +85°C	60.5	63	65.5	dB
Baseband Gain Step Size				1		dB
	Voltage gain = 650	dB with max RF gain (B7:B6 = 00)		3.5		
	Voltage gain = 50c	IB with max RF gain - 8 dB (B7:B6 = 01)		8.5		
DSB Noise Figure (Including Balun Loss)	Voltage gain = 45dB with max RF gain - 16dB (B7:B6 = 10)			14.5		dB
	Voltage gain = 150 (B7:B6 = 11)	dB with max RF gain - 32dB		32		

AC ELECTRICAL CHARACTERISTICS—Rx MODE (continued)

(MAX2839AS Evaluation Kit. Unless otherwise noted, $V_{CC_{-}} = 2.8V$, $T_A = +25^{\circ}$ C, $f_{RF} = 2.4999$ GHz, $f_{LO} = 2.5$ GHz; baseband output signal frequency = 100kHz, $f_{REF} = 40$ MHz, ENABLE = TXRX = \overline{CS} = high, SCLK = DIN = low, with power matching for the differential RF pins using the *Typical Operating Circuit* and registers set to default settings. Lowpass filter is set to 10MHz RF channel BW. Unmodulated single-tone RF input signal is used.) (Note 2)

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
	AGC set for -65dBm wanted signal, m (B7:B6 = 00)	ax RF gain		-13		
Out of Donal Input ID2 (Nato 4)	AGC set for -55dBm wanted signal, m (B7:B6 = 01)	ax RF gain - 8dB		-9		dDm
Out-of-Band Input IP3 (Note 4)	AGC set for -40dBm wanted signal, m (B7:B6 = 10)	ax RF gain - 16dB		-7		dBm
	AGC set for -30dBm wanted signal, m (B7:B6 = 11)	ax RF gain - 32dB		+16		
	Max RF gain (B7:B6 = 00)			-37		
	Max RF gain - 8dB (B7:B6 = 01)			-29		
Inband Input P-1dB	Max RF gain - 16dB (B7:B6 = 01)			-21		dBm
	Max RF gain - 32dB (B7:B6 = 11)			-4		
Maximum Output Signal Level		Over passband frequency range at VGA gain between max and max - 54dB; 1dB compression point				VP-P
I/Q Gain Imbalance	100kHz IQ baseband output; 1 σ varia	ation		0.05		dB
I/Q Phase Error	100kHz IQ baseband output; 1 σ varia	ation		0.25		Degrees
Rx I/Q Output Load Impedance	Minimum differential resistance		10			kΩ
(R II C)	Maximum differential capacitance				5	pF
Loopback Gain (for Receiver I/Q Calibration)	Transmitter I/Q input to receiver I/Q output; transmitter B6:B1 = 000011, receiver B5:B0 = 101010 programmed through SPI			-1	+4.5	dB
I/Q Output DC Droop	After switching RXHP to 0; average ov gain change, or 2µs after receive enal AC-coupling			1		V/s
I/Q Static DC Offset	No RF input signal; measure at 3µs af RXHP = 1 for 0 to 2µs and set to 0 after			1		mV
Isolation Between Rx Channels A and B	Any RF gain settings			40		dB
RECEIVER BASEBAND FILTERS	;					
	At 15MHz			57		
Baseband Filter Rejection	At 20MHz			75		dB
	At > 40MHz			75		
	RXHP = 1 (used before AGC completion)			650		
		D[5:4] = 00		0.1]
Baseband Highpass Filter Corner Frequency	RXHP = 0 (used after AGC	D[5:4] = 01		1		kHz
поциенсу	completion) address A[4:0] = 01110 D[5:4] = 10		30]	
		D[5:4] = 11		100		

AC ELECTRICAL CHARACTERISTICS—Rx MODE (continued)

(MAX2839AS Evaluation Kit. Unless otherwise noted, V_{CC} = 2.8V, T_A = +25°C, f_{RF} = 2.4999GHz, f_{LO} = 2.5GHz; baseband output signal frequency = 100kHz, f_{REF} = 40MHz, ENABLE = TXRX = \overline{CS} = high, SCLK = DIN = low, with power matching for the differential RF pins using the *Typical Operating Circuit* and registers set to default settings. Lowpass filter is set to 10MHz RF channel BW. Unmodulated single-tone RF input signal is used.) (Note 2)

PARAMETER	CONDITIONS	;	MIN	ТҮР	МАХ	UNITS	
	A[4:0] = 00100 serial bits D[9:6] = 0	0000		1.75			
	A[4:0] = 00100 serial bits D[9:6] = 0	0001		2.25			
	A[4:0] = 00100 serial bits D[9:6] = 0	3.5					
	A[4:0] = 00100 serial bits D[9:6] = 0	A[4:0] = 00100 serial bits D[9:6] = 0011 A[4:0] = 00100 serial bits D[9:6] = 0100			5.0		
	A[4:0] = 00100 serial bits D[9:6] = 0						
	A[4:0] = 00100 serial bits D[9:6] =	0101		6.0			
	A[4:0] = 00100 serial bits D[9:6] = 0)110		7.0			
RF Channel BW Supported by	A[4:0] = 00100 serial bits D[9:6] = 0)111		8.0		MHz	
Baseband Filter	A[4:0] = 00100 serial bits D[9:6] = 7	000		9.0		IVIHZ	
	A[4:0] = 00100 serial bits D[9:6] = 7	001		10.0			
	A[4:0] = 00100 serial bits D[9:6] =	010		12.0			
	A[4:0] = 00100 serial bits D[9:6] =	14.0 15.0 20.0 24.0 28.0			1		
	A[4:0] = 00100 serial bits D[9:6] = 7						
	A[4:0] = 00100 serial bits D[9:6] = 7						
	A[4:0] = 00100 serial bits D[9:6] = 7						
	A[4:0] = 00100 serial bits D[9:6] = 7						
Deschand Coin Dinals	0 to 2.3MHz for RF BW = 5MHz		1.3 1.3		dD		
Baseband Gain Ripple	0 to 4.6MHz for RF BW = 10 MHz				dBp-p		
Deschard Group Dalay Displa	0 to 2.3MHz for RF BW = 5MHz		90				
Baseband Group Delay Ripple	0 to 4.6MHz for RF BW = $10MHz$	0 to 4.6MHz for RF BW = 10MHz				nsp-p	
Baseband Filter Rejection for	At 2.3MHz			1.8		dB	
5MHz RF Channel BW	At > 8.75MHz			75		uБ	
Baseband Filter Rejection for	At 4.6MHz			1.6		dB	
10MHz RF Channel BW	At > 17.5MHz			75		uБ	
RSSI							
RSSI Minimum Output Voltage	$R_{LOAD} \ge 10 k\Omega$			0.6		V	
RSSI Maximum Output Voltage	$R_{LOAD} \ge 10 k\Omega$	$R_{LOAD} \ge 10k\Omega$		2.1		V	
RSSI Slope				29		mV/dB	
RSSI Output Settling Time	To within 3dB of steady state	+32dB signal step		200	ns		
	TO WITHIT OUD OF STEADY STATE	-32dB signal step		800			

AC ELECTRICAL CHARACTERISTICS—Tx MODE

(MAX2839AS Evaluation Kit. Unless otherwise noted, $V_{CC_{-}} = 2.8V$, $T_A = +25^{\circ}C$, $f_{RF} = 2.501GHz$, $f_{LO} = 2.5GHz$, $f_{REF} = 40MHz$, ENABLE = \overline{CS} = high, TXRX = SCLK = DIN = low, with power matching for the differential RF pins using the *Typical Operating Circuit* and registers set to default settings. Lowpass filter is set to 10MHz RF channel BW. 1MHz 90mV_{RMS} cosine and sine signals applied to I/Q baseband inputs of transmitter (differential DC-coupled)). (Note 2)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Tx BASEBAND I/Q INPUTS TO R	FOUTPUTS				•
RF Output Frequency Range		2.3		2.7	GHz
Peak-to-Peak Peak Gain Variation over RF Band			1	2	dB
Total Voltage Gain	Max gain - 3dB; at unbalanced 50 Ω matched output	3.5	8		dB
Max Output Power over Frequency	64 QAM OFDM signal conforming to spectral emission mask and -36dB EVM after I/Q imbalance calibration by modem (Note 5)	0		dBm	
RF Output Return Loss			8		dB
RF Gain Control Range	B6:B1 = 000000 to 111111		62		dB
Unwanted Sideband Suppression	Without calibration by modem, and excludes modem I/Q imbalance; POUT = 0dBm	40			dB
	B1	1 2			
	B2			dB	
RF Gain Control Binary Weights	В3	4			
RF Gain Control Binary weights	B4	8			
	B5	16			
	B6		32		
Carrier Leakage	Relative to 0dBm output power; without calibration by modem		-30		dBc
	Differential resistance		100		kΩ
Tx I/Q Input Impedance (RIIC)	Differential capacitance		0.5		pF
Baseband Frequency Response	0 to 3.333MHz		0.9		٩D
for 5MHz RF Channel BW	At > 9.45MHz	43		dB	
Baseband Frequency Response	requency Response 0 to 6.667MHz 0.9			dB	
for 10MHz RF Channel BW	At > 18.9MHz		43		UD
Baseband Group Delay Ripple	0 to 3.333MHz (RF BW = 5MHz)		20		ns
	0 to 6.667MHz (RF BW = 10MHz)	to 6.667MHz (RF BW = 10MHz) 12			110

AC ELECTRICAL CHARACTERISTICS—FREQUENCY SYNTHESIS

(MAX2839AS Evaluation Kit. Unless otherwise noted, $V_{CC_{-}}$ = 2.8V, T_A = +25°C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, SCLK = DIN = low, PLL closed-loop unity gain bandwidth = 120kHz. VCO and RF synthesis enabled.) (Note 2)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
RF Channel Center Frequency Range		2.3		2.7	GHz
Channel Center Frequency Programming Minimum Step Size			28.61		Hz
Charge-Pump Comparison Frequency			40		MHz
Reference Frequency Range		15	40	80	MHz
Reference Frequency Input Levels	AC-coupled to REFCLK pin	0.6			Vp-p
Reference Frequency Input	Resistance (REFCLK pin)		10		kΩ
Impedance (RIIC)	Capacitance (REFCLK pin)		1		pF
Programmable Reference Divider Values		1	2	4	
Closed-Loop Integrated Phase Noise	Integrate phase noise from 200Hz to 5MHz; charge- pump comparison frequency = 40MHz		-39		dBc
Charge-Pump Output Current	On each differential side		0.8		mA
	fOFFSET = 0 to 1.8MHz		-40		
Close-In Spur Level	fOFFSET = 1.8MHz to 7MHz	-70		dBc	
	foffset > 7MHz		-80		
Reference Spur Level			-85		dBc
Turnaround LO Frequency Error	Relative to steady state; measured 35 μ s after Tx-Rx or Rx-Tx switching instant, and 4 μ s after any receiver gain changes		±50		Hz
Temperature Range Over Which VCO Maintains Lock	Relative to the ambient temperature T_A at initial lock		T _A ±40		°C
Reference Output Clock Divider	CLKOUT_DIV pin = 0		1		
Values	CLKOUT_DIV pin = 1		2]
Output Clock Drive Level	20MHz output, A[4:0] = 10100, D5 = 0		2.4		VP-P
Output Clock Load Impedance	Resistance		10		kΩ
(RIIC)	Capacitance		2		pF

AC ELECTRICAL CHARACTERISTICS—MISCELLANEOUS BLOCKS

(MAX2839AS Evaluation Kit. Unless otherwise noted, $V_{CC_{-}}$ = 2.8V, f_{REF} = 40MHz, \overline{CS} = high, SCLK = DIN = low, and T_A = +25°C.) (Note

PARAMETER	CONDITIONS			ТҮР	MAX	UNITS
PA BIAS DAC: VOLTAGE MOD	E					
Output High level	10mA source current			V _{CC} - 0.	.1	V
Output Low level	100µA sink current			0.1		V
Turn-On Time	Excludes programmable delay of 0 to 0.5µs		200		ns	
CRYSTAL OSCILLATOR	-					
On-Chip Tuning Capacitance	Maximum capacitance, A[4:0] = 11000, D[6:0] = 1111111			15.5		рF
Range	Minimum capacitance, A[4:0] = 1100	0.5		рі		
On-Chip Tuning Capacitance Step Size				0.12		pF
ON-CHIP TEMPERATURE SEN	SOR					
		$T_A = +25^{\circ}C$		01111		
Digital Output Code	Readout at DOUT pin through SPI $A[4:0] = 01011, D[4:0]$	$T_A = +85^{\circ}C$		11101]
	Δ[4.0] = 01011, 0[4.0]	$T_A = -40^{\circ}C$		00001		

AC ELECTRICAL CHARACTERISTICS—TIMING

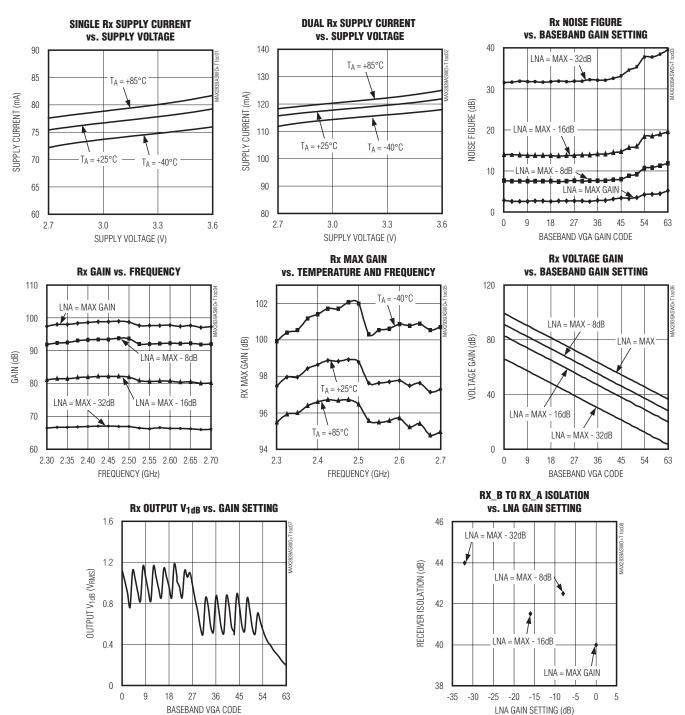
(MAX2839AS Evaluation Kit. Unless otherwise noted, $V_{CC_}$ = 2.8V, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, SCLK = DIN = low, PLL closed-loop unity gain bandwidth = 120kHz, and T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	MAX	UNITS
SYSTEM TIMING	÷			•			
T		Measured from Tx or Rx enable edge;	Rx to Tx		2		
	around Time signal settling to within 2dB of steady state	Tx to Rx, RXHP = 1		2		μs	
Tx Turn-On Time (from Standby Mode)		Measured from Tx-enable edge; signal settling to within 2dB of steady state			2		μs
Tx Turn-Off Time (to Standby Mode)		From Tx-disable edge			0.1		μs
Rx Turn-On Time (from Standby Mode)		Measured from Rx-enable edge; signal settling to within 2dB of steady state			2		μs
Rx Turn-Off Time (to Standby Mode)		From Rx-disable edge			0.1		μs

AC ELECTRICAL CHARACTERISTICS—TIMING (continued)

(MAX2839AS Evaluation Kit. Unless otherwise noted, $V_{CC_}$ = 2.8V, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, SCLK = DIN = low, PLL closed-loop unity gain bandwidth = 120kHz, and T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
4-WIRE SERIAL PARALLEL INTE	RFACE TIMI	NG (see Figure 1)	•			•
SCLK Rising Edge to \overline{CS} Falling Edge Wait Time	tcso			6		ns
Falling Edge of CS to Rising Edge of First SCLK Time	tcss			6		ns
DIN to SCLK Setup Time	t _{DS}			6		ns
DIN to SCLK Hold Time	tDH			6		ns
SCLK Pulse-Width High	tсн			6		ns
SCLK Pulse-Width Low	tCL			6		ns
Last Rising Edge of SCLK to Rising Edge of \overline{CS} or Clock to Load Enable Setup Time	tсsн			6		ns
CS High Pulse Width	tcsw			20		ns
Time Between Rising Edge of $\overline{\text{CS}}$ and the Next Rising Edge of SCLK	tCS1			6		ns
Clock Frequency	fCLK			40		MHz
Rise Time	t _R			0.1/f _{CLK}		ns
Fall Time	tF			0.1/f _{CLK}		ns
SCLK Falling Edge to Valid DOUT	tD			12.5		ns

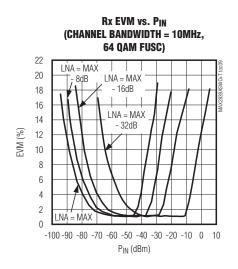

Note 2: Min/max limits are production tested at $T_A = +85^{\circ}$ C. Min/max limits at $T_A = -40^{\circ}$ C and $T_A = +25^{\circ}$ C are guaranteed by design and characterization. The power-on default register settings are not production tested. Load register setting 10µs after V_{CC} is applied.

Note 3: Tx mode supply current is specified for 64 QAM while achieving the Tx output spectrum mask shown in the *Typical Operating Characteristics.* The supply current can be reduced for 16 QAM signal by adjusting the Tx bias settings through the SPI.

Note 4: Two tones at +20MHz and +39MHz offset with -35dBm/tone. Measure IM3 at 1MHz.

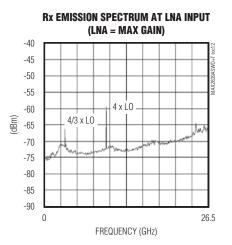
Note 5: Gain adjusted over max gain and max gain -3dB.

 $(V_{CC} = 2.8V, T_A = +25^{\circ}C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, RXHP = SCLK = DIN = low, RF BW = 10MHz, Tx output at 50\Omega unbalanced output of balun, using the MAX2839AS Evaluation Kit.)$

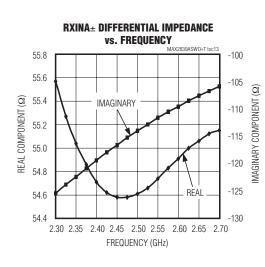


Typical Operating Characteristics

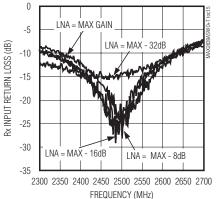
MAX2839AS


Typical Operating Characteristics (continued)

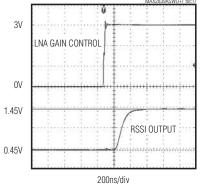
 $(V_{CC} = 2.8V, T_A = +25^{\circ}C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, RXHP = SCLK = DIN = low, RF BW = 10MHz, Tx output at 50\Omega unbalanced output of balun, using the MAX2839AS Evaluation Kit.)$

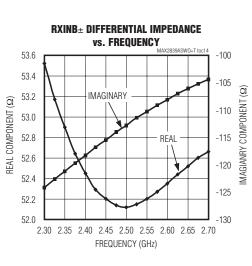

Rx EVM vs. Vout (CHANNEL BANDWIDTH = 10MHz, 64 QAM FUSC) 12 LNA = MAX $P_{IN} = -50 dBm$ 8 EVM (%) 4 0 -26 -30 -22 -14 -10 -6 -18 V_{OUT} (dBV_{RMS})

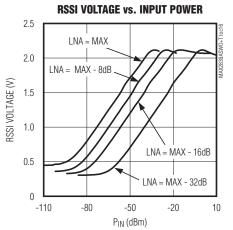
WIMAX EVM vs. OFDM JAMMER (10MHz CHANNEL BANDWIDTH, 64 QAM FUSC) PWANTED = PSENSITIVITY + 3dB = -70.3dBm AT ANTENNA (INCLUDING 4dB FRONT-END LOSS), EVM AT PSENSITIVITY = 6.37%, WITHOUT JAMMER 14 foffset =10MHz 12 10 8 EVM (%) 6 4 foffset = 20MHz 2 0 -70 -50 -60 -40 -30 -20 P.IAMMER AT ANTENNA (dBm)

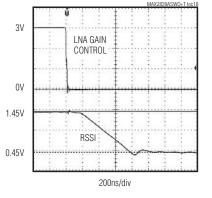


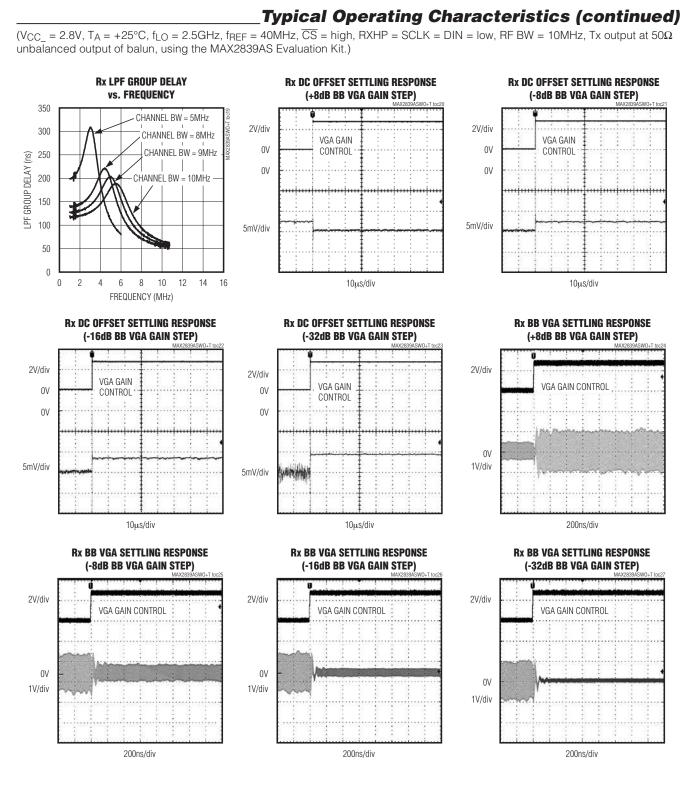
Typical Operating Characteristics (continued)

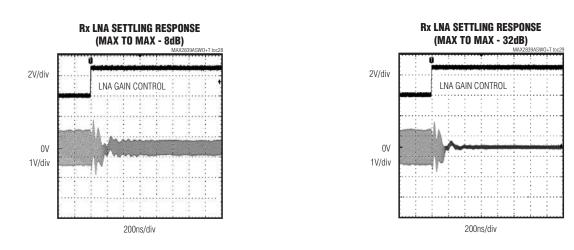

 $(V_{CC} = 2.8V, T_A = +25^{\circ}C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, RXHP = SCLK = DIN = low, RF BW = 10MHz, Tx output at 50\Omega unbalanced output of balun, using the MAX2839AS Evaluation Kit.)$

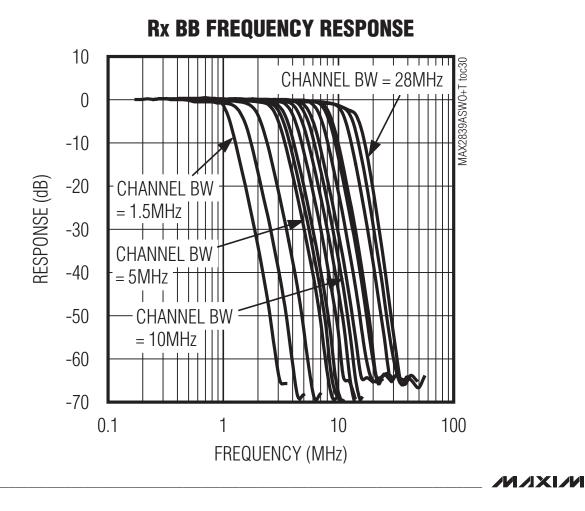






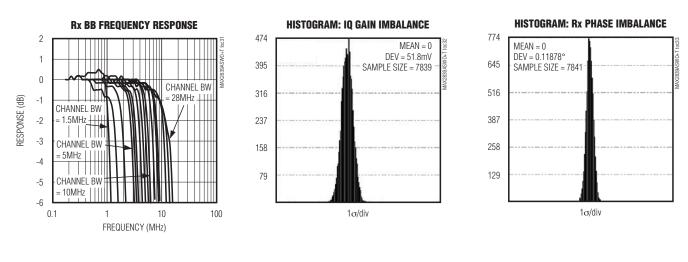


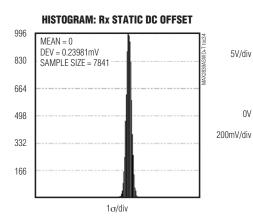


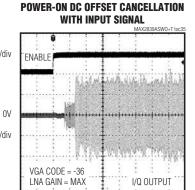


Typical Operating Characteristics (continued)

 $(V_{CC} = 2.8V, T_A = +25^{\circ}C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, RXHP = SCLK = DIN = Iow, RF BW = 10MHz, Tx output at 50\Omega unbalanced output of balun, using the MAX2839AS Evaluation Kit.)$

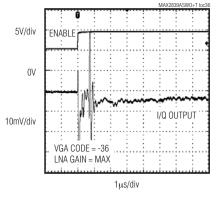




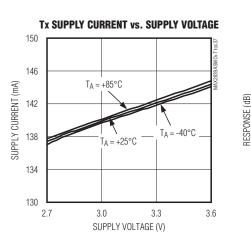

MAX2839AS

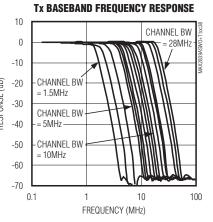
Typical Operating Characteristics (continued)

 $(V_{CC} = 2.8V, T_A = +25^{\circ}C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, RXHP = SCLK = DIN = low, RF BW = 10MHz, Tx output at 50\Omega unbalanced output of balun, using the MAX2839AS Evaluation Kit.)$



POWER-ON DC OFFSET CANCELLATION WITHOUT INPUT SIGNAL

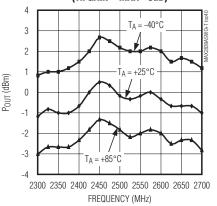




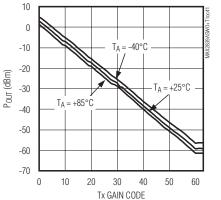
Typical Operating Characteristics (continued)

RESPONSE (dB)

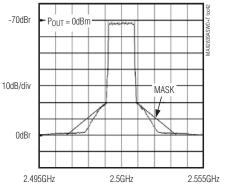
 $(V_{CC} = 2.8V, T_A = +25^{\circ}C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, RXHP = SCLK = DIN = low, RF BW = 10MHz, Tx output at 50\Omega$ unbalanced output of balun, using the MAX2839AS Evaluation Kit.)

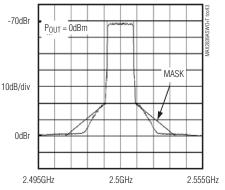

Tx BASEBAND FREQUENCY RESPONSE 2 CHANNEL BW = 28MHz 1 0 -1 CHANNEL BW -2 = 1.5MHz -3 CHANNEL BW = 5MHz -4 CHANNEL BW--5 = 10MHz -6

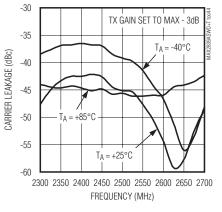
0.1 10 FREQUENCY (MHz)

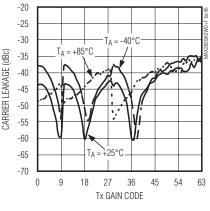

1

100

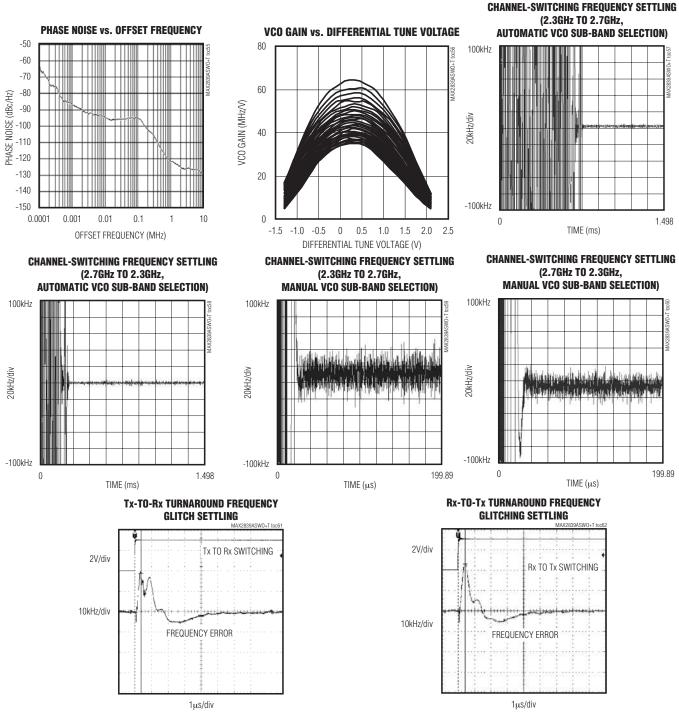

Tx OUTPUT POWER vs. FREQUENCY (Tx GAIN = MAX - 3dB)


Tx OUTPUT POWER vs. GAIN SETTING


Tx OUTPUT SPECTRUM (10MHz CHANNEL BANDWIDTH, 16 QAM FUSC)


TX OUTPUT SPECTRUM (10MHz CHANNEL BANDWIDTH, 64 QAM FUSC)

Tx CARRIER LEAKAGE vs. GAIN SETTING



Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

 $(V_{CC} = 2.8V, T_A = +25^{\circ}C, f_{LO} = 2.5GHz, f_{REF} = 40MHz, \overline{CS} = high, RXHP = SCLK = DIN = low, RF BW = 10MHz, Tx output at 50\Omega$ unbalanced output of balun, using the MAX2839AS Evaluation Kit.)

M IXI M

MAX2839AS

__Bump Description

MAX2839AS

BUMP	NAME	FUNCTION
1	GNDRXLNA_A	Receiver A LNA Ground
2	VCCRXLNA_A	Receiver A LNA Supply Voltage. Bypass with a 22pF capacitor as close as possible to the pin.
3	VCCRXLNA_B	Receiver B LNA Supply Voltage. Bypass with a 22pF capacitor as close as possible to the pin.
4	GND_LNA_B	Receiver B LNA Ground
5	RXINB+	Receiver B LNA Differential Input Plus. Input is internally DC-coupled.
6	GND_MXR_B	Receiver B Mixer Ground
7	B2	Receiver and Transmitter Gain-Control Logic Input Bit 2
8	B3	Receiver and Transmitter Gain-Control Logic Input Bit 3
9	B4	Receiver and Transmitter Gain-Control Logic Input Bit 4
10	Vcctxpad	Supply Voltage for Transmitter Power Amplifier Driver. Bypass with a 22pF capacitor as close as possible to the pin.
11	GND1_PAD_RF	Transmit Power Amplifier Driver Ground
12	GND2_PAD_RF	Transmit Power Amplifier Driver Ground
13	PABIAS	Transmit External Power Amplifier Bias DAC Output
14	GND_TXMX	Transmit Upconverter Ground
15	SCLK	Serial-Clock Logic Input of 4-Wire Serial Interface
16	REFCLK	Reference Clock Input. AC-couple a reference clock to this analog input.
17	VCCXTAL	Crystal Oscillator Supply Voltage. Bypass with a 100nF capacitor as close as possible to the pin.
18	VCCCP	PLL Charge-Pump Supply Voltage. Bypass with a 100nF capacitor as close as possible to the pin.
19	GNDCP	Charge-Pump Ground
20	CPOUT+	Differential Charge-Pump Output Plus. Connect the frequency synthesizer's loop filter between CPOUT+ and CPOUT- (see the <i>Typical Operating Circuit</i>).
21	GNDVCO	VCO Ground
22	VCOBYP	On-Chip VCO Regulator Output Bypass. Bypass with a 1µF capacitor to GND. Do not connect other circuitry to this point.
23	Vccvco	VCO Supply Voltage. Bypass with a 22nF capacitor as close as possible to the pin.
24	GND_LO	Local Oscillator Generation Ground
25	CS	Active-Low Chip-Select Logic Input of 4-Wire Serial Interface
26	GND_RXBB_B	Receiver B Baseband Ground
27	RXBBIB+	Receiver B Baseband I-Channel Differential Output Plus
28	RXBBQB+	Receiver B Baseband Q-Channel Differential Output Plus
29	B6	Receiver and Transmitter Gain-Control Logic Input Bit 6
30	RXBBQA-	Receiver A Baseband Q-Channel Differential Output Minus
31	RXBBQA+	Receiver A Baseband Q-Channel Differential Output Plus
32	VCCRXVGA	Receiver VGA Supply Voltage. Bypass with a 100nF capacitor as close as possible to the pin.
33	GND_RXBB_A	Receiver A Baseband Ground
34	GND_RXLOGEN	Receiver Divide-by-2 Ground
35	GND_MXR_A	Receiver A Mixer Ground
36	GND_LNA_A	Receiver A LNA Ground
37	TXBBQ-	Transmitter Baseband Q-Channel Differential Input Minus
38	CLKOUT_DIV	Clockout Divide Ratio Select Logic Input

Bump Description (continued)

BUMP	NAME	FUNCTION
39	GNDRXLNA_B	Receiver B LNA Ground
40	RXINB-	Receiver B LNA Differential Input Minus. Input is internally DC-coupled.
41	TXRX	Transmit/Receive Mode Enable Logic Input
42	B5	Receiver and Transmitter Gain-Control Logic Input Bit 5
43	TXOUT+	Power Amplifier Driver Differential Output Plus. The pin is biased at $V_{CC}/2$ internally.
44	B1	Receiver and Transmitter Gain-Control Logic Input Bit 1
45	TXOUT-	Power Amplifier Driver Differential Output Minus. The pin is biased at V _{CC} /2 internally.
46	V _{CCTXMX}	Transmitter Upconverter Supply Voltage. Bypass with a 22pF capacitor as close as possible to the pin.
47	CLKOUT	Reference Clock Buffer Output
48	GND_XTAL	Crystal Oscillator Ground
49	GND_DIG	PLL Digital Ground
50	Vcc_dig	PLL Digital Supply Voltage. Bypass with a 100nF capacitor as close as possible to the pin.
51	CPOUT-	Differential Charge-Pump Output Minus. Connect the frequency synthesizer's loop filter between CPOUT+ and CPOUT- (see the <i>Typical Operating Circuit</i>).
52, 67	GND	Ground. Connect to the PCB ground plane.
53	DIN	Data Logic Input of 4-Wire Serial Interface
54	GND_PAD_BIAS	Transmit Bias Ground
55	XTAL1	XTAL Input. AC-couple crystal to this analog pin.
56	RXHP	Receiver I- and Q-Channel AC-Coupling Highpass Corner Frequency Selection Logic Input
57	RXBBIA-	Receiver A Baseband I-Channel Differential Output Minus
58	RXBBIA+	Receiver A Baseband I-Channel Differential Output Plus
59	TXBBI+	Transmitter Baseband I-Channel Differential Input Plus
60	TXBBQ+	Transmitter Baseband Q-Channel Differential Input Plus
61	V _{CCRXMX}	Receiver Downconverters Supply Voltage. Bypass with a 22pF capacitor as close as possible to the pin.
62	RXINA-	Receiver A LNA Differential Input Minus. Input is internally DC-coupled.
63	RXINA+	Receiver A LNA Differential Input Plus. Input is internally DC-coupled.
64	B0	Receiver and Transmitter Gain-Control Logic Input Bit 0
65	ENABLE	Transceiver Enable Logic Input
66	DOUT	Data Logic Output of 4-Wire Serial Interface
68	RXBBIB-	Receiver B Baseband I-Channel Differential Output Minus
69	RXBBQB-	Receiver B Baseband Q-Channel Differential Output Minus
70	RSSI	Receiver Signal Strength Output
71	B7	Receiver Gain-Control Logic Input Bit 7
72	VCCRXFL	Receiver Baseband Filter Supply Voltage. Bypass with a 100nF capacitor as close as possible to the pin.
73	TXBBI-	Transmitter Baseband I-Channel Differential Input Minus

	ONTROL	LOGIC	INPUTS		CIRCUIT BLOCK STATES							
MODE	ENABLE TXRX PIN PIN		SPI REG1 D<3>	SPI REG16 D<1:0>	Rx PATH	Tx PATH	PLL, VCO, LO GEN	CALIBRATION SECTIONS ON	CLOCK OUTPUT			
Shutdown	0	0	Х	XX	Off	Off	Off	None	Off			
Clock-Out Only	1	Х	Х	XO	Off	Off	Off	None	On			
Clock-Out Only	Х	1	Х	XO	Off	Off	Off	None	On			
Standby	0	1	Х	01	Off	Off	On or Off	None	On			
Rx (1x2 MIMO)	1	1	1	01	On	Off	On	None	On			
Rx (1x1 SISO)	1	1	0	01	On (RX_A)	Off	On	None	On			
Тх	1	0	Х	01	Off	On	On	None	On			
Tx Calibration	1	0	х	11	Off	On (except PA driver)	On SPI REG7D<7> = 1	AM detector + Rx I, Q buffers	On			
RX_A Calibration (Loopback)	1	1	0	11	On (except LNA)	On (except PA driver)	On SPI REG26D<3> = 1	Loopback	On			
RX_B Calibration (Loopback)	1	1	1	11	On (except LNA)	On (except PA driver)	On SPI REG26D<3> = 1	Loopback	On			

Table 1. Operating Mode

Detailed Description

Modes of Operation

The modes of operation for the MAX2839AS are shutdown, clock-out only, standby, receive, transmit, transmitter calibration, and receiver calibration. See Table 1 for a summary of the modes of operation. When the parts are active, various blocks can be shutdown individually by programming different SPI registers.

Shutdown Mode

The MAX2839AS features a low-power shutdown mode. In shutdown mode, all circuit blocks are powered down, except the 4-wire serial bus and its internal programmable registers.

Clock-Out Only

In clock-out mode, the entire transceiver is off except the divided reference clock output on the CLKOUT pin and the clock divider, which remain on.

Standby Mode

The standby mode is used to enable the frequency synthesizer block while the rest of the device is powered down. In this mode, the PLL, VCO, and LO gener-

ator are on so that Tx or Rx modes can be quickly enabled from this mode. These and other blocks can be selectively enabled in this mode by programming different SPI registers.

Receive (Rx) Mode

In receive mode, all Rx circuit blocks are powered on and active. Antenna signal is applied; RF is downconverted, filtered, and buffered at Rx BB I and Q outputs. Either receiver A or both receivers can be enabled. Receiver B cannot be enabled by itself.

Transmit (Tx) Mode

In transmit mode, all Tx circuit blocks are powered on. The external PA is powered on after a programmable delay using the on-chip PA bias DAC.

Transmitter (Tx) Calibration Mode

All Tx circuit blocks except PA driver and external PA are powered on and active. The AM detector and receiver I/Q channel buffers are also on, along with multiplexers in the receiver side to route this AM detector's signal to each I and Q differential outputs. When required, the I/Q lowpass filter can be bypassed.

MAX2839A

Receiver (Rx) Calibration or Loopback

Part of the Rx and Tx circuit blocks except LNA and PA driver are powered on and active. The transmitter I/Q input signals are upconverted to RF, and the output of the Tx gain control block (VGA) is fed to the receiver at the input of the downconverter. Either receiver A or both receivers can be connected to the transmitter and powered on. The I/Q lowpass filters are not present in the transmitter signal path (they are bypassed).

Programmable Registers and 4-Wire SPI Interface

The MAX2839AS includes 32 programmable 16-bit registers. The most significant bit (MSB) is the read/write selection bit. The next 5 bits are register address. The 10 least significant bits (LSBs) are register data. Register data is loaded through the 4-wire SPI/MICROWIRETM-compatible serial interface. Data at DIN is shifted in MSB first and is framed by \overline{CS} . When \overline{CS} is low, the clock is active, and input data is shifted at the rising edge of the clock. During the read mode, register data selected by address bits is shifted out to DOUT at the falling edges of the clock. At the \overline{CS} rising edge, the 10-bit data bits are latched into the register selected by address bits. See Figure 1. The register values are preserved in shutdown mode as long as the power-supply voltage is maintained. After power-up, the user must program all register values.

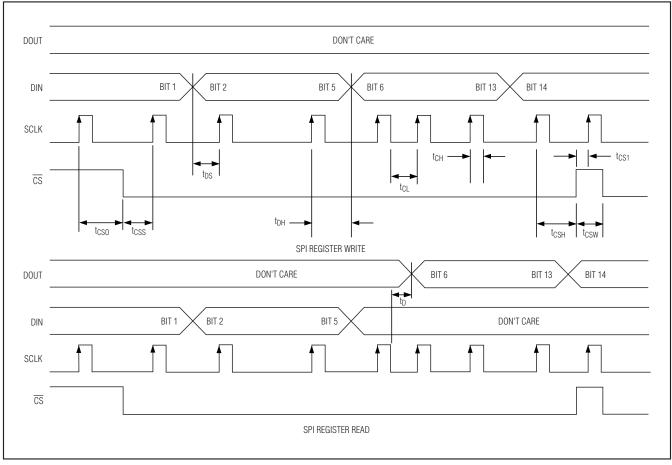


Figure 1. 4-Wire SPI Serial-Interface Timing Diagram

MICROWIRE is a trademark of National Semiconductor Corp.

WAX2839AS

_SPI Register Definitions

(All values in the register definition table are typical numbers. The MAX2839AS SPI does not have a power-on-default feature; the user must program all SPI addresses for normal operation. Prior to use of any untested settings, contact the factory.)

Table 2. MAX2839AS Register Summary

REGISTER NO.	REGISTER NAME	DEFAULT	FUNCTIONS
0	RX_ENABLE	000	Reserved for internal use
1	RX_RF_1	00C	LNA band select, MIMO mode selectRx I/Q phase error correction
2	RX_RF_2	081	 LNA gain SPI control enable Rx I/Q phase error SPI control enable
3	RX_RF/LPF	1B9	Reserved for internal use
4	LPF	3E6	RF channel bandwidth select
5	LPF/VGA_1	100	RX_A LNA and VGA gain controlsLPF operating mode select
6	LPF/VGA_2	000	RX_B LNA and VGA gain controlsRx VGA common-mode select
7	RSSI/VGA	208	 RSSI pin output select, operating mode as a function of RXHP, and receiver select Rx baseband outputs routing select
8	RX_TOP_SPI_1	222	Rx VGA gain SPI control enableLPF operating mode select enable
9	RX_TOP_SPI_2	018	 Temperature sensor enable, and ADC readout trigger DOUT output selection, drive select, three-state output select
10	TX_TOP_ SPI	00C	Tx AM detector gain and filter bandwidth controls
11	TEMP_SEN	004	Temperature sensor ADC readout
12	HPFSM 1	24F	 10MHz HPC duration select when triggered by RXEN or LNA gain 600kHz HPC duration select when triggered by RXEN or LNA gain
13	HPFSM 2	150	 100kHz HPC duration select when triggered by RXEN or LNA gain 30kHz HPC duration select when triggered by RXEN or LNA gain 1kHz HPC duration select when triggered by RXEN
14	HPFSM 3	3C5	 1kHz HPC duration select when triggered by LNA gain HPC rising edge delay and final highpass corner select HPC on-hold corner select as a function of RXHP HPC state machine retriggered by LNA gain enable
15	HPFSM 4	201	 HPC state machine clock divider, sequence bypass, and RXHP dependent select
16	BLK_SPI_EN	01C	Block enabled by SPI
17	FRAC_DIV_1	155	Last 10 of 20 fractional divider bits
18	FRAC_DIV_2	155	First 10 of 20 fractional divider bits
19	INT_DIV	153	Integer divider bitsLO generation band select
20	SYNTH_CONFIG_1	249	Reference divider ratioCLKOUT buffer drive select
21	SYNTH_CONFIG_2	02D	Reserved for internal use

REGISTER NO.	REGISTER NAME	DEFAULT	FUNCTIONS
22	VAS_CONFIG	1A9	VAS operating mode select, relock location, clock divide ratio, delay counter ratio, and triggering
23	LO_MISC_CONFIG	24F	VAS sub-band SPI overwriteCrystal oscillator bias select
24	XTAL_CONFIG	180	 Crystal oscillator core enable, and frequency tuning
25	VCO_CONFIG	000	Reserved for internal use
26	LOGEN_CONFIG	3C0	 VAS test signal select VTUNE test signal select LOGEN G_m enable
27	TXLO_I/Q_CONFIG	280	 Tx LO I/Q phase adjustment by SPI enable, and phase adjustment select Tx DC correction by SPI enable Tx VGA gain control by SPI enable
28	PA_BIAS_ DAC	0C0	PA DAC output current select, and turn-on delay control
29	TX_GAIN_CONFIG	03F	Tx VGA gain control
30	TX_DC CORR_1	380	 Tx DC offset correction for I-channel PA DAC output type select, and voltage mode output select
31	TX_DC_CORR_2	340	Tx DC offset correction for Q-channelPA DAC clock-divide ratio

Table 2. MAX2839AS Register Summary (continued)

ADDRESS BITS					DATA BITS										
REGISTER NAME	A 4	A3	A2	A1	A0	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
RX_ENABLE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RX_RF_1	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0
RX_RF_2	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1
RX_RF/LPF	0	0	0	1	1	0	1	1	0	1	1	1	0	0	1
LPF	0	0	1	0	0	1	1	1	1	1	0	0	1	1	0
LPF/VGA_1	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0
LPF/VGA_2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
RSSI/VGA	0	0	1	1	1	1	0	0	0	0	0	1	0	0	0
RX_TOP_SPI_1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
RX_TOP_SPI_2	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
TX_TOP_ SPI	0	1	0	1	0	0	0	0	0	0	0	1	1	0	0
TEMP_SEN	0	1	0	1	1	0	0	0	0	0	0	0	1	0	0
HPFSM 1	0	1	1	0	0	1	0	0	1	0	0	1	1	1	1
HPFSM 2	0	1	1	0	1	0	1	0	1	0	1	0	0	0	0
HPFSM 3	0	1	1	1	0	1	1	1	1	0	0	0	1	0	1
HPFSM 4	0	1	1	1	1	1	0	0	0	0	0	0	0	0	1
BLK_SPI_EN	1	0	0	0	0	0	0	0	0	0	1	1	1	0	0
FRAC_DIV_1	1	0	0	0	1	0	1	0	1	0	1	0	1	0	1
FRAC_DIV_2	1	0	0	1	0	0	1	0	1	0	1	0	1	0	1
INT_DIV	1	0	0	1	1	0	1	0	1	0	1	0	0	1	1

Table 2. MAX2839AS Register Summary (continued)

REGISTER NAME	ADDRESS BITS						DATA BITS								
	A 4	A3	A2	A1	A0	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
SYNTH_CONFIG_1	1	0	1	0	0	1	0	0	1	0	0	1	0	0	1
SYNTH_CONFIG_2	1	0	1	0	1	0	0	0	0	1	0	1	1	0	1
VAS_CONFIG	1	0	1	1	0	0	1	1	0	1	0	1	0	0	1
LO_MISC_CONFIG	1	0	1	1	1	1	0	0	1	0	0	1	1	1	1
XTAL_CONFIG	1	1	0	0	0	0	1	1	0	0	0	0	0	0	0
VCO_CONFIG	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0
LOGEN_CONFIG	1	1	0	1	0	1	1	1	1	0	0	0	0	0	0
TXLO_I/Q_CONFIG	1	1	0	1	1	1	0	1	0	0	0	0	0	0	0
PA_BIAS_ DAC	1	1	1	0	0	0	0	1	1	0	0	0	0	0	0
TX_GAIN_CONFIG	1	1	1	0	1	0	0	0	0	1	1	1	1	1	1
TX_DC CORR_1	1	1	1	1	0	1	1	1	0	0	0	0	0	0	0
TX_DC_CORR_2	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0

Table 3. Register 0: RX_ENABLE Register (Address = 00000, Default = 000HEX)

BIT NAME	BIT LOCATION (0 = LSB)	DESCRIPTION
RESERVED	9:0	Reserved bits—set to default

Table 4. Register 1: RX_RF_1 Register (Address = 00001, Default = 00CHEX)

BIT NAME	BIT LOCATION (0 = LSB)	DESCRIPTION
RESERVED	9:4	Reserved bits—set to default
MIMO_MODE_SEL	3	MIMO mode selection. 0 = RX_A 1 = RX_A + RX_B (default)
RESERVED	2:1	Reserved bits—set to default
LNA_BAND	0	LNA output LC tank center frequency select. 0 = 2.3GHz to 2.5GHz (default) 1 = 2.5GHz to 2.7GHz

Table 5. Register 2: RX_RF_2 Register (Address = 00010, Default = 081HEX)

BIT NAME	BIT LOCATION (0 = LSB)	DESCRIPTION
RESERVED	9:1	Reserved bits—set to default
LNA_GAIN_SPI_EN	0	LNA gain control select. 0 = LNA gain controlled by external pins B7 and B6 1 = LNA gain controlled by SPI through register 6 bits 1:0 (default)